Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

The SDF-1/CXCR4 Signaling Pathway Directs the Migration of Systemically Transplanted Bone Marrow Mesenchymal Stem Cells Towards the Lesion Site in a Rat Model of Spinal Cord Injury

Author(s): Andong Zhao, Manhon Chung, Yi Yang, Xiaohua Pan, Yu Pan* and Sa Cai*

Volume 18, Issue 2, 2023

Published on: 11 August, 2022

Page: [216 - 230] Pages: 15

DOI: 10.2174/1574888X17666220510163245

Price: $65

Abstract

Background: It has been observed that bone marrow-derived mesenchymal stem cells (MSCs) migrate towards the injured spinal cord and promote functional recovery when systemically transplanted into the traumatized spinal cord. However, the mechanisms underlying their migration to the spinal cord remain poorly understood.

Methods: In this study, we systemically transplanted GFP- and luciferase-expressing MSCs into rat models of spinal cord injury and examined the role of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis in regulating the migration of transplanted MSCs to the spinal cord. After intravenous injection, MSCs migrated to the injured spinal cord where the expression of SDF-1 was increased. Spinal cord recruitment of MSCs was blocked by pre-incubation with an inhibitor of CXCR4. Their presence correlated with morphological and functional recovery. In vitro, SDF-1 or cerebrospinal fluid (CSF) collected from SCI rats promoted a dose-dependent migration of MSCs in culture, which was blocked by an inhibitor of CXCR4 or SDF-1 antibody.

Results and Conclusion: The study suggests that SDF-1/CXCR4 interactions recruit exogenous MSCs to injured spinal cord tissues and may enhance neural regeneration. Modulation of the homing capacity may be instrumental in harnessing the therapeutic potential of MSCs.

Keywords: Bone marrow mesenchymal stem cells, spinal cord injury, migration, SDF-1, CXCR4, neural regeneration.

Graphical Abstract
[1]
Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 2014; 15(11): 1009-16.
[http://dx.doi.org/10.1038/ni.3002] [PMID: 25329189]
[2]
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[3]
Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 2011; 12(2): 126-31.
[http://dx.doi.org/10.1038/nrm3049] [PMID: 21253000]
[4]
Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 2013; 9(10): 584-94.
[http://dx.doi.org/10.1038/nrrheum.2013.109] [PMID: 23881068]
[5]
Herrmann M, Verrier S, Alini M. Strategies to stimulate mobilization and homing of endogenous stem and progenitor cells for bone tissue repair. Front Bioeng Biotechnol 2015; 3: 79.
[http://dx.doi.org/10.3389/fbioe.2015.00079] [PMID: 26082926]
[6]
Lee CW, Chen YF, Wu HH, Lee OK. Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology 2018; 154(1): 46-56.
[http://dx.doi.org/10.1053/j.gastro.2017.09.049] [PMID: 29107021]
[7]
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med 2014; 2(12): 1016-26.
[http://dx.doi.org/10.1016/S2213-2600(14)70217-6] [PMID: 25465643]
[8]
Matsushita K. Heart failure and adipose mesenchymal stem cells. Trends Mol Med 2020; 26(4): 369-79.
[http://dx.doi.org/10.1016/j.molmed.2020.01.003] [PMID: 32277931]
[9]
Cai S, Shea GK, Tsui AYP, Chan Y-S, Shum DKY. Derivation of clinically applicable schwann cells from bone marrow stromal cells for neural repair and regeneration. CNS Neurol Disord Drug Targets 2011; 10(4): 500-8.
[http://dx.doi.org/10.2174/187152711795563930] [PMID: 21495967]
[10]
Pan Y, Cai S. Current state of the development of mesenchymal stem cells into clinically applicable Schwann cell transplants. Mol Cell Biochem 2012; 368(1-2): 127-35.
[http://dx.doi.org/10.1007/s11010-012-1351-6] [PMID: 22782527]
[11]
Cai S, Tsui Y-P, Tam K-W, et al. Directed differentiation of human bone marrow stromal cells to fate-committed schwann cells. Stem Cell Reports 2017; 9(4): 1097-108.
[http://dx.doi.org/10.1016/j.stemcr.2017.08.004] [PMID: 28890164]
[12]
Cai S, Han L, Ao Q, Chan Y-S, Shum DK-Y. Human induced pluripotent cell-derived sensory neurons for fate commitment of bone marrow-derived schwann cells: Implications for remyelination therapy. Stem Cells Transl Med 2017; 6(2): 369-81.
[http://dx.doi.org/10.5966/sctm.2015-0424] [PMID: 28191772]
[13]
Cai S, Pan Y, Han B, Sun TZ, Sheng ZY, Fu XB. Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands. Chin Med J (Engl) 2011; 124(15): 2260-8.
[PMID: 21933554]
[14]
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014; 32(3): 252-60.
[http://dx.doi.org/10.1038/nbt.2816] [PMID: 24561556]
[15]
Lau TT, Wang DA. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther 2011; 11(2): 189-97.
[http://dx.doi.org/10.1517/14712598.2011.546338] [PMID: 21219236]
[16]
Chavakis E, Urbich C, Dimmeler S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol 2008; 45(4): 514-22.
[http://dx.doi.org/10.1016/j.yjmcc.2008.01.004] [PMID: 18304573]
[17]
Nagasawa T. CXCL12/SDF-1 and CXCR4. Front Immunol 2015; 6: 301.
[http://dx.doi.org/10.3389/fimmu.2015.00301] [PMID: 26124757]
[18]
Cheng X, Wang H, Zhang X, et al. The role of SDF-1/CXCR4/CXCR7 in neuronal regeneration after cerebral ischemia. Front Neurosci 2017; 11: 590.
[http://dx.doi.org/10.3389/fnins.2017.00590] [PMID: 29123467]
[19]
Wang Y, Deng Y, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 2008; 1195: 104-12.
[http://dx.doi.org/10.1016/j.brainres.2007.11.068] [PMID: 18206136]
[20]
Deng QJ, Xu XF, Ren J. Effects of SDF-1/CXCR4 on the repair of traumatic brain injury in rats by mediating bone marrow derived mesenchymal stem cells. Cell Mol Neurobiol 2018; 38(2): 467-77.
[http://dx.doi.org/10.1007/s10571-017-0490-4] [PMID: 28484859]
[21]
Zhong J, Rajagopalan S. Dipeptidyl peptidase-4 regulation of SDF-1/CXCR4 axis: Implications for cardiovascular disease. Front Immunol 2015; 6: 477.
[http://dx.doi.org/10.3389/fimmu.2015.00477] [PMID: 26441982]
[22]
Penn MS, Pastore J, Miller T, Aras R. SDF-1 in myocardial repair. Gene Ther 2012; 19(6): 583-7.
[http://dx.doi.org/10.1038/gt.2012.32] [PMID: 22673496]
[23]
Takahashi M. Role of the SDF-1/CXCR4 system in myocardial infarction. Circulation journal : official journal of the Japanese Circulation Society 2010.
[http://dx.doi.org/10.1253/circj.CJ-09-1021]
[24]
Yu J, Li M, Qu Z, Yan D, Li D, Ruan Q. SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal cells toward areas of heart myocardial infarction through activation of PI3K/Akt. J Cardiovasc Pharmacol 2010; 55(5): 496-505.
[http://dx.doi.org/10.1097/FJC.0b013e3181d7a384] [PMID: 20179608]
[25]
Liepelt A, Tacke F. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am J Physiol Gastrointest Liver Physiol 2016; 311(2): G203-9.
[http://dx.doi.org/10.1152/ajpgi.00193.2016] [PMID: 27313175]
[26]
Li G, Yun X, Ye K, et al. Long non-coding RNA-H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA-149/SDF-1 axis. J Cell Mol Med 2020; 24(9): 4944-55.
[http://dx.doi.org/10.1111/jcmm.15040] [PMID: 32198976]
[27]
Li G, An J, Han X, Zhang X, Wang W, Wang S. Hypermethylation of microRNA-149 activates SDF-1/CXCR4 to promote osteogenic differentiation of mesenchymal stem cells. J Cell Physiol 2019; 234(12): 23485-94.
[http://dx.doi.org/10.1002/jcp.28917] [PMID: 31206187]
[28]
Qin HJ, Xu T, Wu HT, et al. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis. Bone 2019; 125: 140-50.
[http://dx.doi.org/10.1016/j.bone.2019.05.010] [PMID: 31108241]
[29]
Wang G-D, Liu Y-X, Wang X, Zhang Y-L, Zhang Y-D, Xue F. The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells. Oncotarget 2017; 8(7): 11629-40.
[http://dx.doi.org/10.18632/oncotarget.14619] [PMID: 28099928]
[30]
Li J, Guo W, Xiong M, et al. Effect of SDF-1/CXCR4 axis on the migration of transplanted bone mesenchymal stem cells mobilized by erythropoietin toward lesion sites following spinal cord injury. Int J Mol Med 2015; 36(5): 1205-14.
[http://dx.doi.org/10.3892/ijmm.2015.2344] [PMID: 26398409]
[31]
Jaerve A, Schira J, Müller HW. Concise review: the potential of stromal cell-derived factor 1 and its receptors to promote stem cell functions in spinal cord repair. Stem Cells Transl Med 2012; 1(10): 732-9.
[http://dx.doi.org/10.5966/sctm.2012-0068] [PMID: 23197665]
[32]
Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius R, Mehdorn HM, Held-Feindt J. Spatiotemporal CCR1, CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain. J Neurosurg Spine 2011; 14(5): 583-97.
[http://dx.doi.org/10.3171/2010.12.SPINE10480] [PMID: 21332278]
[33]
Sun B-W, Shen H-M, Liu B-C, Fang H-L. Research on the effect and mechanism of the CXCR-4-overexpressing BMSCs combined with SDF-1α for the cure of acute SCI in rats. Eur Rev Med Pharmacol Sci 2017; 21(1): 167-74.
[PMID: 28121340]
[34]
Matyas JJ, Stewart AN, Goldsmith A, et al. Effects of bone-marrow-derived MSC transplantation on functional recovery in a rat model of spinal cord injury: Comparisons of transplant locations and cell concentrations. Cell Transplant 2017; 26(8): 1472-82.
[http://dx.doi.org/10.1177/0963689717721214] [PMID: 28901182]
[35]
Gong Z, Xia K, Xu A, et al. Stem cell transplantation: A promising therapy for spinal cord injury. Curr Stem Cell Res Ther 2020; 15(4): 321-31.
[http://dx.doi.org/10.2174/1574888X14666190823144424] [PMID: 31441733]
[36]
Deng W-S, Ma K, Liang B, et al. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res 2020; 15(9): 1686-700.
[http://dx.doi.org/10.4103/1673-5374.276340] [PMID: 32209773]
[37]
Zhang XM, Ma J, Sun Y, et al. Tanshinone IIA promotes the differentiation of bone marrow mesenchymal stem cells into neuronal-like cells in a spinal cord injury model. J Transl Med 2018; 16(1): 193.
[http://dx.doi.org/10.1186/s12967-018-1571-y] [PMID: 30001730]
[38]
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells 2019; 8(8): 784.
[http://dx.doi.org/10.3390/cells8080784] [PMID: 31357692]
[39]
Powell D, Tauzin S, Hind LE, Deng Q, Beebe DJ, Huttenlocher A. Chemokine signaling and the regulation of bidirectional leukocyte migration in interstitial tissues. Cell Rep 2017; 19(8): 1572-85.
[http://dx.doi.org/10.1016/j.celrep.2017.04.078] [PMID: 28538177]
[40]
Zachar L, Bačenková D, Rosocha J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res 2016; 9: 231-40.
[http://dx.doi.org/10.2147/JIR.S121994] [PMID: 28008279]
[41]
Gong J, Meng HB, Hua J, et al. The SDF-1/CXCR4 axis regulates migration of transplanted bone marrow mesenchymal stem cells towards the pancreas in rats with acute pancreatitis. Mol Med Rep 2014; 9(5): 1575-82.
[http://dx.doi.org/10.3892/mmr.2014.2053] [PMID: 24626964]
[42]
Jaerve A, Bosse F, Müller HW. SDF-1/CXCL12: its role in spinal cord injury. Int J Biochem Cell Biol 2012; 44(3): 452-6.
[http://dx.doi.org/10.1016/j.biocel.2011.11.023] [PMID: 22172378]
[43]
Wang Y, Fu W, Zhang S, et al. CXCR-7 receptor promotes SDF-1α-induced migration of bone marrow mesenchymal stem cells in the transient cerebral ischemia/reperfusion rat hippocampus. Brain Res 2014; 1575: 78-86.
[http://dx.doi.org/10.1016/j.brainres.2014.05.035] [PMID: 24924806]
[44]
Oh K-W, Noh M-Y, Kwon M-S, et al. Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann Neurol 2018; 84(3): 361-73.
[http://dx.doi.org/10.1002/ana.25302] [PMID: 30048006]
[45]
Morita T, Sasaki M, Kataoka-Sasaki Y, et al. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 2016; 335: 221-31.
[http://dx.doi.org/10.1016/j.neuroscience.2016.08.037] [PMID: 27586052]
[46]
Oshigiri T, Sasaki T, Sasaki M, et al. Intravenous infusion of mesenchymal stem cells alters motor cortex gene expression in a rat model of acute spinal cord injury. J Neurotrauma 2019; 36(3): 411-20.
[http://dx.doi.org/10.1089/neu.2018.5793] [PMID: 29901416]
[47]
Vawda R, Badner A, Hong J, et al. Early intravenous infusion of mesenchymal stromal cells exerts a tissue source age-dependent beneficial effect on neurovascular integrity and neurobehavioral recovery after traumatic cervical spinal cord injury. Stem Cells Transl Med 2019; 8(7): 639-49.
[http://dx.doi.org/10.1002/sctm.18-0192] [PMID: 30912623]
[48]
Yang C, Wang G, Ma F, et al. Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments. Stem Cell Res Ther 2018; 9(1): 136.
[http://dx.doi.org/10.1186/s13287-018-0879-0] [PMID: 29751769]
[49]
Honmou O, Onodera R, Sasaki M, Waxman SG, Kocsis JD. Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med 2012; 18(5): 292-7.
[http://dx.doi.org/10.1016/j.molmed.2012.02.003] [PMID: 22459358]
[50]
Liu D, Kong F, Yuan Y, et al. Decorin-modified umbilical cord mesenchymal stem cells (MSCs) attenuate radiation-induced lung injuries via regulating inflammation, fibrotic factors, and immune responses. Int J Radiat Oncol Biol Phys 2018; 101(4): 945-56.
[http://dx.doi.org/10.1016/j.ijrobp.2018.04.007] [PMID: 29976507]
[51]
Götherström C, Westgren M, Shaw SWS, et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med 2014; 3(2): 255-64.
[http://dx.doi.org/10.5966/sctm.2013-0090] [PMID: 24342908]
[52]
Chen L, Cui X, Wu Z, et al. Transplantation of bone marrow mesenchymal stem cells pretreated with valproic acid in rats with an acute spinal cord injury. Biosci Trends 2014; 8(2): 111-9.
[http://dx.doi.org/10.5582/bst.8.111] [PMID: 24815388]
[53]
Yan Y, Shi P, Song W, Bi S. Chemiluminescence and bioluminescence imaging for biosensing and therapy: In vitro and in vivo perspectives. Theranostics 2019; 9(14): 4047-65.
[http://dx.doi.org/10.7150/thno.33228] [PMID: 31281531]
[54]
Tysseling VM, Mithal DS, Sahni V, et al. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury. J Neuroinflammation 2011; 8: 16.
[http://dx.doi.org/10.1186/1742-2094-8-16] [PMID: 21324162]
[55]
Takeuchi H, Natsume A, Wakabayashi T, et al. Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 2007; 426(2): 69-74.
[http://dx.doi.org/10.1016/j.neulet.2007.08.048] [PMID: 17884290]
[56]
Ghirnikar RS, Lee YL, Eng LF. Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat. J Neurosci Res 2000; 59(1): 63-73.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000101)59:1<63:AID-JNR8>3.0.CO;2-W] [PMID: 10658186]
[57]
Li L, Yang M, Wang C, et al. Effects of cytokines and chemokines on migration of mesenchymal stem cells following spinal cord injury. Neural Regen Res 2012; 7(14): 1106-12.
[http://dx.doi.org/10.3969/j.issn.1673-5374.2012.14.010] [PMID: 25722702]
[58]
Xia P, Pan S, Cheng J, et al. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord. Neural Regen Res 2014; 9(18): 1688-95.
[http://dx.doi.org/10.4103/1673-5374.141804] [PMID: 25374590]
[59]
Son B-R, Marquez-Curtis LA, Kucia M, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006; 24(5): 1254-64.
[http://dx.doi.org/10.1634/stemcells.2005-0271] [PMID: 16410389]
[60]
Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 2004; 104(9): 2643-5.
[http://dx.doi.org/10.1182/blood-2004-02-0526] [PMID: 15251986]
[61]
Liu N, Tian J, Cheng J, Zhang J. Migration of CXCR4 gene-modified bone marrow-derived mesenchymal stem cells to the acute injured kidney. J Cell Biochem 2013; 114(12): 2677-89.
[http://dx.doi.org/10.1002/jcb.24615] [PMID: 23794207]
[62]
Zhang C, Zhu Y, Wang J, Hou L, Li W, An H. CXCR4-overexpressing umbilical cord mesenchymal stem cells enhance protection against radiation-induced lung injury. Stem Cells Int 2019; 2019: 2457082.
[http://dx.doi.org/10.1155/2019/2457082] [PMID: 30867667]
[63]
Barhanpurkar-Naik A, Mhaske ST, Pote ST, Singh K, Wani MR. Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4. Stem Cell Res Ther 2017; 8(1): 168.
[http://dx.doi.org/10.1186/s13287-017-0618-y] [PMID: 28705238]
[64]
Torres-Espín A, Redondo-Castro E, Hernandez J, Navarro X. Immunosuppression of allogenic mesenchymal stem cells transplantation after spinal cord injury improves graft survival and beneficial outcomes. J Neurotrauma 2015; 32(6): 367-80.
[http://dx.doi.org/10.1089/neu.2014.3562] [PMID: 25203134]
[65]
Hakim R, Covacu R, Zachariadis V, et al. Mesenchymal stem cells transplanted into spinal cord injury adopt immune cell-like characteris-tics. Stem Cell Res Ther 2019; 10(1): 115.
[http://dx.doi.org/10.1186/s13287-019-1218-9] [PMID: 30944028]
[66]
Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA. Mesenchymal stem cells and the neuronal micro-environment in the area of spinal cord injury. Neural Regen Res 2019; 14(2): 227-37.
[http://dx.doi.org/10.4103/1673-5374.244778] [PMID: 30531002]
[67]
Wang W, Huang X, Lin W, et al. Hypoxic preconditioned bone mesenchymal stem cells ameliorate spinal cord injury in rats via improved survival and migration. Int J Mol Med 2018; 42(5): 2538-50.
[http://dx.doi.org/10.3892/ijmm.2018.3810] [PMID: 30106084]
[68]
Ruzicka J, Machova-Urdzikova L, Gillick J, et al. A comparative study of three different types of stem cells for treatment of rat spinal cord injury. Cell Transplant 2017; 26(4): 585-603.
[http://dx.doi.org/10.3727/096368916X693671] [PMID: 27938489]
[69]
Wu Q, Wang Q, Li Z, et al. Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection mod-el. Cell Death Dis 2018; 9(9): 882.
[http://dx.doi.org/10.1038/s41419-018-0847-8] [PMID: 30158539]
[70]
Cofano F, Boido M, Monticelli M, et al. Mesenchymal stem cells for spinal cord injury: Current options, limitations, and future of cell therapy. Int J Mol Sci 2019; 20(11): E2698.
[http://dx.doi.org/10.3390/ijms20112698] [PMID: 31159345]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy