Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Potential of 24-Propylcholestrol as Immunity Inducer against Infection of COVID-19 Virus: In Silico Study Immunomodulatory Drugs

Author(s): Dikdik Kurnia*, Ika Wiani, Achmad Zainuddin, Devi Windaryanti and Christine Sondang Gabriel

Volume 26, Issue 2, 2023

Published on: 21 June, 2022

Page: [383 - 391] Pages: 9

DOI: 10.2174/1386207325666220509184838

Price: $65

Open Access Journals Promotions 2
Abstract

Background: COVID-19 (Coronavirus Disease 2019) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has infected millions of people and caused hundreds of thousands of deaths worldwide. However, until now no specific drug for SARS-CoV-2 infection has been found. This prompted many researchers to explore compounds as anti-SARS-CoV-2 candidates. One of the efforts to deal with the spread of the COVID-19 virus is to increase the body's immune system (immune). Medicinal plants are known to have the ability as immune-modulators, one of which is Betel leaf (Piper betle L.) which has good activity as antibacterial, antioxidant, and anti-viral with other pharmacological effects. An in silico approach in drug development was used to search for potential antiviral compounds as inhibitors of SARS-CoV-2 Mpro Protein, RBD, and Non-structural Protein (NSP15).

Objective: This study aimed to determine the potential of Betel leaf compounds as immunemodulators and good inhibitory pathways against COVID-19.

Methods: In this study, a potential screening of steroid class compounds, namely 24- propilcholesterol was carried out as an anti-SARS-CoV-2 candidate, using an in silico approach with molecular docking simulations for three receptors that play an important role in COVID-19, namely Mpro SARS-CoV-2, RBD SARS-CoV-2 and a non-structural protein (NSP15) and were compared with Azithromycin, Favipiravir and Ritonavir as positive controls.

Results: Based on the results of molecular docking simulations, compound from Betel leaf, 24- Propylcholesterol, showed high binding affinity values for spike glycoprotein RBD and nonstructural protein 15 (NSP15), namely -7.5 and -7.8 kcal/mol. Meanwhile, a native ligand of Mpro, inhibitor N3, has a higher binding affinity value than 24-propylcholesterol -7.4 kcal/mol.

Conclusion: 24-Propylcholesterol compound predicted to have potential as an anti-SARS-CoV-2 compound. However, it is necessary to carry out in vitro and in vivo studies to determine the effectiveness of the compound as an anti-SARS-CoV-2.

Keywords: Covid-19, 24-Propylcholesterol, Piper betle L., immunity inducer, molecular docking, binding affinity.

Graphical Abstract
[1]
Xu, J.; Gao, L.; Liang, H.; Chen, S.D. In silico screening of potential anti-COVID-19 bioactive natural constituents from food sources by molecular docking. Nutrition, 2021, 82, 111049.
[http://dx.doi.org/10.1016/j.nut.2020.111049] [PMID: 33290972]
[2]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (80), 2020, 368(6492), 779-782.http://dx.doi.org/10.1126/science.abb7498
[3]
Srivastava, A.K.; Chaurasia, J.P.; Khan, R.; Dhand, C.; Ver-ma, S. Role of medicinal plants of traditional use in recuperat-ing devastating role of medicinal plants of traditional use in recuperating devastating COVID-19 situation. Med. Aromat. Plants, 2020, 9(5), 1-16.
[http://dx.doi.org/10.35248/2167-0412.20.9.359]
[4]
Lammi, C.; Arnoldi, A. Food-derived antioxidants and COVID-19. J. Food Biochem., 2021, 45(1), e13557.
[http://dx.doi.org/10.1111/jfbc.13557] [PMID: 33171544]
[5]
Baratawidjaja, K. Imunologi Dasar, Edisi 7; Balai Penerbit FKUI: Jakarta, 2006.
[6]
Block, K.I.; Mead, M.N. Immune system effects of echinacea, ginseng, and astragalus: A review. Integr. Cancer Ther., 2003, 2(3), 247-267.
[http://dx.doi.org/10.1177/1534735403256419] [PMID: 15035888]
[7]
Dayrit, F.M.; Guidote, A.M., Jr; Gloriani, N.; de Paz-Silava, S.L.M. Villaseñor4, I.M. Philippine medicinal plants with potential immunomodulatory and anti-SARS-CoV-2 Ac-tivities. Philipp. J. Sci., 2021, 150(5), 999-1015.
[8]
Kursia, S.; Lebang, J.S.; Taebe, B.; Burhan, A.; Rahim, W.O. Nursamsiar. Uji aktivitas antibakteri ekstrak etilasetat daun Sirih Hijau (Piper betle L.) terhadap bakteri Staphylococcus epidermidis. Indonesia J. Pharm. Sci. Technol., 2016, 3(2), 72-77.
[9]
Mathur, S.; Hoskins, C. Drug development: Lessons from nature. Biomed. Rep., 2017, 6(6), 612-614.
[http://dx.doi.org/10.3892/br.2017.909] [PMID: 28584631]
[10]
Soni, H.; Sharma, S.; Malik, J.K. Synergistic prophylaxis on COVID-19 by nature golden heart (Piper betle) & swarna bhasma. Asian J. Res. Dermatol. Sci., 2020, 3(2), 21-27.
[11]
Rekha, V.P.B.; Kollipara, M.; Gupta, B.R.S.S.S.; Bharath, Y.; Pulicherla, K.K. A review on Piper betle L.: Nature’s promis-ing medicinal reservoir. Am. J. Ethnomed., 2014, 1(5), 276-289.
[12]
Dwivedi, V.; Tripathi, S. Review study on potential activi-ty of Piper betle. J. Pharmacogn. Phytochem., 2014, 93(34), 9398.
[13]
Patel, N.; Mohan, J.S.S. Isolation and characterization of po-tential bioactive compounds from Piper betle varieties Ba-narasi and Ben- gali leaf extract. Int. J. Herb. Med., 2017, 5(5), 182-191.
[14]
Carolia, N.; Noventi, W. Potensi ekstrak daun Sirih Hijau (Piper betle L.) sebagai alternatif terapi Acne vulgaris. Majority, 2016, 5(1) Hal. 140
[15]
Patil, R.S.; Harale, P.M.; Shivangekar, K.V.; Kumbhar, P.P. De- sai, R.R. Phytochemical potential and in vitro antimicro-bial activity of Piper betle Linn. leaf extracts. J. Chem. Pharm. Res., 2015, 7(5), 1095-1101.
[16]
Boopathi, S.; Poma, A.B.; Kolandaivel, P. Novel 2019 coro-navirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J. Biomol. Struct. Dyn., 2020, 0(0), 1-10.
[http://dx.doi.org/10.1080/07391102.2020.1758788] [PMID: 32306836]
[17]
Du, L.; Yang, Y.; Zhou, Y.; Lu, L.; Li, F.; Jiang, S. MERS-CoV spike protein: A key target for antivirals. Expert Opin. Ther. Targets, 2017, 21(2), 131-143.
[http://dx.doi.org/10.1080/14728222.2017.1271415] [PMID: 27936982]
[18]
Kim, Y.; Jedrzejczak, R.; Maltseva, N.I.; Wilamowski, M.; Endres, M.; Godzik, A.; Michalska, K.; Joachimiak, A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci., 2020, 29(7), 1596-1605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[19]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new corona-virus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[20]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauer-hering, L. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (80), 2020, 368(6489), 409-412.http://dx.doi.org/10.1126/science.abb3405
[21]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[22]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV- 2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[23]
Eltamany, E.E.; Elhady, S.S.; Goda, M.S.; Aly, O.M.; Habib, E.S.; Ibrahim, A.K.; Hassanean, H.A.; Abdelmohsen, U.R.; Safo, M.K.; Ahmed, S.A. Chemical composition of the red sea green algae ulva lactuca: Isolation and in silico studies of new anti-covid-19 ceramides. Metabolites, 2021, 11(12), 1-21.
[http://dx.doi.org/10.3390/metabo11120816] [PMID: 34940574]
[24]
Hatai, B.; Banerjee, S.K. Molecular docking interaction be-tween superoxide dismutase (receptor) and phytochemicals (ligand) from Heliotropium indicum Linn for detection of po-tential phytoconstit- uents: New drug design for releasing ox-idative stress condition/in- flammation of. J. Pharmacogn. Phytochem., 2019, 8(2), 1700-1706.
[25]
Hernndez-Santoyo, A.; Yair, A.; Altuzar, V.; Vivanco-Cid, H.; Mendoza-Barrer, C. Protein-protein and protein-ligand dock-ing. Protein Eng. Technol. Appl., 2013.http://dx.doi.org/10.5772/56376
[26]
Teli, D.M.; Shah, M.B.; Chhabria, M.T. In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and spike RBD: Targets for COVID-19. Front. Mol. Biosci., 2021, 7, 599079.
[http://dx.doi.org/10.3389/fmolb.2020.599079] [PMID: 33542917]
[27]
Sharma, A.; Goyal, S.; Yadav, A.K.; Kumar, P.; Gupta, L. In silico screening of plant-derived antivirals against main prote-ase, 3CLpro and endoribonuclease, NSP15 proteins of SARS-CoV-2. J. Biomol. Struct. Dyn., 2020, 0(0), 1-15.
[http://dx.doi.org/10.1080/07391102.2020.1808077] [PMID: 32896226]
[28]
Ahsan, T.; Sajib, A.A. Repurposing of approved drugs with potential to interact with SARS-CoV-2 receptor. Biochem. Biophys. Rep., 2021, 26, 100982.
[http://dx.doi.org/10.1016/j.bbrep.2021.100982] [PMID: 33817352]
[29]
Agrawal, A.; Gans, J.S.; Goldfarb, A. Artificial intelligence: The ambiguous labor market impact of automating prediction. J. Econ. Perspect., 2019, 33(2), 31-50.
[http://dx.doi.org/10.1257/jep.33.2.31]
[30]
Xu, X.; Huang, M.; Zou, X. Docking-based inverse virtual screening: Methods, applications, and challenges. Biophys. Rep., 2018, 4(1), 1-16.
[http://dx.doi.org/10.1007/s41048-017-0045-8] [PMID: 29577065]
[31]
Wu, M.Y.; Dai, D.Q.; Yan, H. PRL-Dock: Protein-ligand docking based on hydrogen bond matching and probabilistic relaxation la- beling. Proteins, 2012, 80(9), 2137-2153.
[http://dx.doi.org/10.1002/prot.24104] [PMID: 22544808]
[32]
Aherfi, S.; Pradines, B.; Devaux, C.; Honore, S.; Colson, P.; Scola, B.; Raoult, D. Drug repurposing against SARS-CoV-1, SARS- CoV-2 and MERS-CoV. Future Microbiol., 2021, 16, 1341-1370.
[http://dx.doi.org/10.2217/fmb-2021-0019] [PMID: 34755538]
[33]
Celik, I.; Meryem, E.; Zekeriya, D. In silico evaluation of potential inhibitory activity of remdesivir, favipiravir, ribavi-rin and galidesivir active forms on SARS-CoV-2 RNA Poly-merase. Mol. Divers., 2021.
[http://dx.doi.org/10.1007/s11030-021-10215-5] [PMID: 33765239]
[34]
Mothay, D.; Ramesh, K.V. Binding site analysis of potential protease inhibitors of COVID-19 using AutoDock. Virusdisease, 2020, 31(2), 194-199.
[http://dx.doi.org/10.1007/s13337-020-00585-z] [PMID: 32363219]
[35]
dos Santos, R.N.; Ferreira, L.G.; Andricopulo, A.D. Practices in molecular docking and structurebased virtual screening. Methods Mol. Biol., 2018, 31-50.
[http://dx.doi.org/10.1007/978-1-4939-7756-7_3]
[36]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy