[3]
Xu, B.; Arshian, S.; Muhammad, S.; Dong, K. Have electric vehicles effectively addressed CO2 emissions? Analysis of eight leading countries using quantile-on-quantile regression approach. Sustainable Prod. Consumption, 2021, 27, 1205-1214.
[5]
Giacomo, F.; Michel, N. Electric vehicle charging network in Europe: An accessibility and deployment trends analysis. Transp. Res. Part D Transp. Environ., 2021, 94, 102813.
[8]
Feng, R.X.; Xuebing, H.; Lu, L.; Ouyang, M. A review on thermal runaway propagation of lithium ion batteries. Chinese Battery Industry, 2020, 24(3)
[11]
Feng, X. Mechanism of thermal runaway induction and propagation of vehicle Li-ion power battery Modeling and control; Tsinghua University: Beijing, 2016.
[12]
Pham, M.T.M.; Darst, J.J.; Walker, W.Q.; Heenan, T.M.M.; Patel, D.; Lacoviello, F.; Rack, A.; Olbinado, M.P.; Hinds, G.; Brett, D.J.L.; Darcy, E.; Finegan, D.P.; Shearing, P.R. Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors. Cell Rep. Phys. Sci., 2021, 2(3), 100360.
[14]
Yan, L.; Xiang, L.; Li, W.; Feng, X.; Ren, D.; Yu, W.; Xu, G.; Lu, L.; Hou, J.; Zhang, W.; Wang, Y.; Xu, W.; Yang, R.; Wang, Z.; Huang, J.; Meng, X.; Han, X.; Wang, H.; He, X.; Chen, Z.; Khalil, A.; Minggao, O. Thermal runaway mechanism of lithium-ion bat-tery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 2021, 85.
[15]
Dongsheng, R.; Hsu, H.; Li, R.; Feng, X.; Guo, D.; Han, X.; Lu, L.; He, X.; Gao, S.; Hou, J.; Li, Y.; Wang, Y.; Ouyanga, R. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. eTransportation, 2019, 2, 100034.
[16]
Michael, S.; Jan, K.; Christian, E. Early detection of internal short circuits in series-connected battery packs based on nonlinear process monitoring. J. Energy Storage, 2022, 48, 103732.
[19]
Manh‐Kien, T.; Satyam, P.; Vedang, C.; Niku, B.; Anosh, M.; Roydon, F.; Michael, F. Python‐based scikit‐learn machine learning models for thermal and electrical performance prediction of high capacity lithium‐ion battery. Int. J. Energy Res., 2021, 46(2), 786-794.
[20]
Choudhari, V.G.; Dhoble, A.S.; Satyam, P.; Fowler, M.; Fraser, R. Numerical investigation on thermal behaviour of 5 × 5 cell config-ured battery pack using phase change material and fin structure layout. J. Energy Storage, 2021, 43.
[22]
Wang, Xiaolong Han Chong Yang, Yu A system to prevent thermal runaway of battery. 2021.
[37]
Ning, M.; Teng, Z.; Wang, Z.; Qiong, C. A systematic investigation of internal physical and chemical changes of lithium-ion batteries during overcharge. J. Power Sources, 2022, 518, 230767.
[38]
Ning, M.; Wang, Z-R.; Yi-Hong, C.; Shu, C-M. Overcharge cycling effect on the thermal behavior, structure, and material of lithium-ion batteries. Appl. Therm. Eng., 2019, 163, 114147.
[42]
Yue, P.; Feng, X.; Zhang, M.; Han, X.; Lu, L.; Minggao, O. Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections. J. Clean. Prod., 2020, 255, 120277.
[46]
Yue, Z.; Mei, W.; Peng, Q.; Duan, Q.; Wang, Q. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery. Appl. Therm. Eng., 2021, 192, 116928.
[49]
Nikolaos, W.; Manuel, A.; Leo, W.; Kick, M.K.; Markus, L. Experimental investigation of the influence of electrical contact resistance on lithium-ion battery testing for fast-charge applications. Appl. Energy, 2021, 295.
[51]
Du Yating, F.K.; Sayoko, S.; Yoshitsugu, S.; Eiji, H.; Daisuke, A.; Minoru, U. Capacity fade characteristics of nickel-based lithium-ion secondary battery after calendar deterioration at 80°C. J. Power Sources, 2021, 501, 230005.
[58]
Feng, G.; Wataru, H.; Yu, O.; Yusuke, K.; Masaya, I.; Katsunori, N.; Nozomu, H.; Osamu, F. Experimental study on flammability limits of electrolyte solvents in lithium-ion batteries using a wick combustion method. Exp. Therm. Fluid Sci., 2019, 109, 109858.
[59]
Hao, J.; Pan, X.; Zhang, L. Analysis of the performance decline discipline of lithium-ion power battery. J. Loss Prev. Process Ind., 2022, 74, 104644.
[63]
Swiderska-Mocek, A.; Jakobczyk, P.; Rudnicka, E.; Lewandowski, A. Flammability parameters of lithium-ion battery electrolytes. J. Mol. Liq., 2020, 318.
[68]
Alexander, B.; Jan, M.; Heinz, W. Thermal runaway and thermal runaway propagation in batteries: What do we talk about? J. Energy Storage, 2019, 24, 100649.
[70]
Jeong-Joo, L.; Ji-San, K.; Lee, D-C. HyukKyun, C.; Chang-Wan, K. Design optimization of tab attachment positions and cell aspect ratio to minimize temperature difference in 45-Ah LFP large-format lithium-ion pouch cells. Appl. Therm. Eng., 2021, 182, 116143.
[76]
Kashif, A.M.; Niu, Y.; Tanveer, H.; Hassina, T.; Tang, W.; Xu, M.; Rajeev, A. How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 2021, 86.
[79]
Magdalena, M.; Julian, B.; Dominik, K.; Reiner, M.; Thomas, D.; Jürgen, B.R.; Markus, H.; Olaf, B.; Danzer, M.A. Sodium metal anodes: Deposition and dissolution behaviour and SEI formation. Electrochim. Acta, 2020, 354.
[80]
Shreenag, M.U.; Libin, L.; Sushantha, M.; Paridhi, G. Solid Electrolyte Interphase (SEI), a boon or a bane for lithium batteries: A re-view on the recent advances. J. Energy Storage, 2021.
[81]
Dongsoo, L.; Seho, S.; Chanho, K.; Jeongheon, K.; Keemin, P.; Jiseok, K.; Dowon, S.; Lee, K.; Taeseup, S.; Ungyu, P. Highly re-versible cycling with Dendrite-Free lithium deposition enabled by robust SEI layer with low charge transfer activation energy. Appl. Surf. Sci., 2022, 572.
[82]
Dongsoo, L.; Insung, H.; Yongmin, J.; Seho, S.; Taeseup, S.; Ungyu, P. Dendrite-free lithium plating enabled by yolk shell structured ZnO/C sphere coated polyethylene separator for stable lithium metal anodes. J. Alloys Compd., 2021, 885.
[90]
Jian, T.; Ye, M.; Shen, J. Tailoring uniform and ordered grain boundaries in the solid electrolyte interphase for dendrite-free lithium metal batteries. Mater. Today Energy, 2021, 22, 100858.
[91]
Chen, M.; Jie, M.; Wang, S.; Chen, Q.; Zhao, L.; Kong, Q.; Wu, X. Comparative studies on the combustion characters of the lithium-ion battery electrolytes with composite flame-retardant additives. J. Energy Storage, 2022, 47, 103642.
[94]
Jie, M.; Hong, L.; Chen, M. Experimental study on combustion behavior of mixed carbonate solvents and separator used in lithium-ion batteries. J. Therm. Anal. Calorim., 2019, 139(2), 1255-1264.
[95]
Dongxu, O.; Chen, M.; Wei, R.; Zhi, W.; Jian, W. A study on the fire behaviors of 18650 battery and batteries pack under discharge. J. Therm. Anal. Calorim., 2018, 136(5), 1915-1926.
[96]
Peiyan, Q. I. Combustion characteristics of lithium–iron– phosphate batteries with different combustion states. eTransportation, 2022, 11, 100148.
[97]
Zhang, Shichao Designing safer lithium-based batteries with nonflammable electrolytes: A review. eScience, 2021.
[104]
Muhammad, I.; Muhammad, A.; Yang, Z.; Zhang, W. Recent advances in high performance conducting solid polymer electrolytes for lithium-ion batteries. J. Power Sources, 2021, 486, 229378.
[105]
Adhigan, M.; Mohan, S.; Sahariya, P.; Vijayavarman, V.; Sadanand, P.; Ryansu, S.; Yu, K.; Abdul Kader, M.; Kothandaraman, R. Insights into the emerging alternative polymer-based electrolytes for all solid-state lithium-ion batteries: A review. Mater. Lett., 2022, 313, 131764.
[106]
Anwar, A.; de Meatza, I.; Andriy, K.; Oihane, G-C.; Istaq, A.; Francesco, S.M.; Mattia, G.; Matteo, D.; Mihaela-Aneta, D.; Marcus, J.; Zhang, N. Progress in solid-state high voltage lithium-ion battery electrolytes. Advances in Appl. Energy, 2021, 4, 100070.
[108]
Bhargav, A.; Neelakanta, R.I.; Jo, K.T.; Kisoo, Y.; Jaesool, S. Dopant effect on Li+ ion transport in NASICON-type solid electrolyte: Insights from molecular dynamics simulations and experiments. Ceram. Int., 2022, 48(19), 12142-12151.
[109]
Feng, Xiangming Poly(ethylene oxide)-ethylene carbonate solid binary electrolyte with higher conductivity, lower operating temperature and fully impregnated separator for all solid-state lithium ion batteries. Compos. Commun. 2022, 29.
[114]
Sagar, B.; Adiga, S.P.; Anshul, K.; Subramanya, M.K.; Myeongjae, L.; Younghun, S. Towards in-situ detection of nascent short cir-cuits and accurate estimation of state of short in Lithium-Ion Batteries. J. Power Sources, 2022, 520, 230830.
[115]
Xin, L.; Wei, Y.; Kong, X.; Han, X.; Long, Z.; Tao, S.; Zheng, Y. Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation. J. Energy Storage, 2020, 30.
[122]
Peng, Zhao Mitigating battery thermal runaway through mild combustion. Chem. Eng. J. Advances, 2022, 9, 100208.
[123]
Tong, L.; Jian, H.; Tao, C.; Zhu, X.; Wang, X. Effect of parallel connection on 18650-type lithium ion battery thermal runaway propa-gation and active cooling prevention with water mist. Appl. Therm. Eng., 2021, 184, 116291.