Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Review on Acridines as Antiproliferative Agents

Author(s): Aparna Baliwada, Kalirajan Rajagopal*, Potlapati Varakumar, Kannan Raman and Gowramma Byran

Volume 22, Issue 21, 2022

Published on: 04 August, 2022

Page: [2769 - 2798] Pages: 30

DOI: 10.2174/1389557522666220511125744

Price: $65

Open Access Journals Promotions 2
Abstract

Acridine derivatives have been thoroughly investigated and discovered to have multitarget qualities, inhibiting topoisomerase enzymes that regulate topological changes in DNA and interfering with DNA's vital biological function. This article discusses current progress in the realm of novel 9-substituted acridine heterocyclic compounds, including the structure and structure– activity connection of the most promising molecules. The IC50 values of the new compounds against several human cancer cell lines will also be presented in the publication. The review also looks into the inhibition of topoisomerase by polycyclic aromatic compounds.

Background: Acridine rings can be found in molecules used in many different areas, including industry and medicine. Nowadays, acridines with anti-bacterial activity are of research interest due to decreasing bacterial resistance. Some acridine derivatives showed antimalarial or antiviral activity. Acridine derivatives were also investigated for anti-tumor activity due to the interaction with topoisomerase II and DNA base pairs. Considering these possible uses of acridine derivatives, this work overviewed all significant structure performances for the specific action of these compounds.

Objective: The objective of this study is to review the activity of acridines as anti-proliferative agents.

Methods: This review is designed as acridines acting as topoisomerase I and II inhibitors/ poison, Acridines on the G-quadraplux interaction, Acridines with metal complexes, Acridines with quinacrine scaffold, Acridines with sulphur moiety.

Conclusion: Although introduced in the 19th century, acridine derivatives are still of scientific interest. In this review, acridine derivatives with various biological activities (antiparasitic, antiviral, anti-bacterial, and antiproliferative) and their structure-activity relationship analyses are presented. Although several mechanisms of their action are known, the only important are discussed here. It can be concluded that the dominant mechanisms are DNA intercalation and interaction with enzymes.

Keywords: Acridine, antiparasitic, anti-bacterial, antiviral, anti-tumor activity, DNA.

Graphical Abstract
[1]
Rupar, J.; Dobričić, V.; Grahovac, J.; Radulović, S.; Skok, Ž.; Ilaš, J.; Aleksić, M.; Brborić, J.; Čudina, O. Synthesis and evaluation of anticancer activity of new 9-acridinyl amino acid derivatives. RSC Med. Chem., 2020, 11(3), 378-386.
[http://dx.doi.org/10.1039/C9MD00597H] [PMID: 33479643]
[2]
Belmont, P.; Bosson, J.; Godet, T.; Tiano, M. Acridine and acridone derivatives, anticancer properties and synthetic methods: Where are we now? Anticancer. Agents Med. Chem., 2007, 7(2), 139-169.
[http://dx.doi.org/10.2174/187152007780058669] [PMID: 17348825]
[3]
Moloney, G.P.; Kelly, D.P.; Mack, P. Synthesis of acridine-based DNA bis-intercalating agents. Molecules, 2001, 6(3), 230-243.
[http://dx.doi.org/10.3390/60300230]
[4]
Kumar, R.; Kaur, M.; Kumari, M. Acridine: A versatile heterocyclic nucleus. Acta Pol. Pharm., 2012, 69(1), 3-9.
[PMID: 22574501]
[5]
Karelou, M.; Kourafalos, V.; Tragomalou, A.P.; Marakos, P.; Pouli, N.; Tsitsilonis, O.E.; Gikas, E.; Kostakis, I.K. Synthesis, biological evaluation and stability studies of some novel aza-acridine aminoderivatives. Molecules, 2020, 25(19), 4584.
[http://dx.doi.org/10.3390/molecules25194584] [PMID: 33049986]
[6]
Zhang, B.; Li, X.; Li, B.; Gao, C.; Jiang, Y. Acridine and its derivatives: A patent review (2009-2013). Expert Opin. Ther. Pat., 2014, 24(6), 647-664.
[7]
Gunaratnam, M.; Greciano, O.; Martins, C.; Reszka, A.P.; Schultes, C.M.; Morjani, H.; Riou, J.F.; Neidle, S. Mechanism of acridine-based telomerase inhibition and telomere shortening. Biochem. Pharmacol., 2007, 74(5), 679-689.
[http://dx.doi.org/10.1016/j.bcp.2007.06.011] [PMID: 17631279]
[8]
Gao, C.; Li, B.; Zhang, B.; Sun, Q.; Li, L.; Li, X.; Chen, C.; Tan, C.; Liu, H.; Jiang, Y. Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents. Bioorg. Med. Chem., 2015, 23(8), 1800-1807.
[http://dx.doi.org/10.1016/j.bmc.2015.02.036] [PMID: 25778766]
[9]
Nunhart, P.; Konkoľová, E.; Janovec, L.; Kašpárková, J.; Malina, J.; Brabec, V.; Matejová, M.; Miltáková, B.; Novotny, L.; Oludotun, A.; Phillips, E.U.M.K. Antimicrobial activity and DNA/HSA interaction of fluorinated 3,6,9-trisubstituted acridines. Chem. Pap., 2020, 74(7), 2327-2337.
[http://dx.doi.org/10.1007/s11696-020-01079-4]
[10]
Li, B.; Gao, C.M.; Sun, Q.S.; Li, L.L.; Tan, C.Y.; Liu, H.X. Novel synthetic acridine-based derivatives as topoisomerase i inhibitors. Chin. Chem. Lett., 2014, 25(7), 1021-1024.
[http://dx.doi.org/10.1016/j.cclet.2014.03.028]
[11]
Cholewinski, G.; Iwaszkiewicz-Grzes, D.; Trzonkowski, P.; Dzierzbicka, K. Synthesis and biological activity of ester derivatives of mycophenolic acid and acridines/acridones as potential immunosuppressive agents. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 974-982.
[http://dx.doi.org/10.3109/14756366.2015.1077821] [PMID: 26308114]
[12]
Patel, M.M.; Mali, M.D.; Patel, S.K. Bernthsen synthesis, antimicrobial activities and cytotoxicity of acridine derivatives. Bioorg. Med. Chem. Lett., 2010, 20(21), 6324-6326.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.001] [PMID: 20850303]
[13]
Chen, K.; Chu, B.Z.; Liu, F.; Li, B.; Gao, C.M.; Li, L.L.; Sun, Q.S.; Shen, Z.F.; Jiang, Y.Y. New benzimidazole acridine derivative induces human colon cancer cell apoptosis in vitro via the ROS-JNK signaling pathway. Acta Pharmacol. Sin., 2015, 36(9), 1074-1084.
[http://dx.doi.org/10.1038/aps.2015.44] [PMID: 26235743]
[14]
Dai, Q.; Chen, J.; Gao, C.; Sun, Q.; Yuan, Z.; Jiang, Y. Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. Chin. Chem. Lett., 2020, 31(2), 404-408. [Internet
[http://dx.doi.org/10.1016/j.cclet.2019.06.019]
[15]
Preet, R.; Mohapatra, P.; Mohanty, S.; Sahu, S.K.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. Int. J. Cancer, 2012, 130(7), 1660-1670.
[http://dx.doi.org/10.1002/ijc.26158] [PMID: 21544805]
[16]
Haider, M.R.; Ahmad, K.; Siddiqui, N.; Ali, Z.; Akhtar, M.J.; Fuloria, N.; Fuloria, S.; Ravichandran, M.; Yar, M.S. Novel 9-(2-(1-arylethylidene)hydrazinyl)acridine derivatives: Target Topoisomerase 1 and growth inhibition of HeLa cancer cells. Bioorg. Chem., 2019, 88, 102962. [Internet
[http://dx.doi.org/10.1016/j.bioorg.2019.102962] [PMID: 31085373]
[17]
Zhang, B.; Wang, N.; Zhang, C.; Gao, C.; Zhang, W.; Chen, K.; Wu, W.; Chen, Y.; Tan, C.; Liu, F.; Jiang, Y. Novel multi-substituted benzyl acridone derivatives as survivin inhibitors for hepatocellular carcinoma treatment. Eur. J. Med. Chem., 2017, 129, 337-348.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.027] [PMID: 28237663]
[18]
Kalirajan, R.; Sankar, S.; Jubie, S.; Gowramma, B. Molecular docking studies and in-silico ADMET screening of some novel oxazine substituted 9-anilinoacridines as topoisomerase II inhibitors. Indian J Pharm Educ Res., 2017, 51(1), 110-115.
[http://dx.doi.org/10.5530/ijper.51.1.15]
[19]
Węsierska-Gądek, J.; Zulehner, N.; Ferk, F.; Składanowski, A.; Komina, O.; Maurer, M. PARP inhibition potentiates the cytotoxic activity of C-1305, a selective inhibitor of topoisomerase II, in human BRCA1-positive breast cancer cells. Biochem. Pharmacol., 2012, 84(10), 1318-1331.
[http://dx.doi.org/10.1016/j.bcp.2012.07.024] [PMID: 22906755]
[20]
Mohammadi-Khanaposhtani, M.; Safavi, M.; Sabourian, R.; Mahdavi, M.; Pordeli, M.; Saeedi, M.; Ardestani, S.K.; Foroumadi, A.; Shafiee, A.; Akbarzadeh, T. Design, synthesis, in vitro cytotoxic activity evaluation, and apoptosis-induction study of new 9(10H)-acridinone-1,2,3-triazoles. Mol. Divers., 2015, 19(4), 787-795.
[http://dx.doi.org/10.1007/s11030-015-9616-0] [PMID: 26170096]
[21]
Bečka, M.; Vilková, M.; Salem, O.; Kašpárková, J.; Brabec, V.; Kožurková, M. 3-[(E)-(acridin-9′-ylmethylidene)amino]-1-substituted thioureas and their biological activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 180, 234-241.
[http://dx.doi.org/10.1016/j.saa.2017.03.014] [PMID: 28315620]
[22]
Almeida, S.M.; Lafayette, E.A.; Silva, W.L.; Lima Serafim, V.; Menezes, T.M.; Neves, J.L.; Ruiz, A.L.; Carvalho, J.E.; Moura, R.O.; Beltrão, E.I.; Carvalho Júnior, L.B.; Lima, M.D. New spiro-acridines: DNA interaction, antiproliferative activity and inhibition of human DNA topoisomerases. Int. J. Biol. Macromol., 2016, 92, 467-475.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.057] [PMID: 27435006]
[23]
Augustin, E.; Borowa-Mazgaj, B.; Kikulska, A.; Kordalewska, M.; Pawłowska, M. CYP3A4 overexpression enhances the cytotoxicity of the antitumor triazoloacridinone derivative C-1305 in CHO cells. Acta Pharmacol. Sin., 2013, 34(1), 146-156.
[http://dx.doi.org/10.1038/aps.2012.132] [PMID: 23160340]
[24]
Infante Lara, L.; Sledge, A.; Laradji, A.; Okoro, C.O.; Osheroff, N. Novel trifluoromethylated 9-amino-3,4-dihydroacridin-1(2H)-ones act as covalent poisons of human topoisomerase IIα. Bioorg. Med. Chem. Lett., 2017, 27(3), 586-589.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.011] [PMID: 27998679]
[25]
Janovec, L.; Kožurková, M.; Sabolová, D.; Ungvarský, J.; Paulíková, H.; Plšíková, J.; Vantová, Z.; Imrich, J. Cytotoxic 3,6-bis((imidazolidinone)imino)acridines: Synthesis, DNA binding and molecular modeling. Bioorg. Med. Chem., 2011, 19(5), 1790-1801.
[http://dx.doi.org/10.1016/j.bmc.2011.01.012] [PMID: 21315610]
[26]
Kumar, P.; Kumar, R.; Prasad, D.N. Synthesis and anticancer study of 9-aminoacridine derivatives. Arab. J. Chem., 2013, 6(1), 79-85.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.039]
[27]
Cisárikováa, A.; Abaffy, P.; Imrich, J.; Paulíková, H. Photocleavage of pDNA by bis-imidazolidino and bis-thioureido proflavines. Acta Chim. Slov., 2015, 8(2), 97-100.
[http://dx.doi.org/10.1515/acs-2015-0017]
[28]
Ketron, A.C.; Denny, W.A.; Graves, D.E.; Osheroff, N. Amsacrine as a topoisomerase II poison: Importance of drug-DNA interactions. Biochemistry, 2012, 51(8), 1730-1739.
[http://dx.doi.org/10.1021/bi201159b] [PMID: 22304499]
[29]
Tian, W.; Yougnia, R.; Depauw, S.; Lansiaux, A.; David-Cordonnier, M.H.; Pfeiffer, B.; Kraus-Berthier, L.; Léonce, S.; Pierré, A.; Dufat, H.; Michel, S. Synthesis, antitumor activity, and mechanism of action of benzo[b]chromeno[6,5-g][1,8]naphthyridin-7-one analogs of acronycine. J. Med. Chem., 2014, 57(24), 10329-10342.
[http://dx.doi.org/10.1021/jm500927d] [PMID: 25360689]
[30]
Yuan, Z.; Chen, S.; Chen, C.; Chen, J.; Chen, C.; Dai, Q.; Gao, C.; Jiang, Y. Design, synthesis and biological evaluation of 4-amidobenzimidazole acridine derivatives as dual PARP and Topo inhibitors for cancer therapy. Eur. J. Med. Chem., 2017, 138, 1135-1146.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.050] [PMID: 28763648]
[31]
Mahanti, S.; Sunkara, S.; Bhavani, R. Synthesis, biological evaluation and computational studies of fused acridine containing 1,2,4-triazole derivatives as anticancer agents. Synth. Commun., 2019, 49(13), 1729-1740.
[http://dx.doi.org/10.1080/00397911.2019.1608450]
[32]
Rahnamay, M.; Mahdavi, M.; Shekarchi, A.A.; Zare, P.; Hosseinpour Feizi, M.A. Cytotoxic and apoptosis inducing effect of some pyrano [3, 2-c] pyridine derivatives against MCF-7 breast cancer cells. Acta Biochim. Pol., 2018, 65(3), 397-402.
[http://dx.doi.org/10.18388/abp.2017_1629] [PMID: 30148505]
[33]
Zhou, Q.; You, C.; Zheng, C.; Gu, Y.; Gu, H.; Zhang, R.; Wu, H.; Sun, B. 3-Nitroacridine derivatives arrest cell cycle at G0/G1 phase and induce apoptosis in human breast cancer cells may act as DNA-target anticancer agents. Life Sci., 2018, 206(206), 1-9.
[http://dx.doi.org/10.1016/j.lfs.2018.05.010] [PMID: 29738780]
[34]
Babu, Y.R.; Bhagavanraju, M.; Reddy, G.D.; Peters, G.J.; Prasad, V.V.S.R. Design and synthesis of quinazolinone tagged acridones as cytotoxic agents and their effects on EGFR tyrosine kinase. Arch. Pharm. (Weinheim), 2014, 347(9), 624-634.
[http://dx.doi.org/10.1002/ardp.201400065] [PMID: 24866341]
[35]
Sun, Y.W.; Chen, K.Y.; Kwon, C.H.; Chen, K.M. CK0403, a 9-aminoacridine, is a potent anti-cancer agent in human breast cancer cells. Mol. Med. Rep., 2016, 13(1), 933-938.
[http://dx.doi.org/10.3892/mmr.2015.4604] [PMID: 26648164]
[36]
Segun, P.A.; Ismail, F.M.D.; Ogbole, O.O.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O. Acridone alkaloids from the stem bark of Citrus aurantium display selective cytotoxicity against breast, liver, lung and prostate human carcinoma cells. J. Ethnopharmacol., 2018, 227, 131-138.
[http://dx.doi.org/10.1016/j.jep.2018.08.039]
[37]
Kaur, M.; Singh, P. Targeting tyrosine kinase: Development of acridone - pyrrole - oxindole hybrids against human breast cancer. Bioorg. Med. Chem. Lett., 2019, 29(1), 32-35.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.021] [PMID: 30446310]
[38]
Lisboa, T.; Silva, D.; Duarte, S.; Ferreira, R.; Andrade, C.; Lopes, A.L.; Ribeiro, J.; Farias, D.; Moura, R.; Reis, M.; Medeiros, K.; Magalhães, H.; Sobral, M. Toxicity and anti-tumor activity of a thiophene-acridine hybrid. Molecules, 2019, 25(1), 64.
[http://dx.doi.org/10.3390/molecules25010064] [PMID: 31878135]
[39]
Chen, R.; Huo, L.; Jaiswal, Y.; Huang, J.; Zhong, Z.; Zhong, J.; Williams, L.; Xia, X.; Liang, Y.; Yan, Z. Design, synthesis, antimicrobial, and anticancer activities of acridine thiosemicarbazides derivatives. Molecules, 2019, 24(11), 1-15.
[http://dx.doi.org/10.3390/molecules24112065] [PMID: 31151235]
[40]
Salem, O.; Vilkova, M.; Plsikova, J.; Grolmusova, A.; Burikova, M.; Prokaiova, M. DNA binding, anti-tumour activity and reactivity toward cell thiols of acridin-9-ylalkenoic derivatives. J. Chem. Sci., 2015, 127(5), 931-940.
[http://dx.doi.org/10.1007/s12039-015-0851-9]
[41]
Vispé, S.; Vandenberghe, I.; Robin, M.; Annereau, J.P.; Créancier, L.; Pique, V.; Galy, J.P.; Kruczynski, A.; Barret, J.M.; Bailly, C. Novel tetra-acridine derivatives as dual inhibitors of topoisomerase II and the human proteasome. Biochem. Pharmacol., 2007, 73(12), 1863-1872.
[http://dx.doi.org/10.1016/j.bcp.2007.02.016] [PMID: 17391647]
[42]
Kalirajan, R.; Rafick, M.H.M.; Sankar, S.; Jubie, S. Docking studies, synthesis, characterization and evaluation of their antioxidant and cytotoxic activities of some novel isoxazole-substituted 9- anilinoacridine derivatives. Sci. World J., 2012, 2012, 165258.
[43]
Kalirajan, R.; Kulshrestha, V.; Sankar, S.; Jubie, S. Docking studies, synthesis, characterization of some novel oxazine substituted 9-anilinoacridine derivatives and evaluation for their antioxidant and anticancer activities as topoisomerase II inhibitors. Eur. J. Med. Chem., 2012, 56, 217-224.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.025] [PMID: 22982526]
[44]
Sondhi, S.M.; Singh, J.; Rani, R.; Gupta, P.P.; Agrawal, S.K.; Saxena, A.K. Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. Eur. J. Med. Chem., 2010, 45(2), 555-563.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.042] [PMID: 19926172]
[45]
El Khabery, S.; El-Bahnsawye, M.A.; Aleem El-Gokha, A.A.; Salama, I.E-T.E.S. A.A. Synthesis and antiproliferative activity of novel acridine-biotin conjugates. Int. J. Pharm. Sci. Res., 2018, 3(1), 18-23.
[46]
Arya, S.; Kumar, S.; Rani, R.; Kumar, N.; Roy, P.; Sondhi, S.M. Synthesis, anti-inflammatory, and cytotoxicity evaluation of 9,10-dihydroanthracene-9,10-α,β-succinimide and bis-succinimide derivatives. Med. Chem. Res., 2013, 22(9), 4278-4285.
[http://dx.doi.org/10.1007/s00044-012-0439-6]
[47]
Lang, X.; Li, L.; Chen, Y.; Sun, Q.; Wu, Q.; Liu, F.; Tan, C.; Liu, H.; Gao, C.; Jiang, Y. Novel synthetic acridine derivatives as potent DNA-binding and apoptosis-inducing antitumor agents. Bioorg. Med. Chem., 2013, 21(14), 4170-4177.
[http://dx.doi.org/10.1016/j.bmc.2013.05.008] [PMID: 23735826]
[48]
Torikai, K.; Koga, R.; Liu, X.; Umehara, K.; Kitano, T.; Watanabe, K.; Oishi, T.; Noguchi, H.; Shimohigashi, Y. Design and synthesis of benzoacridines as estrogenic and anti-estrogenic agents. Bioorg. Med. Chem., 2017, 25(20), 5216-5237.
[http://dx.doi.org/10.1016/j.bmc.2017.07.067] [PMID: 28882502]
[49]
Sufi, S.A.; Adigopula, L.N.; Syed, S.B.; Mukherjee, V.; Coumar, M.S.; Rao, H.S.P.; Rajagopalan, R. In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione. Biomed. Pharmacother., 2017, 85, 389-398.
[http://dx.doi.org/10.1016/j.biopha.2016.11.040] [PMID: 27889234]
[50]
Veligeti, R.; Madhu, R.B.; Anireddy, J.; Pasupuleti, V.R.; Avula, V.K.R.; Ethiraj, K.S.; Uppalanchi, S.; Kasturi, S.; Perumal, Y.; Anantaraju, H.S.; Polkam, N.; Guda, M.R.; Vallela, S.; Zyryanov, G.V. Synthesis of novel cytotoxic tetracyclic acridone derivatives and study of their molecular docking, ADMET, QSAR, bioactivity and protein binding properties. Sci. Rep., 2020, 10(1), 20720.
[http://dx.doi.org/10.1038/s41598-020-77590-1] [PMID: 33244007]
[51]
Voura, M.; Khan, P.; Thysiadis, S.; Katsamakas, S.; Queen, A.; Hasan, G.M.; Ali, S.; Sarli, V.; Hassan, M.I. Probing the inhibition of microtubule affinity regulating kinase 4 by N-substituted acridones. Sci. Rep., 2019, 9(1), 1676.
[http://dx.doi.org/10.1038/s41598-018-38217-8] [PMID: 30737440]
[52]
Kłosiński, K.; Girek, M.; Czarnecka, K.; Pasieka, Z.; Skibiński, R.; Szymański, P. Biological assessment of new tetrahydroacridine derivatives with fluorobenzoic moiety in vitro on A549 and HT-29 cell lines and in vivo on animal model. Hum. Cell, 2020, 33(3), 859-867.
[http://dx.doi.org/10.1007/s13577-020-00376-0] [PMID: 32449113]
[53]
Alvala, M.; Bhatnagar, S.; Ravi, A.; Jeankumar, V.U.; Manjashetty, T.H.; Yogeeswari, P.; Sriram, D. Novel acridinedione derivatives: Design, synthesis, SIRT1 enzyme and tumor cell growth inhibition studies. Bioorg. Med. Chem. Lett., 2012, 22(9), 3256-3260.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.030] [PMID: 22464458]
[54]
Girek, M.; Kłosiński, K.; Grobelski, B.; Pizzimenti, S.; Cucci, M.A.; Daga, M.; Barrera, G.; Pasieka, Z.; Czarnecka, K.; Szymański, P. Novel tetrahydroacridine derivatives with iodobenzoic moieties induce G0/G1 cell cycle arrest and apoptosis in A549 non-small lung cancer and HT-29 colorectal cancer cells. Mol. Cell. Biochem., 2019, 460(1-2), 123-150.
[http://dx.doi.org/10.1007/s11010-019-03576-x] [PMID: 31313023]
[55]
Azab, H.A.; Hussein, B.H.M.; El-Azab, M.F.; Gomaa, M.; El-Falouji, A.I. Bis(acridine-9-carboxylate)-nitro-europium(III) dihydrate complex a new apoptotic agent through Flk-1 down regulation, caspase-3 activation and oligonucleosomes DNA fragmentation. Bioorg. Med. Chem., 2013, 21(1), 223-234.
[http://dx.doi.org/10.1016/j.bmc.2012.10.020] [PMID: 23200222]
[56]
Rajendra Prasad, V.V.S.; Deepak Reddy, G.; Kathmann, I.; Amareswararao, M.; Peters, G.J. Nitric oxide releasing acridone carboxamide derivatives as reverters of doxorubicin resistance in MCF7/Dx cancer cells. Bioorg. Chem., 2016, 64, 51-58.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.007] [PMID: 26657603]
[57]
Paradziej-Łukowicz, J.; Skwarska, A.; Peszyńska-Sularz, G.; Brillowska-Dąbrowska, A.; Konopa, J. Anticancer imidazoacridinone C-1311 inhibits Hypoxia-Inducible Factor-1α (HIF-1α), Vascular Endothelial Growth Factor (VEGF) and angiogenesis. Cancer Biol. Ther., 2011, 12(7), 586-597.
[http://dx.doi.org/10.4161/cbt.12.7.15980] [PMID: 21775820]
[58]
Ismail, N.A.; Salman, A.A.; Yusof, M.S.M.; Soh, S.K.C.; Ali, H.M.; Sarip, R. The synthesis of a novel anticancer compound, N-(3,5 dimethoxyphenyl) acridin-9-amine and evaluation of its toxicity. Open Chem. J., 2018, 5(1), 32-43.
[http://dx.doi.org/10.2174/1874842201805010032]
[59]
Solomon, V.R.; Pundir, S.; Le, H.T.; Lee, H. Design and synthesis of novel quinacrine-[1,3]-thiazinan-4-one hybrids for their anti-breast cancer activity. Eur. J. Med. Chem., 2018, 143, 1028-1038.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.097] [PMID: 29232580]
[60]
Zadi Heydarabad, M.; Vatanmakanian, M.; Abdolalizadeh, J.; Mohammadi, H.; Azimi, A.; Mousavi Ardehaie, R.; Movasaghpour, A.; Farshdousti Hagh, M. Apoptotic effect of resveratrol on human T-ALL cell line CCRF-CEM is unlikely exerted through alteration of BAX and BCL2 promoter methylation. J. Cell. Biochem., 2018, 119(12), 10033-10040.
[http://dx.doi.org/10.1002/jcb.27333] [PMID: 30132966]
[61]
El-Sabbagh, O.I.; Shabaan, M.A.; Kadry, H.H.; Al-Din, E.S. Synthesis of new nonclassical acridines, quinolines, and quinazolines derived from dimedone for biological evaluation. Arch. Pharm. (Weinheim), 2010, 343(9), 519-527.
[http://dx.doi.org/10.1002/ardp.200900296] [PMID: 20814944]
[62]
Sun, H.; Xiang, J.; Li, Q.; Liu, Y.; Li, L.; Shang, Q.; Xu, G.; Tang, Y. Recognize three different human telomeric G-quadruplex conformations by quinacrine. Analyst (Lond.), 2012, 137(4), 862-867.
[http://dx.doi.org/10.1039/c2an15870a] [PMID: 22223064]
[63]
Ungvarsky, J.; Plsikova, J.; Janovec, L.; Koval, J.; Mikes, J.; Mikesová, L.; Harvanova, D.; Fedorocko, P.; Kristian, P.; Kasparkova, J.; Brabec, V.; Vojtickova, M.; Sabolova, D.; Stramova, Z.; Rosocha, J.; Imrich, J.; Kozurkova, M. Novel trisubstituted acridines as human telomeric quadruplex binding ligands. Bioorg. Chem., 2014, 57, 13-29.
[http://dx.doi.org/10.1016/j.bioorg.2014.07.010] [PMID: 25171773]
[64]
Gao, C.; Liu, F.; Luan, X.; Tan, C.; Liu, H.; Xie, Y.; Jin, Y.; Jiang, Y. Novel synthetic 2-amino-10-(3,5-dimethoxy)benzyl-9(10H)-acridinone derivatives as potent DNA-binding antiproliferative agents. Bioorg. Med. Chem., 2010, 18(21), 7507-7514.
[http://dx.doi.org/10.1016/j.bmc.2010.08.058] [PMID: 20863710]
[65]
Guo, Q.L.; Su, H.F.; Wang, N.; Liao, S.R.; Lu, Y.T.; Ou, T.M.; Tan, J.H.; Li, D.; Huang, Z.S. Synthesis and evaluation of 7-substituted-5,6-dihydrobenzo[c]acridine derivatives as new c-KIT promoter G-quadruplex binding ligands. Eur. J. Med. Chem., 2017, 130, 458-471.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.051] [PMID: 28284084]
[66]
Liao, S.R.; Zhou, C.X.; Wu, W.B.; Ou, T.M.; Tan, J.H.; Li, D.; Gu, L.Q.; Huang, Z.S. 12-N-Methylated 5,6-dihydrobenzo[c]acridine derivatives: A new class of highly selective ligands for c-myc G-quadruplex DNA. Eur. J. Med. Chem., 2012, 53, 52-63.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.034] [PMID: 22513122]
[67]
Machireddy, B.; Sullivan, H.J.; Wu, C. Binding of BRACO19 to a telomeric G-quadruplex DNA probed by all-atom molecular dynamics simulations with explicit solvent. Molecules, 2019, 24(6), E1010.
[http://dx.doi.org/10.3390/molecules24061010] [PMID: 30871220]
[68]
Ferreira, R.; Aviñó, A.; Mazzini, S.; Eritja, R. Synthesis, DNA-binding and antiproliferative properties of acridine and 5-methylacridine derivatives. Molecules, 2012, 17(6), 7067-7082.
[http://dx.doi.org/10.3390/molecules17067067] [PMID: 22683895]
[69]
Williams, M.R.M.; Bertrand, B.; Fernandez-Cestau, J.; Waller, Z.A.E.; O’Connell, M.A.; Searcey, M.; Bochmann, M. Acridine-decorated cyclometallated gold(iii) complexes: Synthesis and anti-tumour investigations. Dalton Trans., 2018, 47(38), 13523-13534.
[http://dx.doi.org/10.1039/C8DT02507J] [PMID: 30204186]
[70]
Smyre, C.L.; Saluta, G.; Kute, T.E.; Kucera, G.L.; Bierbach, U. Inhibition of DNA synthesis by a platinum-acridine hybrid agent leads to potent cell kill in nonsmall cell lung cancer. ACS Med. Chem. Lett., 2011, 2(11), 870-874.
[http://dx.doi.org/10.1021/ml2001888] [PMID: 22328962]
[71]
Ramesh, K.B.; Pasha, M.A. Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1,8-diones using SiO2-I as a new heterogeneous catalyst and their anticancer activity. Bioorg. Med. Chem. Lett., 2014, 24(16), 3907-3913.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.047] [PMID: 25042338]
[72]
Sharhan, O.; Heidelberg, T.; Hashim, N.M.; Al-Madhagi, W.M.; Ali, H.M. Benzimidazolium-acridine-based silver N-heterocyclic carbene complexes as potential anti-bacterial and anti-cancer drug. Inorg. Chim. Acta, 2020, 504, 119462.
[http://dx.doi.org/10.1016/j.ica.2020.119462]
[73]
Roopan, S.M.; Khan, F.R.N. SnO2 nanoparticles mediated nontraditional synthesis of biologically active 9-chloro-6,13-dihydro-7-phenyl-5H-indolo [3,2-c]-acridine derivatives. Med. Chem. Res., 2011, 20(6), 732-737.
[http://dx.doi.org/10.1007/s00044-010-9381-7]
[74]
Graham, L.A.; Suryadi, J.; West, T.K.; Kucera, G.L.; Bierbach, U. Synthesis, aqueous reactivity, and biological evaluation of carboxylic acid ester-functionalized platinum-acridine hybrid anticancer agents. J. Med. Chem., 2012, 55(17), 7817-7827.
[http://dx.doi.org/10.1021/jm300879k] [PMID: 22871158]
[75]
Pickard, A.J.; Liu, F.; Bartenstein, T.F.; Haines, L.G.; Levine, K.E.; Kucera, G.L.; Bierbach, U. Redesigning the DNA-targeted chromophore in platinum-acridine anticancer agents: A structure-activity relationship study. Chemistry, 2014, 20(49), 16174-16187.
[http://dx.doi.org/10.1002/chem.201404845] [PMID: 25302716]
[76]
Pérez, S.A.; de Haro, C.; Vicente, C.; Donaire, A.; Zamora, A.; Zajac, J.; Kostrhunova, H.; Brabec, V.; Bautista, D.; Ruiz, J. New acridine thiourea Gold(I) anticancer agents: Targeting the nucleus and inhibiting vasculogenic mimicry. ACS Chem. Biol., 2017, 12(6), 1524-1537.
[http://dx.doi.org/10.1021/acschembio.7b00090] [PMID: 28388047]
[77]
Jung, D.; Khurana, A.; Roy, D.; Kalogera, E.; Bakkum-Gamez, J.; Chien, J.; Shridhar, V. Quinacrine upregulates p21/p27 independent of p53 through autophagy-mediated downregulation of p62-Skp2 axis in ovarian cancer. Sci. Rep., 2018, 8(1), 2487.
[http://dx.doi.org/10.1038/s41598-018-20531-w] [PMID: 29410485]
[78]
Nayak, A.; Das, S.; Nayak, D.; Sethy, C.; Narayan, S.; Kundu, C.N. Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cell Oncol. (Dordr.), 2019, 42(2), 157-171.
[http://dx.doi.org/10.1007/s13402-018-0417-1] [PMID: 30603978]
[79]
Gallant, J.N.; Allen, J.E.; Smith, C.D.; Dicker, D.T.; Wang, W.; Dolloff, N.G.; Navaraj, A.; El-Deiry, W.S. Quinacrine synergizes with 5-fluorouracil and other therapies in colorectal cancer. Cancer Biol. Ther., 2011, 12(3), 239-251.
[http://dx.doi.org/10.4161/cbt.12.3.17034] [PMID: 21725213]
[80]
Abdulghani, J.; Gokare, P.; Gallant, J.N.; Dicker, D.; Whitcomb, T.; Cooper, T.; Liao, J.; Derr, J.; Liu, J.; Goldenberg, D.; Finnberg, N.K.; El-Deiry, W.S. Sorafenib and quinacrine target anti-apoptotic protein MCL1: A poor prognostic marker in Anaplastic Thyroid Cancer (ATC). Clin. Cancer Res., 2016, 22(24), 6192-6203.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2792] [PMID: 27307592]
[81]
Jing, B.; Jin, J.; Xiang, R.; Liu, M.; Yang, L.; Tong, Y.; Xiao, X.; Lei, H.; Liu, W.; Xu, H.; Deng, J.; Zhou, L.; Wu, Y. Vorinostat and quinacrine have synergistic effects in T-cell acute lymphoblastic leukemia through reactive oxygen species increase and mitophagy inhibition. Cell Death Dis., 2018, 9(6), 589.
[http://dx.doi.org/10.1038/s41419-018-0679-6] [PMID: 29789603]
[82]
Wang, W.; Gallant, J.N.; Katz, S.I.; Dolloff, N.G.; Smith, C.D.; Abdulghani, J.; Allen, J.E.; Dicker, D.T.; Hong, B.; Navaraj, A.; El-Deiry, W.S. Quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapeutic agents. Cancer Biol. Ther., 2011, 12(3), 229-238.
[http://dx.doi.org/10.4161/cbt.12.3.17033] [PMID: 21725212]
[83]
Satapathy, S.R.; Nayak, A.; Siddharth, S.; Das, S.; Nayak, D.; Kundu, C.N. Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. Nanomedicine, 2018, 14(3), 883-896.
[http://dx.doi.org/10.1016/j.nano.2018.01.007] [PMID: 29366881]
[84]
Changchien, J.J.; Chen, Y.J.; Huang, C.H.; Cheng, T.L.; Lin, S.R.; Chang, L.S. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. Toxicol. Appl. Pharmacol., 2015, 284(1), 33-41.
[http://dx.doi.org/10.1016/j.taap.2015.02.005] [PMID: 25684043]
[85]
Nayak, D.; Tripathi, N.; Kathuria, D.; Siddharth, S.; Nayak, A.; Bharatam, P.V.; Kundu, C. Quinacrine and curcumin synergistically increased the breast cancer stem cells death by inhibiting ABCG2 and modulating DNA damage repair pathway. Int. J. Biochem. Cell Biol., 2020, 119, 105682.
[http://dx.doi.org/10.1016/j.biocel.2019.105682] [PMID: 31877386]
[86]
Chagas, M.; Cordeiro, N.; Marques, K.; Rocha Pitta, M.G.; Rêgo, M.; Lima, M.; Pitta, M.; Pitta, I.R. New thiazacridine agents: Synthesis, physical and chemical characterization, and in vitro anticancer evaluation. Hum. Exp. Toxicol., 2017, 36(10), 1059-1070.
[http://dx.doi.org/10.1177/0960327116680274] [PMID: 27895099]
[87]
Paulíková, H.; Vantová, Z.; Hunáková, L.; Čižeková, L.; Čarná, M.; Kožurková, M.; Sabolová, D.; Kristian, P.; Hamul’aková, S.; Imrich, J. DNA binding acridine-thiazolidinone agents affecting intracellular glutathione. Bioorg. Med. Chem., 2012, 20(24), 7139-7148.
[http://dx.doi.org/10.1016/j.bmc.2012.09.068] [PMID: 23122936]
[88]
Da Rocha Pitta, M.G.; Souza, É.S.; Barros, F.W.A.; Moraes Filho, M.O.; Pessoa, C.O.; Hernandes, M.Z. Synthesis and in vitro anticancer activity of novel thiazacridine derivatives. Med. Chem. Res., 2013, 22(5), 2421-2429.
[http://dx.doi.org/10.1007/s00044-012-0236-2]
[89]
Lafayette, E.A.; Vitalino de Almeida, S.M.; Pitta, M.G.; Carneiro Beltrão, E.I.; da Silva, T.G.; Olímpio de Moura, R. Pitta, Ida.R.; de Carvalho, L.B., Jr; de Lima, Mdo.C. Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules, 2013, 18(12), 15035-15050.
[http://dx.doi.org/10.3390/molecules181215035] [PMID: 24322489]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy