Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Intracellular Activity of Poly (DL-Lactide-co-Glycolide) Nanoparticles Encapsulated with Prothionamide, Pyrazinamide, Levofloxacin, Linezolid, or Ethambutol on Multidrug-Resistant Mycobacterium tuberculosis

Author(s): Huixian Jiang, Xiang Li, Zhenjian Xing, Qun Niu and Jiangping Xu*

Volume 20, Issue 3, 2023

Published on: 11 May, 2022

Page: [306 - 316] Pages: 11

DOI: 10.2174/1567201819666220511120215

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Multidrug-resistant Mycobacterium tuberculosis (MDR-TB) is a major cause of death amongst tuberculosis patients. Nanomedicine avoids some limitations of conventional drug treatment and increases therapeutic efficacy against bacterial infections. However, the effect of anti-TB drug nanoparticle (NP) compounds in anti-TB regimens against MDR-TB remains unclear.

Objective: The objective of this article is to prepare levofloxacin, linezolid, ethambutol, prothionamide, and pyrazinamide encapsulated NPs and to evaluate their therapeutic efficacy against MDR-TB in macrophages.

Methods: Drug-loaded PLGA NPs were prepared by the multiple emulsion method. The colocalization, intracellular release, and anti-TB activity of these NPs were investigated on cultured macrophages. The immune phenotype of the macrophages, including their mitochondrial membrane potential, reactive oxygen species (ROS), and nitric oxide (NO) production, was evaluated following treatment with NPs or free drug compounds.

Results: All drug-loaded PLGA NPs were spherical in shape, 150 to 210 nm in size, and showed 14.22% to 43.51% encapsulation efficiencies and long-duration release. Drug-loaded PLGA NPs were mainly distributed in the cytoplasm of macrophages, showed high cellular compatibility, and maintained their concentration for at least 13 days. Compared with the free drug compounds, the number of colonies after exposure to PLGA NP compounds was significantly less. The enhanced antibacterial activity of the NP compounds may be due to the enhanced levels of ROS and NO and the increased early apoptosis stress within M. tuberculosis-infected macrophages additionally.

Conclusion: The application of PLGA NP compounds not only enhances drug efficacy but also induces innate bactericidal events in macrophages, confirming this as a promising approach for MDR-TB therapy.

Keywords: Multidrug-resistant Mycobacterium tuberculosis, poly (DL-lactide-co-glycolide), nanoparticle, anti-TB regimens, macrophage, bactericidal activity.

« Previous
Graphical Abstract
[1]
WHO. Global tuberculosis report: Executive summary., 2020. Available from: https://apps.who.int/iris/handle/10665/337538
[2]
Singh, G.; Kesharwani, P.; Srivastava, A.K. Tuberculosis treated by multiple drugs: An overview. Curr. Drug Deliv., 2018, 15(3), 312-320.
[http://dx.doi.org/10.2174/1567201814666171120125916] [PMID: 29165080]
[3]
WHO. WHO consolidated guidelines on drug-resistant tuberculosis treatment., 2019. Available from: https://apps.who.int/iris/handle/10665/311389
[4]
Tiberi, S.; du Plessis, N.; Walzl, G.; Vjecha, M.J.; Rao, M.; Ntoumi, F.; Mfinanga, S.; Kapata, N.; Mwaba, P.; McHugh, T.D.; Ippolito, G.; Migliori, G.B.; Maeurer, M.J.; Zumla, A. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis., 2018, 18(7), e183-e198.
[http://dx.doi.org/10.1016/S1473-3099(18)30110-5] [PMID: 29580819]
[5]
Hussain, A.; Singh, S.; Das, S.S.; Anjireddy, K.; Karpagam, S.; Shakeel, F. Nanomedicines as drug delivery carriers of anti-tubercular drugs: From pathogenesis to infection control. Curr. Drug Deliv., 2019, 16(5), 400-429.
[http://dx.doi.org/10.2174/1567201816666190201144815] [PMID: 30714523]
[6]
Sosnik, A.; Carcaboso, A.M.; Glisoni, R.J.; Moretton, M.A.; Chiappetta, D.A. New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev., 2010, 62(4-5), 547-559.
[http://dx.doi.org/10.1016/j.addr.2009.11.023] [PMID: 19914315]
[7]
Hädrich, G.; Vaz, G.R.; Boschero, R.; Appel, A.S.; Ramos, C.; Halicki, P.C.B.; Bidone, J.; Teixeira, H.F.; Muccillo-Baisch, A.L.; Dal-Bó, A.; Silva Pinto, L.; Dailey, L-A.; Da Silva, P.E.A.; Ramos, D.F.; Dora, C.L. Development of lipid nanocarriers for tuberculosis treatment: Evaluation of suitable excipients and nanocarriers. Curr. Drug Deliv., 2021, 18(6), 770-778.
[http://dx.doi.org/10.2174/1567201818666210212092112] [PMID: 33583376]
[8]
Kaur, G.; Mehta, S.K. Probing location of anti-TB drugs loaded in Brij 96 microemulsions using thermoanalytical and photophysical approach. J. Pharm. Sci., 2014, 103(3), 937-944.
[http://dx.doi.org/10.1002/jps.23857] [PMID: 24425102]
[9]
Makabenta, J.M.V.; Nabawy, A.; Li, C.H.; Schmidt-Malan, S.; Patel, R.; Rotello, V.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol., 2021, 19(1), 23-36.
[http://dx.doi.org/10.1038/s41579-020-0420-1] [PMID: 32814862]
[10]
Dallenga, T.; Repnik, U.; Corleis, B.; Eich, J.; Reimer, R.; Griffiths, G.W.; Schaible, U.E. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe, 2017, 22(4), 519-530.e3.
[http://dx.doi.org/10.1016/j.chom.2017.09.003] [PMID: 29024644]
[11]
Sturkenboom, M.G.G.; Märtson, A.G.; Svensson, E.M.; Sloan, D.J.; Dooley, K.E.; van den Elsen, S.H.J.; Denti, P.; Peloquin, C.A.; Aarnoutse, R.E.; Alffenaar, J.C. Population pharmacokinetics and bayesian dose adjustment to advance TDM of anti-TB drugs. Clin. Pharmacokinet., 2021, 60(6), 685-710.
[http://dx.doi.org/10.1007/s40262-021-00997-0] [PMID: 33674941]
[12]
Upadhyay, S.; Khan, I.; Gothwal, A.; Pachouri, P.K.; Bhaskar, N.; Gupta, U.D.; Chauhan, D.S.; Gupta, U. Conjugated and entrapped HPMA-PLA Nano-polymeric micelles based dual delivery of first line anti TB drugs: Improved and safe drug delivery against sensitive and resistant Mycobacterium tuberculosis. Pharm. Res., 2017, 34(9), 1944-1955.
[http://dx.doi.org/10.1007/s11095-017-2206-3] [PMID: 28685299]
[13]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[14]
Abdelghany, S.M.; Quinn, D.J.; Ingram, R.J.; Gilmore, B.F.; Donnelly, R.F.; Taggart, C.C.; Scott, C.J. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int. J. Nanomedicine, 2012, 7, 4053-4063.
[http://dx.doi.org/10.2147/IJN.S34341] [PMID: 22915848]
[15]
Brown, A.N.; Smith, K.; Samuels, T.A.; Lu, J.; Obare, S.O.; Scott, M.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol., 2012, 78(8), 2768-2774.
[http://dx.doi.org/10.1128/AEM.06513-11] [PMID: 22286985]
[16]
Li, C.H.; Chen, X.; Landis, R.F.; Geng, Y.; Makabenta, J.M.; Lemnios, W.; Gupta, A.; Rotello, V.M. Phytochemical-based nanocomposites for the treatment of bacterial biofilms. ACS Infect. Dis., 2019, 5(9), 1590-1596.
[http://dx.doi.org/10.1021/acsinfecdis.9b00134] [PMID: 31251554]
[17]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J., 2005, 19(3), 311-330.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[18]
Pandey, R.; Sharma, A.; Zahoor, A.; Sharma, S.; Khuller, G.K.; Prasad, B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother., 2003, 52(6), 981-986.
[http://dx.doi.org/10.1093/jac/dkg477] [PMID: 14613962]
[19]
Zhang, L.; Pornpattananangku, D.; Hu, C.M.J.; Huang, C.M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem., 2010, 17(6), 585-594.
[http://dx.doi.org/10.2174/092986710790416290] [PMID: 20015030]
[20]
Park, S.I.; Oh, J.; Jang, K.; Yoon, J.; Moon, S.J.; Park, J.S.; Lee, J.H.; Song, J.; Jang, I.J.; Yu, K.S.; Chung, J.Y. Pharmacokinetics of second-line antituberculosis drugs after multiple administrations in healthy volunteers. Antimicrob. Agents Chemother., 2015, 59(8), 4429-4435.
[http://dx.doi.org/10.1128/AAC.00354-15] [PMID: 25987620]
[21]
WHO. Guidelines for treatment of drug-susceptible tuberculosis and patient care., 2017. Available from: https://apps.who.int/iris/handle/10665/255052
[22]
Pandey, R.; Zahoor, A.; Sharma, S.; Khuller, G.K. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb.), 2003, 83(6), 373-378.
[http://dx.doi.org/10.1016/j.tube.2003.07.001] [PMID: 14623168]
[23]
Collins, L.; Franzblau, S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother., 1997, 41(5), 1004-1009.
[http://dx.doi.org/10.1128/AAC.41.5.1004] [PMID: 9145860]
[24]
Patel, S.; Kim, J.; Herrera, M.; Mukherjee, A.; Kabanov, A.V.; Sahay, G. Brief update on endocytosis of nanomedicines. Adv. Drug Deliv. Rev., 2019, 144, 90-111.
[http://dx.doi.org/10.1016/j.addr.2019.08.004] [PMID: 31419450]
[25]
Kalluru, R.; Fenaroli, F.; Westmoreland, D.; Ulanova, L.; Maleki, A.; Roos, N.; Paulsen Madsen, M.; Koster, G.; Egge-Jacobsen, W.; Wilson, S.; Roberg-Larsen, H.; Khuller, G.K.; Singh, A.; Nyström, B.; Griffiths, G. Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J. Cell Sci., 2013, 126(Pt 14), 3043-3054.
[http://dx.doi.org/10.1242/jcs.121814] [PMID: 23687375]
[26]
Onoshita, T.; Shimizu, Y.; Yamaya, N.; Miyazaki, M.; Yokoyama, M.; Fujiwara, N.; Nakajima, T.; Makino, K.; Terada, H.; Haga, M. The behavior of PLGA microspheres containing rifampicin in alveolar macrophages. Colloids Surf. B Biointerfaces, 2010, 76(1), 151-157.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.036] [PMID: 19954935]
[27]
Lemmer, Y.; Kalombo, L.; Pietersen, R.D.; Jones, A.T.; Semete-Makokotlela, B.; Van Wyngaardt, S.; Ramalapa, B.; Stoltz, A.C.; Baker, B.; Verschoor, J.A.; Swai, H.S.; de Chastellier, C. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J. Control. Release, 2015, 211(1), 94-104.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.005] [PMID: 26055640]
[28]
Trousil, J.; Syrová, Z.; Dal, N.K.; Rak, D.; Konefał, R.; Pavlova, E.; Matějková, J.; Cmarko, D.; Kubíčková, P.; Pavliš, O.; Urbánek, T.; Sedlák, M.; Fenaroli, F.; Raška, I.; Štěpánek, P.; Hrubý, M. Rifampicin nanoformulation enhances treatment of tuberculosis in zebrafish. Biomacromolecules, 2019, 20(4), 1798-1815.
[http://dx.doi.org/10.1021/acs.biomac.9b00214] [PMID: 30785284]
[29]
Moraco, A.H.; Kornfeld, H. Cell death and autophagy in tuberculosis. Semin. Immunol., 2014, 26(6), 497-511.
[http://dx.doi.org/10.1016/j.smim.2014.10.001] [PMID: 25453227]
[30]
Keane, J.; Balcewicz-Sablinska, M.K.; Remold, H.G.; Chupp, G.L.; Meek, B.B.; Fenton, M.J.; Kornfeld, H. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect. Immun., 1997, 65(1), 298-304.
[http://dx.doi.org/10.1128/iai.65.1.298-304.1997] [PMID: 8975927]
[31]
Balcewicz-Sablinska, M.K.; Keane, J.; Kornfeld, H.; Remold, H.G. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J. Immunol., 1998, 161(5), 2636-2641.
[PMID: 9725266]
[32]
Kim, J.J.; Lee, H-M.; Shin, D.M.; Kim, W.; Yuk, J-M.; Jin, H.S.; Lee, S.H.; Cha, G.H.; Kim, J.M.; Lee, Z.W.; Shin, S.J.; Yoo, H.; Park, Y.K.; Park, J.B.; Chung, J.; Yoshimori, T.; Jo, E.K. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe, 2012, 11(5), 457-468.
[http://dx.doi.org/10.1016/j.chom.2012.03.008] [PMID: 22607799]
[33]
Sibley, L.D.; Adams, L.B.; Krahenbuhl, J.L. Inhibition of interferon-gamma-mediated activation in mouse macrophages treated with lipoarabinomannan. Clin. Exp. Immunol., 1990, 80(1), 141-148.
[http://dx.doi.org/10.1111/j.1365-2249.1990.tb06454.x] [PMID: 2138940]
[34]
Pieters, J.; Ploegh, H. Microbiology. Chemical warfare and mycobacterial defense. Science, 2003, 302(5652), 1900-1902.
[http://dx.doi.org/10.1126/science.1092873] [PMID: 14671281]
[35]
Bredt, D.S.; Snyder, S.H. Nitric oxide: A physiologic messenger molecule. Annu. Rev. Biochem., 1994, 63(1), 175-195.
[http://dx.doi.org/10.1146/annurev.bi.63.070194.001135] [PMID: 7526779]
[36]
Cooper, A.M.; Segal, B.H.; Frank, A.A.; Holland, S.M.; Orme, I.M. Transient loss of resistance to pulmonary tuberculosis in p47(phox-/-) mice. Infect. Immun., 2000, 68(3), 1231-1234.
[http://dx.doi.org/10.1128/IAI.68.3.1231-1234.2000] [PMID: 10678931]
[37]
Gutierrez, M.G.; Master, S.S.; Singh, S.B.; Taylor, G.A.; Colombo, M.I.; Deretic, V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004, 119(6), 753-766.
[http://dx.doi.org/10.1016/j.cell.2004.11.038] [PMID: 15607973]
[38]
Singh, S.B.; Davis, A.S.; Taylor, G.A.; Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science, 2006, 313(5792), 1438-1441.
[http://dx.doi.org/10.1126/science.1129577] [PMID: 16888103]
[39]
Deretic, V. Autophagy as an innate immunity paradigm: Expanding the scope and repertoire of pattern recognition receptors. Curr. Opin. Immunol., 2012, 24(1), 21-31.
[http://dx.doi.org/10.1016/j.coi.2011.10.006] [PMID: 22118953]
[40]
Jain, S.K.; Gupta, Y.; Ramalingam, L.; Jain, A.; Jain, A.; Khare, P.; Bhargava, D. Lactose-conjugated PLGA nanoparticles for enhanced delivery of rifampicin to the lung for effective treatment of pulmonary tuberculosis. PDA J. Pharm. Sci. Technol., 2010, 64(3), 278-287.
[PMID: 21502027]
[41]
Rohde, K.; Yates, R.M.; Purdy, G.E.; Russell, D.G. Mycobacterium tuberculosis and the environment within the phagosome. Immunol. Rev., 2007, 219(1), 37-54.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00547.x] [PMID: 17850480]
[42]
Vergne, I.; Chua, J.; Singh, S.B.; Deretic, V. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol., 2004, 20(1), 367-394.
[http://dx.doi.org/10.1146/annurev.cellbio.20.010403.114015] [PMID: 15473845]
[43]
Akinc, A.; Battaglia, G. Exploiting endocytosis for nanomedicines. Cold Spring Harb. Perspect. Biol., 2013, 5(11), a016980.
[http://dx.doi.org/10.1101/cshperspect.a016980] [PMID: 24186069]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy