Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Impact of Metabolic Risk Factors on COVID-19 Clinical Outcomes: An Extensive Review

Author(s): Rafael B. Azevedo, Débora C.R. Wandermurem, Flávia C.F. Libório, Maíra K. Machado, Natália M. Ushijima, Ramon S. Narde, Inah Maria D. Pecly and Elizabeth S. Muxfeldt*

Volume 18, Issue 6, 2022

Published on: 06 July, 2022

Article ID: e090522204452 Pages: 17

DOI: 10.2174/1573403X18666220509154236

Price: $65

conference banner
Abstract

Background: Cardiovascular (CV) risk factors, particularly cardiometabolic, seem to be associated with heightened severity and increased morbimortality in patients infected with the novel Coronavirus disease-2019 (COVID-19).

Methods: A thorough scoping review was conducted to elucidate and summarize the latest evidence for the effects of adverse cardiac metabolic profiles on the severity, morbidity, and prognosis of COVID-19 infection.

Results: The pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is complex, being characterized by viral-induced immune dysregulation and hypercytokinemia, particularly in patients with critical disease, evolving with profound endothelial dysfunction, systemic inflammation, and prothrombotic state. Moreover, cardiovascular comorbidities such as diabetes are the most prevalent amongst individuals requiring hospitalization, raising concerns towards the clinical evolution and prognosis of these patients. The chronic proinflammatory state observed in patients with cardiovascular risk factors may contribute to the immune dysregulation mediated by SARS-CoV-2, favoring more adverse clinical outcomes and increased severity. Cardiometabolism is defined as a combination of interrelated risk factors and metabolic dysfunctions such as dyslipidemia, insulin resistance, impaired glucose tolerance, and central adiposity, which increase the likelihood of vascular events, being imperative to specifically analyze its clinical association with COVID-19 outcomes.

Conclusion: DM and obesity appears to be important risk factors for severe COVID-19. The chronic proinflammatory state observed in patients with excess visceral adipose tissue (VAT) possibly augments COVID-19 immune hyperactivity leading to more adverse clinical outcomes in these patients.

Keywords: Review, cardiovascular risk factors, metabolic syndrome, diabetes mellitus, type 2, obesity, dyslipidemias, sleep Apnea, obstructive, COVID-19.

[1]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[2]
Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill 2020; 25(4): 2000058.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.4.2000058] [PMID: 32019669]
[3]
Tong Z-D, Tang A, Li K-F, et al. Potential presymptomatic transmission of SARS-CoV-2, Zhejiang Province, China, 2020. Emerg Infect Dis 2020; 26(5): 1052-4.
[http://dx.doi.org/10.3201/eid2605.200198] [PMID: 32091386]
[4]
Gandhi M, Yokoe DS, Havlir DV. Asymptomatic transmission, the achilles’ heel of current strategies to control covid-19. N Engl J Med 2020; 382(22): 2158-60.
[http://dx.doi.org/10.1056/NEJMe2009758] [PMID: 32329972]
[5]
World Health Organization. Situation Report - 105 Coronavirus disease (COVID-19) 2021. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/ [Accessed on Apr 18, 2022].
[6]
WHO Coronavirus Disease (COVID-19) Dashboard World Health Organization 2021. Available from: http://covid19.who.it Accessed on 15th February 2022.
[7]
Osuchowski MF, Winkler MS, Skirecki T, et al. The COVID-19 puzzle: Deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med 2021; 9(6): 622-42.
[http://dx.doi.org/10.1016/S2213-2600(21)00218-6] [PMID: 33965003]
[8]
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol 2020; 20(6): 363-74.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[9]
Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol 2020; 20(5): 277.
[http://dx.doi.org/10.1038/s41577-020-0305-6] [PMID: 32249847]
[10]
Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-7.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[11]
Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med 2020; 26(7): 1017-32.
[http://dx.doi.org/10.1038/s41591-020-0968-3] [PMID: 32651579]
[12]
Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020; 7(6): e438-40.
[http://dx.doi.org/10.1016/S2352-3026(20)30145-9] [PMID: 32407672]
[13]
Lindner D, Fitzek A, Bräuninger H, et al. Association of cardian infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol 2020; 5(11): 1281-5.
[http://dx.doi.org/10.1001/jamacardio.2020.3551] [PMID: 32730555]
[14]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[15]
Bradley BT, Maioli H, Johnston R, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: A case series. Lancet 2020; 396(10247): 320-32.
[http://dx.doi.org/10.1016/S0140-6736(20)31305-2] [PMID: 32682491]
[16]
Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J 2020; 41(32): 3038-44.
[http://dx.doi.org/10.1093/eurheartj/ehaa623] [PMID: 32882706]
[17]
Collard D, Nurmohamed NS, Kaiser Y, et al. Cardiovascular risk factors and COVID-19 outcomes in hospitalised patients: A prospective cohort study. BMJ Open 2021; 11(2): e045482.
[http://dx.doi.org/10.1136/bmjopen-2020-045482] [PMID: 33619201]
[18]
Bae S, Kim SR, Kim MN, Shim WJ, Park SM. Impact of cardiovascular disease and risk factors on fatal outcomes in patients with COVID-19 according to age: A systematic review and meta-analysis. Heart 2021; 107(5): 373-80.
[http://dx.doi.org/10.1136/heartjnl-2020-317901] [PMID: 33334865]
[19]
Gupta S, Hayek SS, Wang W, et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern Med 2020; 180(11): 1436-47.
[http://dx.doi.org/10.1001/jamainternmed.2020.3596] [PMID: 32667668]
[20]
Cunningham JW, Vaduganathan M, Claggett BL, et al. Clinical outcomes in young US adults hospitalized with COVID-19. JAMA Intern Med 2020; 181(3): 379-81.
[http://dx.doi.org/10.1001/jamainternmed.2020.5313] [PMID: 32902580]
[21]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[22]
Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: Definition, pathophysiology, and mechanisms. Am Heart J 2005; 149(1): 33-45.
[http://dx.doi.org/10.1016/j.ahj.2004.07.013] [PMID: 15660032]
[23]
Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis 2017; 11(8): 215-25.
[http://dx.doi.org/10.1177/1753944717711379] [PMID: 28639538]
[24]
Bansal R, Gubbi S, Muniyappa R. Metabolic syndrome and COVID-19: Endocrine-immune-vascular interactions shapes clinical course. Endocrinology 2020; 161(10): bqaa112.
[http://dx.doi.org/10.1210/endocr/bqaa112]
[25]
Santos A, Magro DO, Evangelista-Poderoso R, Saad MJA. Diabetes, obesity, and insulin resistance in COVID-19: Molecular interrelationship and therapeutic implications. Diabetol Metab Syndr 2021; 13(1): 23.
[http://dx.doi.org/10.1186/s13098-021-00639-2] [PMID: 33648564]
[26]
Batabyal R, Freishtat N, Hill E, Rehman M, Freishtat R, Koutroulis I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int J Obes 2021; 45(6): 1163-9.
[http://dx.doi.org/10.1038/s41366-021-00804-7] [PMID: 33727631]
[27]
Cercato C, Fonseca FA. Cardiovascular risk and obesity. Diabetol Metab Syndr 2019; 11(11): 74.
[http://dx.doi.org/10.1186/s13098-019-0468-0] [PMID: 31467596]
[28]
Nakeshbandi M, Maini R, Daniel P, et al. The impact of obesity on COVID-19 complications: A retrospective cohort study. Int J Obes 2020; 44(9): 1832-7.
[http://dx.doi.org/10.1038/s41366-020-0648-x] [PMID: 32712623]
[29]
Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 2009; 6(6): 399-409.
[http://dx.doi.org/10.1038/nrcardio.2009.55] [PMID: 19399028]
[30]
Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndromecCoronavirus-2 (SARSCoV-2) requiring mechanical ventilation. Obesity (Silver Spring) 2020; 28(7): 1195-9.
[http://dx.doi.org/10.1002/oby.22831] [PMID: 32271993]
[31]
Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ 2020; 369: m1966.
[http://dx.doi.org/10.1136/bmj.m1966] [PMID: 32444366]
[32]
Obesity-WHO| World Health Organization. World Health Organization (WHO). 2021. Available from: https://www.who.int/health-topics/obesity Accessed on 24th May 2021. [Accessed on Apr 18, 2022].
[33]
Hajifathalian K, Kumar S, Newberry C, et al. Obesity is associated with worse outcomes in COVID-19: Analysis of early data from New York City. Obesity (Silver Spring) 2020; 28(9): 1606-12.
[http://dx.doi.org/10.1002/oby.22923] [PMID: 32470210]
[34]
Caussy C, Pattou F, Wallet F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol 2020; 8(7): 562-4.
[http://dx.doi.org/10.1016/S2213-8587(20)30160-1] [PMID: 32437642]
[35]
Sattar N, McInnes IB, McMurray JJV. Obesity is a risk factor for severe COVID-19 infection: Multiple potential mechanisms. Circulation 2020; 142(1): 4-6.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047659] [PMID: 32320270]
[36]
Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism 2020; 108: 154262.
[http://dx.doi.org/10.1016/j.metabol.2020.154262] [PMID: 32422233]
[37]
Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 severity in a designated hospital in Shenzen, China. Diabetes Care 2020; 43(7): 1392-8.
[http://dx.doi.org/10.2337/dc20-0576] [PMID: 32409502]
[38]
Wang J, Zhu L, Liu L, et al. Overweight and obesity are risk factors of severe illness in patients with COVID-19. Obesity (Silver Spring) 2020; 28(11): 2049-55.
[http://dx.doi.org/10.1002/oby.22979] [PMID: 32735706]
[39]
Luo X, Jiaerken Y, Shen Z, et al. Obese COVID-19 patients show more severe pneumonia lesions on CT chest imaging. Diabetes Obes Metab 2021; 23(1): 290-3.
[http://dx.doi.org/10.1111/dom.14194] [PMID: 32945051]
[40]
CDC & Obesity. Centers for Disease Control and Prevention. (CDC) 2021. Available from: https://www.cdc.gov/obesity/index.html [Accessed on Apr 18, 2022].
[41]
Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet 2020; 395(10236): 1544-5.
[http://dx.doi.org/10.1016/S0140-6736(20)31024-2] [PMID: 32380044]
[42]
Klang E, Kassim G, Soffer S, Freeman R, Levin MA, Reich DL. Severe obesity as an independent risk factor for COVID-19 mortality in hospitalized patients younger than 50. Obesity (Silver Spring) 2020; 28(9): 1595-9.
[http://dx.doi.org/10.1002/oby.22913] [PMID: 32445512]
[43]
Lighter J, Phillips M, Hochman S, et al. Obesity in patients younger than 60 Years is a risk factor for COVD-19 hospital admission. Clin Infect Dis 2020; 71(15): 896-7.
[http://dx.doi.org/10.1093/cid/ciaa415] [PMID: 32271368]
[44]
Yates T, Razieh C, Zaccardi F, et al. Obesity, walking pace and risk of severe COVID-19 and mortality: Analysis of UK Biobank. Int J Obes 2021; 45(5): 1155-9.
[http://dx.doi.org/10.1038/s41366-021-00771-z] [PMID: 33637952]
[45]
Gao F, Zheng KI, Wang X-B, et al. Obesity is a risk factor for greater COVID-19 severity. Diabetes Care 2020; 43(7): e72-4.
[http://dx.doi.org/10.2337/dc20-0682] [PMID: 32409499]
[46]
Després JP. Body fat distribution and risk of cardiovascular disease: An update. Circulation 2012; 126(10): 1301-13.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.067264] [PMID: 22949540]
[47]
Vecchié A, Dallegri F, Carbone F, et al. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur J Intern Med 2018; 48: 6-17.
[http://dx.doi.org/10.1016/j.ejim.2017.10.020] [PMID: 29100895]
[48]
Hainer V, Aldhoon-Hainerová I. Obesity paradox does exist. Diabetes Care 2013; 36(2) (Suppl. 2): S276-81.
[http://dx.doi.org/10.2337/dcS13-2023] [PMID: 23882059]
[49]
Curtis JP, Selter JG, Wang Y, et al. The obesity paradox: Body mass index and outcomes in patients with heart failure. Arch Intern Med 2005; 165(1): 55-61.
[http://dx.doi.org/10.1001/archinte.165.1.55] [PMID: 15642875]
[50]
Piché M-E, Tchernof A, Després J-P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 2020; 126(11): 1477-500.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316101] [PMID: 32437302]
[51]
Teixeira TFS, Alves RDM, Moreira APB, Peluzio MC. Main characteristics of metabolically obese normal weight and metabolically healthy obese phenotypes. Nutr Rev 2015; 73(3): 175-90.
[http://dx.doi.org/10.1093/nutrit/nuu007] [PMID: 26024540]
[52]
Gómez-Zorita S, Queralt M, Vicente MA, González M, Portillo MP. Metabolically healthy obesity and metabolically obese normal weight: A review. J Physiol Biochem 2021; 77(1): 175-89.
[http://dx.doi.org/10.1007/s13105-020-00781-x] [PMID: 33704694]
[53]
Cornier MA, Després JP, Davis N, et al. Assessing adiposity: A scientific statement from the American Heart Association. Circulation 2011; 124(18): 1996-2019.
[http://dx.doi.org/10.1161/CIR.0b013e318233bc6a] [PMID: 21947291]
[54]
Sommer I, Teufer B, Szelag M, et al. The performance of anthropometric tools to determine obesity: A systematic review and meta-analysis. Sci Rep 2020; 10(1): 12699.
[http://dx.doi.org/10.1038/s41598-020-69498-7] [PMID: 32728050]
[55]
Onat A, Avci GS, Barlan MM, Uyarel H, Uzunlar B, Sansoy V. Measures of abdominal obesity assessed for visceral adiposity and relation to coronary risk. Int J Obes 2004; 28(8): 1018-25.
[http://dx.doi.org/10.1038/sj.ijo.0802695] [PMID: 15197408]
[56]
Petersen A, Bressem K, Albrecht J, et al. The role of visceral adiposity in the severity of COVID-19: Highlights from a uni-center cross-sectional pilot study in Germany. Metabolism 2020; 110: 154317.
[http://dx.doi.org/10.1016/j.metabol.2020.154317] [PMID: 32673651]
[57]
Malavazos AE, Secchi F, Basilico S, et al. Abdominal obesity phenotype is associated with COVID-19 chest X-ray severity score better than BMI-based obesity. Eat Weight Disord 2021.
[http://dx.doi.org/10.1007/s40519-021-01173-w] [PMID: 33821453]
[58]
Yang Y, Ding L, Zou X, et al. Visceral adiposity and high intramuscular fat deposition independently predict critical illness in patients with SARS-CoV-2. Obesity (Silver Spring) 2020; 28(11): 2040-8.
[http://dx.doi.org/10.1002/oby.22971] [PMID: 32677752]
[59]
Précoma DB, Oliveira GMM, Simão AF, et al. Atualização da Diretriz de Prevenção Cardiovascular da Sociedade Brasileira de Cardiologia – 2019. Arq Bras Cardiol 2019; 113(4): 787-891.
[http://dx.doi.org/10.5935/abc.20190204] [PMID: 31691761]
[60]
International Diabetes Federation. The IDF consensus world-wide definition of the metabolic syndrome. International Diabetes Federation 2006. Available from: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html [Accessed on 24th May 2021].
[61]
Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007; 56(4): 1010-3.
[http://dx.doi.org/10.2337/db06-1656] [PMID: 17287468]
[62]
Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis 2014; 233(1): 104-12.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.12.023] [PMID: 24529130]
[63]
Cornier M-A, Dabelea D, Hernandez TL, et al. The metabolic syndrome. Endocr Rev 2008; 29(7): 777-822.
[http://dx.doi.org/10.1210/er.2008-0024] [PMID: 18971485]
[64]
Romeo GR, Lee J, Shoelson SE. Metabolic syndrome, insulin resistance, and roles of inflammation--mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol 2012; 32(8): 1771-6.
[http://dx.doi.org/10.1161/ATVBAHA.111.241869] [PMID: 22815343]
[65]
Vykoukal D, Davies MG. Vascular biology of metabolic syndrome. J Vasc Surg 2011; 54(3): 819-31.
[http://dx.doi.org/10.1016/j.jvs.2011.01.003] [PMID: 21439758]
[66]
Nascimento JHP, Gomes BFO, Carmo Júnior PRD, et al. COVID-19 and hypercoagulable state: A new therapeutic perspective. Arq Bras Cardiol 2020; 114(5): 829-33.
[http://dx.doi.org/10.36660/abc.20200308] [PMID: 32491074]
[67]
Samad F, Ruf W. Inflammation, obesity, and thrombosis. Blood 2013; 122(20): 3415-22.
[http://dx.doi.org/10.1182/blood-2013-05-427708] [PMID: 24092932]
[68]
Ghoneim S, Butt MU, Hamid O, Shah A, Asaad I. The incidence of COVID-19 in patients with metabolic syndrome and non-alcoholic steatohepatitis: A population-based study. Metabol Open 2020; 8: 100057.
[http://dx.doi.org/10.1016/j.metop.2020.100057] [PMID: 32924000]
[69]
Xie J, Zu Y, Alkhatib A, et al. Metabolic syndrome and COVID-19 mortality among adult black patients in New Orleans. Diabetes Care 2020; dc201714.
[http://dx.doi.org/10.2337/dc20-1714] [PMID: 32843337]
[70]
Matsushita K, Ding N, Kou M, et al. The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: A systematic review and meta-Analysis. Glob Heart 2020; 15(1): 64.
[http://dx.doi.org/10.5334/gh.814] [PMID: 33150129]
[71]
Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system. JAMA Cardiol 2020; 5(7): 831-40.
[http://dx.doi.org/10.1001/jamacardio.2020.1286] [PMID: 32219363]
[72]
Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and cardiovascular disease. Circulation 2020; 141(20): 1648-55.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046941] [PMID: 32200663]
[73]
Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259-60.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[74]
Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 2020; 75(18): 2352-71.
[http://dx.doi.org/10.1016/j.jacc.2020.03.031] [PMID: 32201335]
[75]
Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5(7): 802-10.
[http://dx.doi.org/10.1001/jamacardio.2020.0950] [PMID: 32211816]
[76]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients With 2019 Novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[77]
Goyal P, Ringel JB, Rajan M, et al. Obesity and COVID-19 in New York City: A retrospective cohort study. Ann Intern Med 2020; 173(10): 855-8.
[http://dx.doi.org/10.7326/M20-2730] [PMID: 32628537]
[78]
Huang Y, Lu Y, Huang YM, et al. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020; 113: 154378.
[http://dx.doi.org/10.1016/j.metabol.2020.154378] [PMID: 33002478]
[79]
Devaraj S, Rosenson RS, Jialal I. Metabolic syndrome: An appraisal of the pro-inflammatory and procoagulant status. Endocrinol Metab Clin North Am 2004; 33(2): 431-53.
[http://dx.doi.org/10.1016/j.ecl.2004.03.008] [PMID: 15158528]
[80]
Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract 2020; 162: 108142.
[http://dx.doi.org/10.1016/j.diabres.2020.108142] [PMID: 32278764]
[81]
Yin T, Li Y, Ying Y, Luo Z. Prevalence of comorbidity in Chinese patients with COVID-19: Systematic review and meta-analysis of risk factors. BMC Infect Dis 2021; 21(1): 200.
[http://dx.doi.org/10.1186/s12879-021-05915-0] [PMID: 33618678]
[82]
Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci 2017; 18(3): 563.
[http://dx.doi.org/10.3390/ijms18030563] [PMID: 28273875]
[83]
Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr 2020; 14(4): 303-10.
[http://dx.doi.org/10.1016/j.dsx.2020.04.004] [PMID: 32298981]
[84]
Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020; 368: m1091.
[http://dx.doi.org/10.1136/bmj.m1091] [PMID: 32217556]
[85]
Yan Y, Yang Y, Wang F, et al. Clinical Characteristics and outcomes of patients with severe Covid-19 with diabetes. BMJ Open Diabetes Res Care 2020; 8(1): e001343.
[http://dx.doi.org/10.1136/bmjdrc-2020-001343]
[86]
Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia - A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr 2020; 14(4): 395-403.
[http://dx.doi.org/10.1016/j.dsx.2020.04.018] [PMID: 32334395]
[87]
Roncon L, Zuin M, Rigatelli G, Zuliani G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J Clin Virol 2020; 127: 104354.
[http://dx.doi.org/10.1016/j.jcv.2020.104354] [PMID: 32305882]
[88]
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardio-vascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5): 531-8.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]
[89]
Alkundi A, Mahmoud I, Musa A, Naveed S, Alshawwaf M. Clinical characteristics and outcomes of COVID-19 hospitalized patients with diabetes in the United Kingdom: A retrospective single centre study. Diabetes Res Clin Pract 2020; 165: 108263.
[http://dx.doi.org/10.1016/j.diabres.2020.108263] [PMID: 32531325]
[90]
Bode B, Garrett V, Messler J, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol 2020; 14(4): 813-21.
[http://dx.doi.org/10.1177/1932296820924469] [PMID: 32389027]
[91]
Wang M, Muraki I, Liu K, et al. Diabetes and mortality from respiratory diseases: The Japan collaborative cohort study. J Epidemiol 2020; 30(10): 457-63.
[http://dx.doi.org/10.2188/jea.JE20190091] [PMID: 31839642]
[92]
Allard R, Leclerc P, Tremblay C, Tannenbaum TN. Diabetes and the severity of pandemic influenza A (H1N1) infection. Diabetes Care 2010; 33(7): 1491-3.
[http://dx.doi.org/10.2337/dc09-2215] [PMID: 20587722]
[93]
Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat Rev Endocrinol 2021; 17(1): 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[94]
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020; 323(20): 2052-9.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[95]
Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur Respir J 2020; 55(5): 2000547.
[http://dx.doi.org/10.1183/13993003.00547-2020] [PMID: 32217650]
[96]
Kumar A, Arora A, Sharma P, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab Syndr 2020; 14(4): 535-45.
[http://dx.doi.org/10.1016/j.dsx.2020.04.044] [PMID: 32408118]
[97]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[98]
Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020; 584(7821): 430-6.
[http://dx.doi.org/10.1038/s41586-020-2521-4] [PMID: 32640463]
[99]
Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: The CORONADO study. Diabetologia 2020; 63(8): 1500-15.
[http://dx.doi.org/10.1007/s00125-020-05180-x] [PMID: 32472191]
[100]
Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: Understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol 2020; 8(9): 782-92.
[http://dx.doi.org/10.1016/S2213-8587(20)30238-2] [PMID: 32687793]
[101]
Sorokin AV, Karathanasis SK, Yang ZH, Freeman L, Kotani K, Remaley AT. COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J 2020; 34(8): 9843-53.
[http://dx.doi.org/10.1096/fj.202001451] [PMID: 32588493]
[102]
Cao X, Yin R, Albrecht H, Fan D, Tan W. Cholesterol: A new game player accelerating vasculopathy caused by SARS-CoV-2? Am J Physiol Endocrinol Metab 2020; 319(1): E197-202.
[http://dx.doi.org/10.1152/ajpendo.00255.2020] [PMID: 32501731]
[103]
Hariyanto TI, Kurniawan A. Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr 2020; 14(5): 1463-5.
[http://dx.doi.org/10.1016/j.dsx.2020.07.054] [PMID: 32771919]
[104]
Grasselli G, Greco M, Zanella A, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med 2020; 180(10): 1345-55.
[http://dx.doi.org/10.1001/jamainternmed.2020.3539] [PMID: 32667669]
[105]
Vuorio A, Watts GF, Kovanen PT. Familial hypercholesterolaemia and COVID-19: Triggering of increased sustained cardiovascular risk. J Intern Med 2020; 287(6): 746-7.
[http://dx.doi.org/10.1111/joim.13070] [PMID: 32242993]
[106]
Hu X, Chen D, Wu L, He G, Ye W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin Chim Acta 2020; 510: 105-10.
[http://dx.doi.org/10.1016/j.cca.2020.07.015] [PMID: 32653486]
[107]
Wei X, Zeng W, Su J, et al. Hypolipidemia is associated with the severity of COVID-19. J Clin Lipidol 2020; 14(3): 297-304.
[http://dx.doi.org/10.1016/j.jacl.2020.04.008] [PMID: 32430154]
[108]
Fan J, Wang H, Ye G, et al. Letter to the Editor: Low-density lipoprotein is a potential predictor of poor prognosis in patients with coronavirus disease 2019. Metabolism 2020; 107: 154243.
[http://dx.doi.org/10.1016/j.metabol.2020.154243]
[109]
Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C. Statins as anti-inflammatory agents in atherogenesis: Molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des 2012; 18(11): 1519-30.
[http://dx.doi.org/10.2174/138161212799504803] [PMID: 22364136]
[110]
Lefer DJ. Statins as potent antiinflammatory drugs. Circulation 2002; 106(16): 2041-2.
[http://dx.doi.org/10.1161/01.CIR.0000033635.42612.88] [PMID: 12379569]
[111]
Hariyanto TI, Kurniawan A. Statin therapy did not improve the in-hospital outcome of coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr 2020; 14(6): 1613-5.
[http://dx.doi.org/10.1016/j.dsx.2020.08.023]
[112]
Zhang XJ, Qin JJ, Cheng X, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab 2020; 32(2): 176-187.e4.
[http://dx.doi.org/10.1016/j.cmet.2020.06.015] [PMID: 32592657]
[113]
Daniels LB, Sitapati AM, Zhang J, et al. Relation of statin use prior to admission to severity and recovery Among COVID-19 inpatients. Am J Cardiol 2020; 136: 149-55.
[http://dx.doi.org/10.1016/j.amjcard.2020.09.012] [PMID: 32946859]
[114]
Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344(8934): 1383-9.
[http://dx.doi.org/10.1016/S0140-6736(94)90566-5] [PMID: 7968073]
[115]
Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 225: 10001-9.
[116]
Heeschen C, Hamm CW, Laufs U, Snapinn S, Böhm M, White HD. Withdrawal of statins increases event rates in patients with acute coronary syndromes. Circulation 2002; 105(12): 1446-52.
[http://dx.doi.org/10.1161/01.CIR.0000012530.68333.C8] [PMID: 11914253]
[117]
Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID-19 infection. Eur Heart J Cardiovasc Pharmacother 2020; 6(4): 258-9.
[http://dx.doi.org/10.1093/ehjcvp/pvaa042] [PMID: 32347925]
[118]
Lee KCH, Sewa DW, Phua GC. Potential role of statins in COVID-19. Int J Infect Dis 2020; 96: 615-7.
[119]
Subir R, Jagat JM, Kalyan KG. Pros and cons for use of statins in people with coronavirus disease-19 (COVID-19). Diabetes Metab Syndr 2020; 14(5): 1225-9.
[http://dx.doi.org/10.1016/j.dsx.2020.07.011] [PMID: 32683320]
[120]
Iqbal Z, Ho JH, Adam S, et al. Managing hyperlipidaemia in patients with COVID-19 and during its pandemic: An expert panel position statement from HEART UK. Atherosclerosis 2020; 313: 126-36.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.09.008] [PMID: 33045618]
[121]
European Society of Cardiology. ESC guidance for the diagnosis and management of CV disease during the COVID-19 pandemic 2020. Available from: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID-19-Guidance [Accessed on Apr 18, 2022].
[122]
Barkas F, Milionis H, Anastasiou G, Liberopoulos E. Statins and PCSK9 inhibitors: What is their role in coronavirus disease 2019? Med Hypotheses 2021; 146: 110452.
[http://dx.doi.org/10.1016/j.mehy.2020.110452] [PMID: 33333472]
[123]
Scicali R, Di Pino A, Piro S, Rabuazzo AM, Purrello F. May statins and PCSK9 inhibitors be protective from COVID-19 in familial hypercholesterolemia subjects? Nutr Metab Cardiovasc Dis 2020; 30(7): 1068-9.
[http://dx.doi.org/10.1016/j.numecd.2020.05.003] [PMID: 32405159]
[124]
Tufik S, Santos-Silva R, Taddei JA, Bittencourt LRA. Obstructive sleep apnea syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep Med 2010; 11(5): 441-6.
[http://dx.doi.org/10.1016/j.sleep.2009.10.005] [PMID: 20362502]
[125]
Tufik S, Gozal D, Ishikura IA, Pires GN, Andersen ML. Does obstructive sleep apnea lead to increased risk of COVID-19 infection and severity? J Clin Sleep Med 2020; 16(8): 1425-6.
[http://dx.doi.org/10.5664/jcsm.8596] [PMID: 32441246]
[126]
McSharry D, Malhotra A. Potential influences of obstructive sleep apnea and obesity on COVID-19 severity. J Clin Sleep Med 2020; 16(9): 1645.
[http://dx.doi.org/10.5664/jcsm.8538] [PMID: 32356516]
[127]
Roche J, Rae DE, Redman KN, et al. Impact of obstructive sleep apnea on cardiometabolic health in a random sample of older adults in rural South Africa: Building the case for the treatment of sleep disorders in underresourced settings. J Clin Sleep Med 2021; 17(7): 1423-34.
[http://dx.doi.org/10.5664/jcsm.9214] [PMID: 33687325]
[128]
Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G. Obstructive sleep apnea: A cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol 2013; 62(7): 569-76.
[http://dx.doi.org/10.1016/j.jacc.2013.05.045] [PMID: 23770180]
[129]
Tufik S. Obstructive sleep apnea as a comorbidity to Covid-19. Sleep Sci 2020; 13(3): 181-2.
[http://dx.doi.org/10.5935/19840063.20200064] [PMID: 33381283]
[130]
Eckert DJ, Malhotra A. Pathophysiology of adult obstructive sleep apnea. Proc Am Thorac Soc 2008; 5(2): 144-53.
[http://dx.doi.org/10.1513/pats.200707-114MG] [PMID: 18250206]
[131]
Floras JS. Sleep Apnea and cardiovascular disease- An enigmatic risk factor. Circ Res 2018; 122(12): 1741-64.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.310783] [PMID: 29880501]
[132]
Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med 2020; 46(6): 1099-102.
[http://dx.doi.org/10.1007/s00134-020-06033-2] [PMID: 32291463]
[133]
Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA 2020; 323(16): 1612-4.
[http://dx.doi.org/10.1001/jama.2020.4326] [PMID: 32191259]
[134]
Hariyanto TI, Kurniawan A. Obstructive Sleep Apnea (OSA) and outcomes from coronavirus disease 2019 (COVID-19) pneumonia: A systematic review and meta-analysis. Sleep Med 2021; 82: 47-53.
[http://dx.doi.org/10.1016/j.sleep.2021.03.029] [PMID: 33892451]
[135]
Halalau A, Odish F, Imam Z, et al. Epidemiology, clinical characteristics, and outcomes of a large cohort of COVID-19 outpatients in Michigan. Int J Gen Med 2021; 14: 1555-63.
[http://dx.doi.org/10.2147/IJGM.S305295] [PMID: 33953603]
[136]
Maas MB, Kim M, Malkani RG, Abbott MS, Zee PC. Obstructive sleep apnea and risk of COVID-19 infection, hospitalization and respiratory failure. Sleep Breath 2020; 1-3.
[http://dx.doi.org/10.1007/s11325-020-02203-0] [PMID: 32989673]
[137]
Strausz S, Kiiskinen T, Broberg M, et al. Sleep apnoea is a risk factor for severe COVID-19. BMJ Open Respir Res 2021; 8(1): e000845.
[http://dx.doi.org/10.1136/bmjresp-2020-000845] [PMID: 33436406]
[138]
Mashaqi S, Lee-Iannotti J, Rangan P, et al. Obstructive sleep apnea and COVID-19 clinical outcomes during hospitalization: A cohort study. J Clin Sleep Med 2021; 17(11): 2197-204.
[http://dx.doi.org/10.5664/jcsm.9424] [PMID: 34019476]
[139]
Del Brutto OH, Mera RM, Castillo PR, Recalde BY, Costa AF. Previously diagnosed obstructive sleep apnea is not associated with increased risk of SARS-CoV-2 infection in community-dwelling older adults living in a highly endemic setting. Clin Neurol Neurosurg 2021; 205: 106639.
[http://dx.doi.org/10.1016/j.clineuro.2021.106639] [PMID: 33901750]
[140]
Chung F, Waseem R, Pham C, et al. The association between high risk of sleep apnea, comorbidities, and risk of COVID-19: A population-based international harmonized study. Sleep Breath 2021; 25(2): 849-60.
[http://dx.doi.org/10.1007/s11325-021-02373-5] [PMID: 33907966]
[141]
Kar A, Saxena K, Goyal A, et al. Assessment of obstructive sleep apnea in association with severity of COVID-19: A prospective observational study. Sleep Vigil 2021; 5(1): 111-8.
[http://dx.doi.org/10.1007/s41782-021-00142-8] [PMID: 33972929]
[142]
Memtsoudis SG, Ivascu NS, Pryor KO, Goldstein PA. Obesity as a risk factor for poor outcome in COVID-19-induced lung injury: The potential role of undiagnosed obstructive sleep apnoea. Br J Anaesth 2020; 125(2): e262-3.
[http://dx.doi.org/10.1016/j.bja.2020.04.078] [PMID: 32439072]
[143]
British Thoracic Society. Guidance regarding coronavirus (COVID-19) and obstructive sleep apnea (OSA): For people who routinely use continuous positive airway pressure (CPAP), their families and health care workers. 16 December 2020. 2020. Available from: https://www.brit-thoracic.org.uk/document-library/quality-improvement/covid-19/osa-alliance-cpap-covid-19-advice/ [Accessed on Apr 18, 2022].
[144]
Bastier PL, Aisenberg N, Durand F, et al. Treatment of sleep apnea by ENT specialists during the COVID-19 pandemic. Eur Ann Otorhinolaryngol Head Neck Dis 2020; 137(4): 319-21.
[http://dx.doi.org/10.1016/j.anorl.2020.05.001] [PMID: 32417164]
[145]
Grote L, McNicholas WT, Hedner J. Sleep apnoea management in Europe during the COVID-19 pandemic: Data from the European Sleep Apnoea Database (ESADA). Eur Respir J 2020; 55(6): 2001323.
[http://dx.doi.org/10.1183/13993003.01323-2020] [PMID: 32366489]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy