Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

Research Progress on Thermal Runaway Protection of Lithium-Ion Power Battery

Author(s): Jiawei Zhai, Jiajun Wang and Zhiguo Lei*

Volume 16, Issue 1, 2023

Published on: 22 August, 2022

Page: [2 - 17] Pages: 16

DOI: 10.2174/2666145415666220510140638

Price: $65

Open Access Journals Promotions 2
Abstract

The attention to electric vehicle (EV) development is still a hot topic. As an important part of EV - power battery, its safety issue is still a major concern. The most recent research on TR mechanism, inducement, and transmission is initially presented, and then the most recent research status on TR protection is partially expanded using these concepts. Then the influence of the material and design of the battery cell components on TR is introduced, and lastly, the safety measures before and after TR are comprehensively reviewed. This paper serves as a summary of previous TR research as well as a reference for future TR protection.

Keywords: Lithium-ion power battery, thermal runaway inducement mechanism, thermal runaway protection, battery safety, battery protection material, research progress.

Graphical Abstract
[1]
Ilkka, H.; Reiner, D.M. Near-term potential of biofuels, electrofuels, and battery electric vehicles in decarbonizing road transport. Joule, 2019, 3(10), 2390-2402.
[http://dx.doi.org/10.1016/j.joule.2019.08.013]
[2]
Martin, D.; Hal, T.; Georg, B. Conditions for the successful deployment of electric vehicles – A global energy system perspective. Energy, 2012, 47(1), 137-149.
[http://dx.doi.org/10.1016/j.energy.2012.09.011]
[3]
Xu, B.; Arshian, S.; Muhammad, S.; Dong, K. Have electric vehicles effectively addressed CO2 emissions? Analysis of eight leading countries using quantile-on-quantile regression approach. Sustainable Prod. Consumption, 2021, 27, 1205-1214.
[4]
Ehrenberger, S.I.; Dunn, J.B.; Gerfried, J.; Wang, H. An international dialogue about electric vehicle deployment to bring energy and greenhouse gas benefits through 2030 on a well-to-wheels basis. Transp. Res. Part D Transp. Environ., 2019, 74, 245-254.
[http://dx.doi.org/10.1016/j.trd.2019.07.027]
[5]
Giacomo, F.; Michel, N. Electric vehicle charging network in Europe: An accessibility and deployment trends analysis. Transp. Res. Part D Transp. Environ., 2021, 94, 102813.
[6]
Lu, L.; Han, X.; Li, J.; Hua, J.; Minggao, O. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources, 2013, 226, 272-288.
[http://dx.doi.org/10.1016/j.jpowsour.2012.10.060]
[7]
Choudhari, V.G.; Dhoble Dr, A.S.; Sathe, T.M. A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle. J. Energy Storage, 2020, 32, 101729.
[http://dx.doi.org/10.1016/j.est.2020.101729]
[8]
Feng, R.X.; Xuebing, H.; Lu, L.; Ouyang, M. A review on thermal runaway propagation of lithium ion batteries. Chinese Battery Industry, 2020, 24(3)
[9]
Hou, J.; Feng, X.; Li, W.; Xiang, L.; Atsushi, O.; Lu, L.; Ren, D.; Huang, W.; Yan, L.; Yi, M.; Yu, W.; Ren, J.; Meng, Z.; Chu, Z.; Xu, G-L.; Khalil, A.; He, X.; Wang, H.; Yoshiaki, N.; Minggao, O. Unlocking the self-supported thermal runaway of high-energy lith-ium-ion batteries. Energy Storage Mater., 2021, 39, 395-402.
[http://dx.doi.org/10.1016/j.ensm.2021.04.035]
[10]
Hyung-Joo, N.; Sungjune, Y.; Seung, Y.C.; Yang-Kook, S. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources, 2013, 233, 121-130.
[http://dx.doi.org/10.1016/j.jpowsour.2013.01.063]
[11]
Feng, X. Mechanism of thermal runaway induction and propagation of vehicle Li-ion power battery Modeling and control; Tsinghua University: Beijing, 2016.
[12]
Pham, M.T.M.; Darst, J.J.; Walker, W.Q.; Heenan, T.M.M.; Patel, D.; Lacoviello, F.; Rack, A.; Olbinado, M.P.; Hinds, G.; Brett, D.J.L.; Darcy, E.; Finegan, D.P.; Shearing, P.R. Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors. Cell Rep. Phys. Sci., 2021, 2(3), 100360.
[13]
Ren, D.; Feng, X.; Liu, L.; Hungjen, H.; Lu, L.; Li, W.; He, X.; Minggao, O. Investigating the relationship between internal short cir-cuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Mater., 2021, 34, 563-573.
[http://dx.doi.org/10.1016/j.ensm.2020.10.020]
[14]
Yan, L.; Xiang, L.; Li, W.; Feng, X.; Ren, D.; Yu, W.; Xu, G.; Lu, L.; Hou, J.; Zhang, W.; Wang, Y.; Xu, W.; Yang, R.; Wang, Z.; Huang, J.; Meng, X.; Han, X.; Wang, H.; He, X.; Chen, Z.; Khalil, A.; Minggao, O. Thermal runaway mechanism of lithium-ion bat-tery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 2021, 85.
[15]
Dongsheng, R.; Hsu, H.; Li, R.; Feng, X.; Guo, D.; Han, X.; Lu, L.; He, X.; Gao, S.; Hou, J.; Li, Y.; Wang, Y.; Ouyanga, R. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. eTransportation, 2019, 2, 100034.
[16]
Michael, S.; Jan, K.; Christian, E. Early detection of internal short circuits in series-connected battery packs based on nonlinear process monitoring. J. Energy Storage, 2022, 48, 103732.
[17]
Feng, X.; Weng, C.; Minggao, O.; Jing, S. Online internal short circuit detection for a large format lithium ion battery. Appl. Energy, 2016, 161, 168-180.
[http://dx.doi.org/10.1016/j.apenergy.2015.10.019]
[18]
Cao, W.; Lu, J.; Kun, Z.; Sun, G.; Zheng, J.; Zhen, G.; Hong, L. Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy, 2022, 95, 106983.
[http://dx.doi.org/10.1016/j.nanoen.2022.106983]
[19]
Manh‐Kien, T.; Satyam, P.; Vedang, C.; Niku, B.; Anosh, M.; Roydon, F.; Michael, F. Python‐based scikit‐learn machine learning models for thermal and electrical performance prediction of high capacity lithium‐ion battery. Int. J. Energy Res., 2021, 46(2), 786-794.
[20]
Choudhari, V.G.; Dhoble, A.S.; Satyam, P.; Fowler, M.; Fraser, R. Numerical investigation on thermal behaviour of 5 × 5 cell config-ured battery pack using phase change material and fin structure layout. J. Energy Storage, 2021, 43.
[21]
Akkaldevi, C.; Chitta, S.D.; Jaidi, J.; Panchal, S.; Fowler, M.; Fraser, R. Coupled electrochemical-thermal simulations and validation of minichannel cold-plate water-cooled prismatic 20 ah lifepo4 battery. Electrochem, 2021, 2(4), 643-663.
[http://dx.doi.org/10.3390/electrochem2040040]
[22]
Wang, Xiaolong Han Chong Yang, Yu A system to prevent thermal runaway of battery. 2021.
[23]
Jonathan, A. Review of polymers in the prevention of thermal runaway in lithium-ion batteries. Energy Rep., 2020, 6, 217-224.
[http://dx.doi.org/10.1016/j.egyr.2020.03.027]
[24]
Peizhao, L.; Liu, X.; Jie, Q.; Zhao, J.; Huo, Y.; Qu, Z.; Rao, Z. Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater., 2020, 31, 195-220.
[http://dx.doi.org/10.1016/j.ensm.2020.06.042]
[25]
Feng, X.; Minggao, O.; Xiang, L.; Lu, L.; Yong, X.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater., 2018, 10, 246-267.
[http://dx.doi.org/10.1016/j.ensm.2017.05.013]
[26]
Chen, Y.; Kang, Y.; Yun, Z.; Li, W.; Liu, J.; Li, Y.; Zheng, L.; He, X.; Xing, L.; Naser, T.; Li, B. A review of lithium-ion battery safe-ty concerns: The issues, strategies, and testing standards. J. Energy Chem., 2021, 59, 83-99.
[http://dx.doi.org/10.1016/j.jechem.2020.10.017]
[27]
Wen, J.; Yan, Y.; Chen, C. A review on lithium-ion batteries safety issues: Existing problems and possible solutions. Mater. Express, 2012, 2(3), 197-212.
[http://dx.doi.org/10.1166/mex.2012.1075]
[28]
Quintiere, J.G. More on methods to measure the energetics of lithium ion batteries in thermal runaway. Fire Saf, 2021, 124, 103382.
[http://dx.doi.org/10.1016/j.firesaf.2021.103382]
[29]
Peyman, T.; Scott, H.; Majid, B. Investigating electrical contact resistance losses in lithium-ion battery assemblies for hybrid and elec-tric vehicles. J. Power Sources, 2011, 196(15), 6525-6533.
[http://dx.doi.org/10.1016/j.jpowsour.2011.03.056]
[30]
Xiang, L.; Ren, D.; Hungjen, H.; Feng, X.; Xu, G-L.; Zhuang, M.; Han, G.; Lu, L.; Han, X.; Chu, Z.; Li, J.; He, X.; Khalil, A.; Ming-gao, O. Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10), 2047-2064.
[http://dx.doi.org/10.1016/j.joule.2018.06.015]
[31]
Kukreja, J.; Nguyen, T.; Siegmund, T.; Chen, W.; Tsutsui, W.; Balakrishnan, K.; Liao, H.; Parab, N. Crash analysis of a conceptual electric vehicle with a damage tolerant battery pack. Extreme Mech. Lett., 2016, 9, 371-378.
[http://dx.doi.org/10.1016/j.eml.2016.05.004]
[32]
Yong, X.; Tomasz, W.; Elham, S.; Zhang, X. Damage of cells and battery packs due to ground impact. J. Power Sources, 2014, 267, 78-97.
[http://dx.doi.org/10.1016/j.jpowsour.2014.05.078]
[33]
Luo, H.; Yong, X.; Qing, Z. Mechanical damage in a lithium-ion pouch cell under indentation loads. J. Power Sources, 2017, 357, 61-70.
[http://dx.doi.org/10.1016/j.jpowsour.2017.04.101]
[34]
Zhu, X.; Hsin, W.; Xue, W.; Gao, Y.; Srikanth, A.; Ercan, C.; Wang, Z. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: An experimental study. J. Power Sources, 2020, 455, 227939.
[http://dx.doi.org/10.1016/j.jpowsour.2020.227939]
[35]
Zhu, X.; Wang, Z.; Wang, Y.; Hsin, W. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method. Energy, 2019, 169, 868-880.
[http://dx.doi.org/10.1016/j.energy.2018.12.041]
[36]
Lin, C-K.; Yang, R.; Khalil, A.; Yan, Q.; Chen, Z. In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithi-um-ion battery. J. Power Sources, 2013, 230, 32-37.
[http://dx.doi.org/10.1016/j.jpowsour.2012.12.032]
[37]
Ning, M.; Teng, Z.; Wang, Z.; Qiong, C. A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge. J. Power Sources, 2022, 518, 230767.
[38]
Ning, M.; Wang, Z-R.; Yi-Hong, C.; Shu, C-M. Overcharge cycling effect on the thermal behavior, structure, and material of lithium-ion batteries. Appl. Therm. Eng., 2019, 163, 114147.
[39]
Wang, Z.; Xu, S.; Zhu, X.; Hsin, W.; Lvwei, H.; Jing, Y.; Yang, W. Effects of short-term over-discharge cycling on the performance of commercial 21,700 lithium-ion cells and the identification of degradation modes. J. Energy Storage, 2021, 35, 102257.
[http://dx.doi.org/10.1016/j.est.2021.102257]
[40]
Yang, R.; Rui, X.; Shen, W.; Lin, X. Extreme learning machine-based thermal model for lithium-ion batteries of electric vehicles under external short circuit. Engineering, 2021, 7(3), 395-405.
[http://dx.doi.org/10.1016/j.eng.2020.08.015]
[41]
Yang, R.; Rui, X.; Ma, S.; Lin, X. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks. Appl. Energy, 2020, 260, 114253.
[http://dx.doi.org/10.1016/j.apenergy.2019.114253]
[42]
Yue, P.; Feng, X.; Zhang, M.; Han, X.; Lu, L.; Minggao, O. Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections. J. Clean. Prod., 2020, 255, 120277.
[43]
Xin, L.; Jin, C.; Wei, Y.; Han, X.; Feng, X.; Zheng, Y.; Minggao, O. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives. Energy Storage Mater., 2021, 35, 470-499.
[http://dx.doi.org/10.1016/j.ensm.2020.11.026]
[44]
Zhang, G.; Wei, X.; Xuan, T.; Zhu, J.; Chen, S.; Dai, H. Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review. Renew. Sustain. Energy Rev., 2021, 141, 110790.
[http://dx.doi.org/10.1016/j.rser.2021.110790]
[45]
Reichl, T.; Hrzina, P. Capacity detection of internal short circuit. J. Energy Storage, 2018, 15, 345-349.
[http://dx.doi.org/10.1016/j.est.2017.12.006]
[46]
Yue, Z.; Mei, W.; Peng, Q.; Duan, Q.; Wang, Q. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery. Appl. Therm. Eng., 2021, 192, 116928.
[47]
Peng, X.; Chong, M.; Akhil, G.; Bao, N.; Xiangping, L. Thermal performance investigation of an air-cooled lithium-ion battery pack considering the inconsistency of battery cells. Appl. Therm. Eng., 2019, 153, 596-603.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.03.042]
[48]
Ye, Y.; Huat, S.L.; Shi, Y.; Karthik, S.; Tay, A.A.O. Effect of thermal contact resistances on fast charging of large format lithium ion batteries. Electrochim. Acta, 2014, 134, 327-337.
[http://dx.doi.org/10.1016/j.electacta.2014.04.134]
[49]
Nikolaos, W.; Manuel, A.; Leo, W.; Kick, M.K.; Markus, L. Experimental investigation of the influence of electrical contact resistance on lithium-ion battery testing for fast-charge applications. Appl. Energy, 2021, 295.
[50]
Das Abhishek, A.T.R.; Anup, B. Modelling and characterisation of ultrasonic joints for Li-ion batteries to evaluate the impact on elec-trical resistance and temperature raise. J. Energy Storage, 2019, 22, 239-248.
[http://dx.doi.org/10.1016/j.est.2019.02.017]
[51]
Du Yating, F.K.; Sayoko, S.; Yoshitsugu, S.; Eiji, H.; Daisuke, A.; Minoru, U. Capacity fade characteristics of nickel-based lithium-ion secondary battery after calendar deterioration at 80°C. J. Power Sources, 2021, 501, 230005.
[52]
Meng, C.; Tang, W.; Yong, L.; Zhu, K. Study on compositions and changes of SEI film of Li2 MnO3 positive material during the cy-cles. Catal. Today, 2016, 274, 116-122.
[http://dx.doi.org/10.1016/j.cattod.2016.01.040]
[53]
Chai, Y.; Jia, W.; Hu, Z.; Song, J.; Jin, H.; Ju, H.; Yan, X.; Ji, H.; Wan, L-J. Monitoring the mechanical properties of the solid electro-lyte interphase (SEI) using electrochemical quartz crystal microbalance with dissipation. Chin. Chem. Lett., 2021, 32(3), 1139-1143.
[http://dx.doi.org/10.1016/j.cclet.2020.09.008]
[54]
Hou, T.; Guang, Y.; Nidhi, R.N.; Julian, S.; Sang-Won, P.; Jagjit, N.; Persson, K.A. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy, 2019, 64, 103881.
[http://dx.doi.org/10.1016/j.nanoen.2019.103881]
[55]
Costa, C.M.; Senentxu, L-M. Recent advances on battery separators based on poly(vinylidene fluoride) and its copolymers for lithium-ion battery applications. Curr. Opin. Electrochem., 2021, 29, 100752.
[http://dx.doi.org/10.1016/j.coelec.2021.100752]
[56]
Wang, H.; Shi, W.; Feng, H.; Wang, Y.; Hu, X.; Li, H. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode. Energy, 2021, 224, 120072.
[http://dx.doi.org/10.1016/j.energy.2021.120072]
[57]
Freiberg, A.T.S.; Johannes, S.; Sophie, S.; Gasteiger, H.A. Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities. Electrochim. Acta, 2020, 346, 136271.
[http://dx.doi.org/10.1016/j.electacta.2020.136271]
[58]
Feng, G.; Wataru, H.; Yu, O.; Yusuke, K.; Masaya, I.; Katsunori, N.; Nozomu, H.; Osamu, F. Experimental study on flammability limits of electrolyte solvents in lithium-ion batteries using a wick combustion method. Exp. Therm. Fluid Sci., 2019, 109, 109858.
[59]
Hao, J.; Pan, X.; Zhang, L. Analysis of the performance decline discipline of lithium-ion power battery. J. Loss Prev. Process Ind., 2022, 74, 104644.
[60]
Spotnitza, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources, 2003, 113(1), 81-100.
[http://dx.doi.org/10.1016/S0378-7753(02)00488-3]
[61]
Li, J.; Zhang, Y.; Rong, S.; Chen, C.; Yan, C.; Xing, J.; Wei, Z.; Yan, Z. Recent advances in lithium-ion battery separators with re-versible/irreversible thermal shutdown capability. Energy Storage Mater., 2021, 43, 143-157.
[http://dx.doi.org/10.1016/j.ensm.2021.08.046]
[62]
Catia, A.; Giulio, G.; Marina, M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J. Power Sources, 2011, 196, 4801-4805.
[http://dx.doi.org/10.1016/j.jpowsour.2011.01.068]
[63]
Swiderska-Mocek, A.; Jakobczyk, P.; Rudnicka, E.; Lewandowski, A. Flammability parameters of lithium-ion battery electrolytes. J. Mol. Liq., 2020, 318.
[64]
Jia, Y.; Mesbah, U.; Li, Y.; Jun, X. Thermal runaway propagation behavior within 18,650 lithium-ion battery packs: A modeling study. J. Energy Storage, 2020, 31, 101668.
[http://dx.doi.org/10.1016/j.est.2020.101668]
[65]
Ke, Q.; Xin, L.; Jian, G.; Cao, W.; Wang, Y.; Jiang, F. The retarding effect of liquid-cooling thermal management on thermal runaway propagation in lithium-ion batteries. J. Energy Storage, 2022, 48, 104063.
[http://dx.doi.org/10.1016/j.est.2022.104063]
[66]
Li, H.; Duan, Q.; Zhao, C.; Huang, Z.; Wang, Q. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J. Hazard. Mater., 2019, 375, 241-254.
[http://dx.doi.org/10.1016/j.jhazmat.2019.03.116] [PMID: 31078060]
[67]
Wang, Z.; He, T.; Huan, B.; Jiang, F.; Yun, Y. Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs. J. Energy Storage, 2021, 41, 102956.
[http://dx.doi.org/10.1016/j.est.2021.102956]
[68]
Alexander, B.; Jan, M.; Heinz, W. Thermal runaway and thermal runaway propagation in batteries: What do we talk about? J. Energy Storage, 2019, 24, 100649.
[69]
Mei, W.; Chen, H.; Sun, J.; Wang, Q. Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective. Appl. Therm. Eng., 2018, 142, 148-165.
[http://dx.doi.org/10.1016/j.applthermaleng.2018.06.075]
[70]
Jeong-Joo, L.; Ji-San, K.; Lee, D-C. HyukKyun, C.; Chang-Wan, K. Design optimization of tab attachment positions and cell aspect ratio to minimize temperature difference in 45-Ah LFP large-format lithium-ion pouch cells. Appl. Therm. Eng., 2021, 182, 116143.
[71]
Bayatinejad, M.A.; Mohammadi, A. Investigating the effects of tabs geometry and current collectors thickness of lithium-ion battery with electrochemical-thermal simulation. J. Energy Storage, 2021, 43, 103203.
[http://dx.doi.org/10.1016/j.est.2021.103203]
[72]
Huang, B.; Hua, H.; Peng, L.; Xin, W.; Xiu, S.; Li, R.; Peng, Z.; Zhao, J. The functional separator for lithium-ion batteries based on phosphonate modified nano-scale silica ceramic particles. J. Power Sources, 2021, 498, 229908.
[http://dx.doi.org/10.1016/j.jpowsour.2021.229908]
[73]
Gou, H.; Li, W.; Yang, Y.; Li, X.; Cui, H.; Yan, L.; Wang, J.; Alibek, K.; Wang, J.; Shi, W.; Yan, Y.; Hu, J.; Han, X.; Li, X. Porous skeleton-stabilized Co/N–C coated separator for boosting lithium-ion batteries stability and safety. J. Power Sources, 2021, 499, 229933.
[http://dx.doi.org/10.1016/j.jpowsour.2021.229933]
[74]
Wood, K.N.; Malachi, N.; Dasgupta, N.P.; Anodes, L.M. Toward an improved understanding of coupled morphological, electrochemi-cal, and mechanical behavior. ACS Energy Lett., 2017, 2(3), 664-672.
[http://dx.doi.org/10.1021/acsenergylett.6b00650]
[75]
Lin, D.; Zhao, J.; Sun, J.; Yao, H.; Liu, Y.; Yan, K.; Cui, Y. Three-dimensional stable lithium metal anode with nanoscale lithium is-lands embedded in ionically conductive solid matrix. Proc. Natl. Acad. Sci. USA, 2017, 114(18), 4613-4618.
[http://dx.doi.org/10.1073/pnas.1619489114] [PMID: 28416664]
[76]
Kashif, A.M.; Niu, Y.; Tanveer, H.; Hassina, T.; Tang, W.; Xu, M.; Rajeev, A. How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 2021, 86.
[77]
Qiao, D.; Liu, X.; Dou, R.; Zhi, W.; Zhou, W.; Lin, L. Quantitative analysis of the inhibition effect of rising temperature and pulse charging on Lithium dendrite growth. J. Energy Storage, 2022, 49.
[http://dx.doi.org/10.1016/j.est.2022.104137]
[78]
Won, S.I.; Hyun, H.C.; Ki, K.B.; Young, Y.W. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. J. Power Sources, 2008, 178(2), 769-773.
[http://dx.doi.org/10.1016/j.jpowsour.2007.12.062]
[79]
Magdalena, M.; Julian, B.; Dominik, K.; Reiner, M.; Thomas, D.; Jürgen, B.R.; Markus, H.; Olaf, B.; Danzer, M.A. Sodium metal anodes: Deposition and dissolution behaviour and SEI formation. Electrochim. Acta, 2020, 354.
[80]
Shreenag, M.U.; Libin, L.; Sushantha, M.; Paridhi, G. Solid Electrolyte Interphase (SEI), a boon or a bane for lithium batteries: A re-view on the recent advances. J. Energy Storage, 2021.
[81]
Dongsoo, L.; Seho, S.; Chanho, K.; Jeongheon, K.; Keemin, P.; Jiseok, K.; Dowon, S.; Lee, K.; Taeseup, S.; Ungyu, P. Highly re-versible cycling with Dendrite-Free lithium deposition enabled by robust SEI layer with low charge transfer activation energy. Appl. Surf. Sci., 2022, 572.
[82]
Dongsoo, L.; Insung, H.; Yongmin, J.; Seho, S.; Taeseup, S.; Ungyu, P. Dendrite-free lithium plating enabled by yolk shell structured ZnO/C sphere coated polyethylene separator for stable lithium metal anodes. J. Alloys Compd., 2021, 885.
[83]
Zhang, H.; Shen, C.; Huang, Y.; Liu, Z. Spontaneously formation of SEI layers on lithium metal from LiFSI/DME and LiTFSI/DME electrolytes. Appl. Surf. Sci., 2021, 537, 147983.
[http://dx.doi.org/10.1016/j.apsusc.2020.147983]
[84]
Guo, W.; Liu, S.; Guan, X.; Zhang, X.; Liu, X.; Luo, J. Mixed ion and electron-conducting scaffolds for high-rate lithium metal anodes. Adv. Energy Mater., 2019, 9(20)
[http://dx.doi.org/10.1002/aenm.201900193]
[85]
Yan, T.; Fei, L.; Xu, C.; Fang, H-T. Highly uniform lithiated nafion thin coating on separator as an artificial SEI layer of lithium metal anode toward suppressed dendrite growth. Electrochim. Acta, 2022, 140004.
[http://dx.doi.org/10.1016/j.electacta.2022.140004]
[86]
Zhang, S-J.; Yin, Z-W.; Wu, Z-Y.; Dan, L.; Hu, Y-Y.; You, J-H.; Zhang, B.; Li, K-X.; Yan, J-W.; Yang, X-R.; Zhou, X-D.; Sandrine, Z.; Philippe, M.; Feng, P.; Jolanta, Ś.; Sun, S-G.; Chen, Z.; Li, J-T. Achievement of high-cyclability and high-voltage Li-metal batteries by heterogeneous SEI film with internal ionic conductivity/external electronic insulativity hybrid structure. Energy Storage Mater., 2021, 40, 337-346.
[http://dx.doi.org/10.1016/j.ensm.2021.05.029]
[87]
Lee, D.; Sun, S.; Kwon, J.; Park, H.; Jang, M.; Park, E.; Son, B.; Jung, Y.; Song, T.; Paik, U. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater., 2020, 32(7), e1905573.
[http://dx.doi.org/10.1002/adma.201905573] [PMID: 31930614]
[88]
Zeng, J.; Liu, Q.; Jia, D.; Liu, R.; Liu, S.; Zheng, B.; Zhu, Y.; Fu, R.; Wu, D. A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries. Energy Storage Mater., 2021, 41, 697-702.
[http://dx.doi.org/10.1016/j.ensm.2021.07.002]
[89]
Lang, J.; Long, Y.; Qu, J.; Luo, X.; Wei, H.; Kai, H.; Zhang, H.; Qi, L.; Zhang, Q.; Li, Z.; Hui, W. One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater., 2019, 16, 85-90.
[http://dx.doi.org/10.1016/j.ensm.2018.04.024]
[90]
Jian, T.; Ye, M.; Shen, J. Tailoring uniform and ordered grain boundaries in the solid electrolyte interphase for dendrite-free lithium metal batteries. Mater. Today Energy, 2021, 22, 100858.
[91]
Chen, M.; Jie, M.; Wang, S.; Chen, Q.; Zhao, L.; Kong, Q.; Wu, X. Comparative studies on the combustion characters of the lithium-ion battery electrolytes with composite flame-retardant additives. J. Energy Storage, 2022, 47, 103642.
[92]
Yu, W.; Xiang, L.; Li, W.; Feng, X.; Ren, D.; Yan, L.; Rui, X.; Yan, W.; Han, X.; Xu, G-L.; Wang, H.; Lu, L.; He, X.; Khalil, A.; Minggao, O. Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Mater., 2021, 37, 77-86.
[http://dx.doi.org/10.1016/j.ensm.2021.02.001]
[93]
Lin, Y.; Sheng, H.; Lei, Z.; Wang, S.; Han, D.; Shan, R.; Min, X.; Meng, Y. Organic liquid electrolytes in Li-S batteries: Actualities and perspectives. Energy Storage Mater., 2021, 34, 128-147.
[http://dx.doi.org/10.1016/j.ensm.2020.09.009]
[94]
Jie, M.; Hong, L.; Chen, M. Experimental study on combustion behavior of mixed carbonate solvents and separator used in lithium-ion batteries. J. Therm. Anal. Calorim., 2019, 139(2), 1255-1264.
[95]
Dongxu, O.; Chen, M.; Wei, R.; Zhi, W.; Jian, W. A study on the fire behaviors of 18650 battery and batteries pack under discharge. J. Therm. Anal. Calorim., 2018, 136(5), 1915-1926.
[96]
Peiyan, Q. I. Combustion characteristics of lithium–iron– phosphate batteries with different combustion states. eTransportation, 2022, 11, 100148.
[97]
Zhang, Shichao Designing safer lithium-based batteries with nonflammable electrolytes: A review. eScience, 2021.
[98]
Wang, X.; Eiki, Y.; Shigeaki, K. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries. J. Electrochem. Soc., 2001, 148(10), A1058-A1065.
[http://dx.doi.org/10.1149/1.1397773]
[99]
Hu, J.; Jin, Z.; Hai, Z.; Hui, Z.; Zhou, Y.; Li, Z. A new phosphonamidate as flame retardant additive in electrolytes for lithium ion bat-teries. J. Power Sources, 2012, 197, 297-300.
[http://dx.doi.org/10.1016/j.jpowsour.2011.09.012]
[100]
Xi, L.; Li, W.; Lai, C.; Yun, L.; Su, Y.; Bao, L.; Jing, W.; Chen, R.; Shi, C.; Feng, W. Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries. J. Power Sources, 2018, 378, 707-716.
[http://dx.doi.org/10.1016/j.jpowsour.2017.12.085]
[101]
Tim, D.; Martin, G.; Matthias, R.; Jan, H.; Sascha, N.; Martin, W.; Schappacher, F.M. Investigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate. J. Power Sources, 2017, 372, 276-285.
[http://dx.doi.org/10.1016/j.jpowsour.2017.10.058]
[102]
Chen, S.; Wang, Z.; Zhao, H.; Qiao, H.; Luan, H.; Chen, L. A novel flame retardant and film-forming electrolyte additive for lithium ion batteries. J. Power Sources, 2009, 187(1), 229-232.
[http://dx.doi.org/10.1016/j.jpowsour.2008.10.091]
[103]
Yu, Q.; Jiang, K.; Yu, C.; Chen, X.; Zhang, C.; Yi, Y.; Bin, J.; Long, H. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin. Chem. Lett., 2021, 32(9), 2659-2678.
[http://dx.doi.org/10.1016/j.cclet.2021.03.032]
[104]
Muhammad, I.; Muhammad, A.; Yang, Z.; Zhang, W. Recent advances in high performance conducting solid polymer electrolytes for lithium-ion batteries. J. Power Sources, 2021, 486, 229378.
[105]
Adhigan, M.; Mohan, S.; Sahariya, P.; Vijayavarman, V.; Sadanand, P.; Ryansu, S.; Yu, K.; Abdul Kader, M.; Kothandaraman, R. Insights into the emerging alternative polymer-based electrolytes for all solid-state lithium-ion batteries: A review. Mater. Lett., 2022, 313, 131764.
[106]
Anwar, A.; de Meatza, I.; Andriy, K.; Oihane, G-C.; Istaq, A.; Francesco, S.M.; Mattia, G.; Matteo, D.; Mihaela-Aneta, D.; Marcus, J.; Zhang, N. Progress in solid-state high voltage lithium-ion battery electrolytes. Advances in Appl. Energy, 2021, 4, 100070.
[107]
Chen, Y.; Jiang, Y.; Chi, S-S.; Jiunn, W.H.; Kai, Y.; Jun, M.; Jun, W.; Wang, C.; Deng, Y. Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. J. Power Sources, 2022, 521, 230921.
[http://dx.doi.org/10.1016/j.jpowsour.2021.230921]
[108]
Bhargav, A.; Neelakanta, R.I.; Jo, K.T.; Kisoo, Y.; Jaesool, S. Dopant effect on Li+ ion transport in NASICON-type solid electrolyte: Insights from molecular dynamics simulations and experiments. Ceram. Int., 2022, 48(19), 12142-12151.
[109]
Feng, Xiangming Poly(ethylene oxide)-ethylene carbonate solid binary electrolyte with higher conductivity, lower operating temperature and fully impregnated separator for all solid-state lithium ion batteries. Compos. Commun. 2022, 29.
[110]
Kang, J.; Rui, G.; Xu, G.; Jing, L.; Sun, H.; Zhang, L.; Jing, R.; Li, J.; Wei, X. Effect of SnO–P2O5–MgO glass addition on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Ceram. Int., 2022, 48(1), 157-163.
[http://dx.doi.org/10.1016/j.ceramint.2021.09.091]
[111]
Shashank, A.; Shen, W.; Ajay, K. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles. Renew. Sustain. Energy Rev., 2016, 60, 1319-1331.
[http://dx.doi.org/10.1016/j.rser.2016.03.013]
[112]
Feng, X.; Ren, D.; He, X.; Minggao, O. Mitigating thermal runaway of lithium-ion batteries. Joule, 2020, 4(4), 743-770.
[http://dx.doi.org/10.1016/j.joule.2020.02.010]
[113]
Xiong, R.; Ma, S.; Li, H.; Sun, F.; Li, J. Toward a safer battery management system: A critical review on diagnosis and prognosis of battery short circuit. iScience, 2020, 23(4), 101010.
[http://dx.doi.org/10.1016/j.isci.2020.101010] [PMID: 32276229]
[114]
Sagar, B.; Adiga, S.P.; Anshul, K.; Subramanya, M.K.; Myeongjae, L.; Younghun, S. Towards in-situ detection of nascent short cir-cuits and accurate estimation of state of short in Lithium-Ion Batteries. J. Power Sources, 2022, 520, 230830.
[115]
Xin, L.; Wei, Y.; Kong, X.; Han, X.; Long, Z.; Tao, S.; Zheng, Y. Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation. J. Energy Storage, 2020, 30.
[116]
Meng, J.; Moussa, B.; Claude, D.; Demba, D. Incipient short-circuit fault diagnosis of lithium-ion batteries. J. Energy Storage, 2020, 31, 101658.
[http://dx.doi.org/10.1016/j.est.2020.101658]
[117]
Wang, Q.; Mao, B.; Stoliarov Stanislav, I.; Sun, J. A review of lithium ion battery failure mechanisms and fire prevention strategies. Pror. Energy Combust. Sci., 2019, 73, 95-131.
[http://dx.doi.org/10.1016/j.pecs.2019.03.002]
[118]
Chen, M.; Jie, M.; Hong, L. Comparative experimental study on combustion characteristics of typical combustible components for lithium‐ion battery. Int. J. Energy Res., 2019, 44(1), 218-228.
[http://dx.doi.org/10.1002/er.4897]
[119]
Zhang, W.; Liang, Z.; Yin, X.; Ling, G. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling. Appl. Therm. Eng., 2021, 184, 116380.
[http://dx.doi.org/10.1016/j.applthermaleng.2020.116380]
[120]
Guo, G.; Bo, L.; Bo, C.; Zhou, S.; Peng, X.; Cao, B. Three-dimensional thermal finite element modeling of lithium-ion battery in ther-mal abuse application. J. Power Sources, 2010, 195(8), 2393-2398.
[http://dx.doi.org/10.1016/j.jpowsour.2009.10.090]
[121]
Wang, Q-K.; Shen, J-N.; Ma, Z-F.; He, Y-J. Decoupling parameter estimation strategy based electrochemical-thermal coupled model-ing method for large format lithium-ion batteries with internal temperature experimental validation. Chem. Eng. J., 2021, 424, 130308.
[http://dx.doi.org/10.1016/j.cej.2021.130308]
[122]
Peng, Zhao Mitigating battery thermal runaway through mild combustion. Chem. Eng. J. Advances, 2022, 9, 100208.
[123]
Tong, L.; Jian, H.; Tao, C.; Zhu, X.; Wang, X. Effect of parallel connection on 18650-type lithium ion battery thermal runaway propa-gation and active cooling prevention with water mist. Appl. Therm. Eng., 2021, 184, 116291.
[124]
Yan, C.; Liu, J. Research progress of water mist fire extinguishing technology and its application in battery fires. Process Saf. Environ. Prot., 2021, 149, 559-574.
[http://dx.doi.org/10.1016/j.psep.2021.03.003]
[125]
Liu, Y.; Duan, Q.; Xu, J.; Huang, L.; Sun, J.; Wang, Q. Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling. J. Energy Storage, 2020, 28, 101185.
[http://dx.doi.org/10.1016/j.est.2019.101185]
[126]
Shuai, Y.; Chang, C.; Yan, S.; Pan, Z.; Qian, X.; Yuan, M.; Kai, L. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J. Energy Chem., 2021, 62, 262-280.
[http://dx.doi.org/10.1016/j.jechem.2021.03.031]
[127]
Huang, Z.; Liu, P.; Duan, Q.; Zhao, C.; Wang, Q. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery. J. Power Sources, 2021, 495, 229795.
[http://dx.doi.org/10.1016/j.jpowsour.2021.229795]
[128]
Weng, J.; Dongxu, O.; Liu, Y.; Chen, M.; Li, Y.; Huang, X.; Jian, W. Alleviation on battery thermal runaway propagation: Effects of oxygen level and dilution gas. J. Power Sources, 2021, 509, 230340.
[http://dx.doi.org/10.1016/j.jpowsour.2021.230340]
[129]
Yuan, C.; Wang, Q.; Yu, W.; Yang, Z. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylin-drical lithium-ion battery module. Appl. Therm. Eng., 2019, 153, 39-50.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.02.127]
[130]
Weng, J.; Dongxu, O.; Yang, X.; Chen, M.; Zhang, G.; Jian, W. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. Energy Convers. Manage., 2019, 200, 112071.
[http://dx.doi.org/10.1016/j.enconman.2019.112071]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy