Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Anxiolytic and Antidepressant-like Effects of Monoterpene Tetrahydrolinalool and In silico Approach of new Potential Targets

Author(s): Pablo Rayff da Silva, Natalia Diniz NunesPazos, Thallita Karla Silva do Nascimento Gonzaga, Jéssica Cabral de Andrade, Álefe Brito Monteiro, Anne Caroline Ribeiro Portela, Hugo Fernandes Oliveira Pires, Mayara dos Santos Maia, Diogo Vilar da Fonsêca, Marcus T. Scotti, José Maria Barbosa Filho, Damião Pergentino de Sousa, Cícero Francisco Bezerra Felipe, Reinaldo Nóbrega de Almeida and Luciana Scotti*

Volume 22, Issue 18, 2022

Published on: 22 June, 2022

Page: [1530 - 1552] Pages: 23

DOI: 10.2174/1568026622666220505104726

Price: $65

conference banner
Abstract

Introduction: Although drugs currently available for the treatment of anxiety and depression act through modulation of the neurotransmission systems involved in the neurobiology of the disorder, yet they often present side effects, which can impair patient adherence to treatment.

Methods: This has driven the search for new molecules with anxiolytic and antidepressant potential. Aromatic plants are rich in essential oils, and their chemical constituents, such as monoterpenes, are being studied for these disorders. This study aims to evaluate the anxiolytic and antidepressant-like potential of the monoterpene tetrahydrolinalool in in vivo animal models and review pharmacological targets with validation through molecular docking. Male Swiss mice (Mus musculus) were treated with THL (37.5-600 mg kg-1 p.o.) and submitted to the elevated plus maze, open field, rotarod, and forced swim tests. In the elevated plus-maze, THL at doses of 37.5 and 75 mg kg-1 induced a significant increase in the percentage of entries (72.7 and 64.3% respectively), and lengths of stay (80.3 and 76.8% respectively) in the open arms tests.

Results: These doses did not compromise locomotor activity or motor coordination in the animals. In the open field, rotarod tests, and the forced swimming model, treatment with THL significantly reduced immobility times at doses of 150, 300, and 600 mg kg-1, and by respective percentages of 69.3, 60.9 and 68.7%.

Conclusion: In molecular docking assay, which investigated potential targets, THL presented satisfactory energy values for: nNOs, SGC, IL-6, 5-HT1A, NMDAr, and D1. These demonstrate the potential of THL (a derivative of natural origin) in in vivo and in silico models, making it a drug candidate.

Keywords: Tetrahydrolinalool, Natural products, Anxiety, Depression, Docking, Chemoinformatics.

« Previous
Graphical Abstract
[1]
Lord, K.A.; Jacobson, N.C.; Suvak, M.K.; Newman, M.G. Social criticism moderates the relationship between anxiety and depression 10 years later. J. Affect. Disord., 2020, 274, 15-22.
[http://dx.doi.org/10.1016/j.jad.2020.05.030 ] [PMID: 32469798]
[2]
Wu, Z.; Fang, Y. Comorbidity of depressive and anxiety disorders: Challenges in diagnosis and assessment. Shanghai Jingshen Yixue, 2014, 26(4), 227-231.
[PMID: 25317009]
[3]
Zhou, Y.; Cao, Z.; Yang, M.; Xi, X.; Guo, Y.; Fang, M.; Cheng, L.; Du, Y. Comorbid generalized anxiety disorder and its association with quality of life in patients with major depressive disorder. Sci. Rep., 2017, 7(1), 40511.
[http://dx.doi.org/10.1038/srep40511 ] [PMID: 28098176]
[4]
Girish, C.; Raj, V.; Arya, J.; Balakrishnan, S. Evidence for the involvement of the monoaminergic system, but not the opioid system in the antidepressant-like activity of ellagic acid in mice. Eur. J. Pharmacol., 2012, 682(1-3), 118-125.
[http://dx.doi.org/10.1016/j.ejphar.2012.02.034 ] [PMID: 22387858]
[5]
Gomes, P.B.; Feitosa, M.L.; Silva, M.I.G.; Noronha, E.C.; Moura, B.A.; Venâncio, E.T.; Rios, E.R.V.; de Sousa, D.P.; de Vasconcelos, S.M.M.; Fonteles, M.M. de F.; de Sousa, F.C.F. Anxiolytic-like effect of the monoterpene 1,4-cineole in mice. Pharmacol. Biochem. Behav., 2010, 96(3), 287-293.
[http://dx.doi.org/10.1016/j.pbb.2010.05.019 ] [PMID: 20670917]
[6]
Diniz, T.C.; de Oliveira Júnior, R.G.; Miranda Bezerra Medeiros, M.A.; Gama, E. Silva, M.; de Andrade Teles, R.B.; Dos Passos Menezes, P.; de Sousa, B.M.H.; Abrahão Frank, L.; de Souza Araújo, A.A.; Russo Serafini, M.; Stanisçuaski Guterres, S.; Pereira Nunes, C.E.; Sal-vador, M.J.; da Silva Almeida, J.R.G. Anticonvulsant, sedative, anxiolytic and antidepressant activities of the essential oil of Annona vepretorum in mice: Involvement of GABAergic and serotonergic systems. Biomed. Pharmacother., 2019, 111, 1074-1087.
[http://dx.doi.org/10.1016/j.biopha.2018.12.114 ] [PMID: 30841421]
[7]
Manayi, A.; Nabavi, S.M.; Daglia, M.; Jafari, S. Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases. Pharmacol. Rep., 2016, 68(4), 671-679.
[http://dx.doi.org/10.1016/j.pharep.2016.03.014 ] [PMID: 27110875]
[8]
Santos, P.L.; Matos, J.P.S.C.F.; Picot, L.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans-Júnior, L.J. Citronellol, a monoterpene alcohol with promising pharmacological activities - a systematic review. Food Chem. Toxicol., 2019, 123, 459-469.
[9]
Bianchini, A.E.; Garlet, Q.I.; da Cunha, J.A.; Bandeira, G. Junior; Brusque, I.C.M.; Salbego, J.; Heinzmann, B.M.; Baldisserotto, B. Monoterpenoids (thymol, carvacrol and S-(+)-linalool) with anesthetic activity in silver catfish (Rhamdia quelen): Evaluation of acetyl-cholinesterase and GABAergic activity. Braz. J. Med. Biol. Res., 2017, 50(12), e6346.
[http://dx.doi.org/10.1590/1414-431x20176346 ] [PMID: 29069225]
[10]
Dos Santos, É.R.Q.; Maia, C.S.F.; Fontes, Junior, E.A.; Melo, A.S.; Pinheiro, B.G.; Maia, J.G.S. Linalool-rich essential oils from the Ama-zon display antidepressant-type effect in rodents. J. Ethnopharmacol., 2018, 212, 43-49.
[http://dx.doi.org/10.1016/j.jep.2017.10.013 ] [PMID: 29037915]
[11]
Stashenko, E.E. Review sampling flower scent for chromatographic analysis. J. Sep. Sci., 2008, 31(11), 2022-2031.
[12]
Harada, H.; Kashiwadani, H.; Kanmura, Y.; Kuwaki, T. Linalool odor-induced anxiolytic effects in mice. Front. Behav. Neurosci., 2018, 12, 241.
[http://dx.doi.org/10.3389/fnbeh.2018.00241 ] [PMID: 30405369]
[13]
Cheng, B.H.; Sheen, L.Y.; Chang, S.T. Evaluation of anxiolytic potency of essential oil and S-(+)-linalool from Cinnamomum os-mophloeum ct. linalool leaves in mice. J. Tradit. Complement. Med., 2014, 5(1), 27-34.
[http://dx.doi.org/10.1016/j.jtcme.2014.10.007 ] [PMID: 26151006]
[14]
Belsito, D.; Bickers, D.; Bruze, M.; Calow, P.; Greim, H.; Hanifin, J.M.; Rogers, A.E.; Saurat, J.H.; Sipes, I.G.; Tagami, H. The RIFM Expert Panel. A safety assessment of non-cyclic alcohols with unsaturated branched chain when used as fragrance ingredients: The RIFM expert panel. Food Chem. Toxicol., 2010, 48(Suppl. 3), S1-S42.
[PMID: 20141871]
[15]
Kaufman, J.; DeLorenzo, C.; Choudhury, S.; Parsey, R.V. The 5-HT1A receptor in major depressive disorder. Eur. Neuropsychopharmacol., 2016, 26(3), 397-410.
[http://dx.doi.org/10.1016/j.euroneuro.2015.12.039 ] [PMID: 26851834]
[16]
Derangeon, M.; Bozon, V.; Defamie, N.; Peineau, N.; Bourmeyster, N.; Sarrouilhe, D.; Argibay, J.A.; Hervé, J.C. 5-HT4 and 5-HT2 re-ceptors antagonistically influence gap junctional coupling between rat auricular myocytes. J. Mol. Cell. Cardiol., 2010, 48(1), 220-229.
[http://dx.doi.org/10.1016/j.yjmcc.2009.07.005 ] [PMID: 19615378]
[17]
Richardson-Jones, J.W.; Craige, C.P.; Nguyen, T.H.; Kung, H.F.; Gardier, A.M.; Dranovsky, A.; David, D.J.; Guiard, B.P.; Beck, S.G.; Hen, R.; Leonardo, E.D. Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J. Neurosci., 2011, 31(16), 6008-6018.
[http://dx.doi.org/10.1523/JNEUROSCI.5836-10.2011 ] [PMID: 21508226]
[18]
Richardson-Jones, J.W.; Craige, C.P.; Guiard, B.P.; Stephen, A.; Metzger, K.L.; Kung, H.F.; Gardier, A.M.; Dranovsky, A.; David, D.J.; Beck, S.G.; Hen, R.; Leonardo, E.D. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron, 2010, 65(1), 40-52.
[http://dx.doi.org/10.1016/j.neuron.2009.12.003 ] [PMID: 20152112]
[19]
Garcia-Garcia, A.L.; Newman-Tancredi, A.; Leonardo, E.D. P5-HT1A Receptors in mood and anxiety: Recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl.), 2014, 231(4), 623-636.
[http://dx.doi.org/10.1007/s00213-013-3389-x ] [PMID: 24337875]
[20]
Rombolà, L.; Scuteri, D.; Watanabe, C.; Sakurada, S.; Hamamura, K.; Sakurada, T.; Tonin, P.; Corasaniti, M.T.; Bagetta, G.; Morrone, L.A. Role of 5-HT1A receptor in the anxiolytic-relaxant effects of bergamot essential oil in rodent. Int. J. Mol. Sci., 2020, 21(7), 1-14.
[http://dx.doi.org/10.3390/ijms21072597 ] [PMID: 32283606]
[21]
Spiacci, A., Jr; Pobbe, R.L.H.; Matthiesen, M.; Zangrossi, H., Jr 5-HT1A receptors of the rat dorsal raphe lateral wings and dorsomedial subnuclei differentially control anxiety- and panic-related defensive responses. Neuropharmacology, 2016, 107, 471-479.
[http://dx.doi.org/10.1016/j.neuropharm.2015.06.015 ] [PMID: 26145183]
[22]
File, S.E.; Gonzalez, L.E.; Andrews, N. Comparative study of pre- and postsynaptic 5-HT1A receptor modulation of anxiety in two etho-logical animal tests. J. Neurosci., 1996, 16(15), 4810-4815.
[http://dx.doi.org/10.1523/JNEUROSCI.16-15-04810.1996 ] [PMID: 8764667]
[23]
Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The role of 5-HT receptors in depression tim bliss. Mol. Brain, 2017, 10(1), 1-12.
[http://dx.doi.org/10.1186/s13041-017-0306-y]
[24]
Stiedl, O.; Pappa, E.; Konradsson-Geuken, Å.; Ögren, S.O. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its inter-action in emotional learning and memory. Front. Pharmacol., 2015, 6, 162.
[http://dx.doi.org/10.3389/fphar.2015.00162 ] [PMID: 26300776]
[25]
Yaman, B.; Bal, R. Pindolol potentiates the antidepressant effect of venlafaxine by inhibiting 5-HT1A receptor in DRN neurons of mice. Int. J. Neurosci., 2022, 132, 23-30.
[PMID: 32677492]
[26]
Guzmán, S.L.; Reyes, R.; Bonilla, H. Medicinal plants for the treatment of “ Nervios ”, anxiety, and depression in mexican traditional medicine. Rev. Bras. Farmacogn., 2014, 24(5), 591-608.
[http://dx.doi.org/10.1016/j.bjp.2014.10.007]
[27]
Guzmán-Gutiérrez, S.L.; Bonilla-Jaime, H.; Gómez-Cansino, R.; Reyes-Chilpa, R. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci., 2015, 128, 24-29.
[http://dx.doi.org/10.1016/j.lfs.2015.02.021 ] [PMID: 25771248]
[28]
Ursano, R.J.; Zhang, L.; Li, H.; Johnson, L.; Carlton, J.; Fullerton, C.S.; Benedek, D.M. PTSD and traumatic stress from gene to commu-nity and bench to bedside. Brain Res., 2009, 1293, 2-12.
[http://dx.doi.org/10.1016/j.brainres.2009.03.030 ] [PMID: 19328776]
[29]
Wang, S.H.; Zhang, Z.J.; Guo, Y.J.; Teng, G.J.; Chen, B.A. Decreased expression of serotonin 1A receptor in the dentate gyrus in asso-ciation with chronic mild stress: A rat model of post-stroke depression. Psychiatry Res., 2009, 170(2-3), 245-251.
[http://dx.doi.org/10.1016/j.psychres.2008.07.006 ] [PMID: 19896211]
[30]
Dantsuji, M.; Nakamura, S.; Nakayama, K.; Mochizuki, A.; Park, S.K.; Bae, Y.C.; Ozeki, M.; Inoue, T. 5-HT2A receptor activation en-hances NMDA receptor-mediated glutamate responses through Src kinase in the dendrites of rat jaw-closing motoneurons. J. Physiol., 2019, 597(9), 2565-2589.
[http://dx.doi.org/10.1113/JP275440 ] [PMID: 30919966]
[31]
Xiang, M.; Jiang, Y.; Hu, Z.; Yang, Y.; Du, X.; Botchway, B.O.; Fang, M. Serotonin receptors 2A and 1A modulate anxiety-like behavior in post-traumatic stress disordered mice. Am. J. Transl. Res., 2019, 11(4), 2288-2303.
[PMID: 31105836]
[32]
Ostrowska, K.; Grzeszczuk, D.; Głuch-Lutwin, M.; Gryboś, A.; Siwek, A.; Leśniak, A.; Sacharczuk, M.; Trzaskowski, B. 5-HT1A and 5-HT2A receptors affinity, docking studies and pharmacological evaluation of a series of 8-acetyl-7-hydroxy-4-methylcoumarin deriva-tives. Bioorg. Med. Chem., 2018, 26(2), 527-535.
[http://dx.doi.org/10.1016/j.bmc.2017.12.016 ] [PMID: 29269256]
[33]
Tiger, M.; Varnäs, K.; Okubo, Y.; Lundberg, J. The 5-HT1B receptor - a potential target for antidepressant treatment. Psychopharmacology (Berl.), 2018, 235(5), 1317-1334.
[http://dx.doi.org/10.1007/s00213-018-4872-1 ] [PMID: 29546551]
[34]
Nautiyal, K.M.; Tritschler, L.; Ahmari, S.E.; David, D.J.; Gardier, A.M.; Hen, R. A lack of Serotonin 1B autoreceptors results in de-creased anxiety and depression-related behaviors. Neuropsychopharmacology, 2016, 41(12), 2941-2950.
[http://dx.doi.org/10.1038/npp.2016.109 ] [PMID: 27353308]
[35]
Peddie, C.J.; Davies, H.A.; Colyer, F.M.; Stewart, M.G.; Rodríguez, J.J. A subpopulation of serotonin 1B receptors colocalize with the AMPA receptor subunit GluR2 in the hippocampal dentate gyrus. Neurosci. Lett., 2010, 485(3), 251-255.
[http://dx.doi.org/10.1016/j.neulet.2010.09.024 ] [PMID: 20849926]
[36]
Veldman, E.R.; Svedberg, M.M.; Svenningsson, P.; Lundberg, J. Distribution and levels of 5-HT1B receptors in anterior cingulate cortex of patients with bipolar disorder, major depressive disorder and schizophrenia - An autoradiography study. Eur. Neuropsychopharmacol., 2017, 27(5), 504-514.
[http://dx.doi.org/10.1016/j.euroneuro.2017.02.011 ] [PMID: 28318898]
[37]
Carreño Gutiérrez, H.; O’Leary, A.; Freudenberg, F.; Fedele, G.; Wilkinson, R.; Markham, E.; van Eeden, F.; Reif, A.; Norton, W.H.J. Nitric oxide interacts with monoamine oxidase to modulate aggression and anxiety-like behaviour. Eur. Neuropsychopharmacol., 2020, 30, 30-43.
[http://dx.doi.org/10.1016/j.euroneuro.2017.09.004 ] [PMID: 28951000]
[38]
Joca, S.R.L.; Sartim, A.G.; Roncalho, A.L.; Diniz, C.F.A.; Wegener, G. Nitric oxide signalling and antidepressant action revisited. Cell Tissue Res., 2019, 377(1), 45-58.
[http://dx.doi.org/10.1007/s00441-018-02987-4 ] [PMID: 30649612]
[39]
Calixto, A.V.; Duarte, F.S.; Duzzioni, M.; Nascimento Häckl, L.P.; Faria, M.S.; De Lima, T.C.M. Role of ventral hippocampal nitric ox-ide/cGMP pathway in anxiety-related behaviors in rats submitted to the elevated T-maze. Behav. Brain Res., 2010, 207(1), 112-117.
[http://dx.doi.org/10.1016/j.bbr.2009.09.037 ] [PMID: 19800925]
[40]
Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J., 2001, 357(Pt 3), 593-615.
[http://dx.doi.org/10.1042/bj3570593 ] [PMID: 11463332]
[41]
Lee, C.H.; Giuliani, F. The role of inflammation in depression and fatigue. Front. Immunol., 2019, 10, 1696.
[http://dx.doi.org/10.3389/fimmu.2019.01696 ] [PMID: 31379879]
[42]
Pitsikas, N. The role of nitric oxide (NO) donors in anxiety. Lights and shadows. Nitric Oxide, 2018, 77, 6-11.
[http://dx.doi.org/10.1016/j.niox.2018.04.002 ] [PMID: 29625171]
[43]
Yuste, J.E.; Tarragon, E.; Campuzano, C.M.; Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci., 2015, 9, 322.
[http://dx.doi.org/10.3389/fncel.2015.00322 ] [PMID: 26347610]
[44]
Salim, S.; Chugh, G.; Asghar, M. Inflammation in Anxiety, 1st ed; Elsevier Inc., 2012, Vol. 88, .
[45]
Coleman, J.W. Nitric oxide in immunity and inflammation. Int. Immunopharmacol., 2001, 1(8), 1397-1406.
[http://dx.doi.org/10.1016/S1567-5769(01)00086-8 ] [PMID: 11515807]
[46]
Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch., 2010, 460(2), 525-542.
[http://dx.doi.org/10.1007/s00424-010-0809-1 ] [PMID: 20229265]
[47]
Hogg, N.; Kalyanaraman, B. Nitric oxide and lipid peroxidation. Biochim. Biophys. Acta, 1999, 1411(2-3), 378-384.
[http://dx.doi.org/10.1016/S0005-2728(99)00027-4 ] [PMID: 10320670]
[48]
Denninger, J.W.; Marletta, M.A. Guanylate cyclase and the. NO/cGMP signaling pathway. Biochim. Biophys. Acta, 1999, 1411(2-3), 334-350.
[http://dx.doi.org/10.1016/S0005-2728(99)00024-9 ] [PMID: 10320667]
[49]
Bal-Price, A.; Brown, G.C. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci., 2001, 21(17), 6480-6491.
[http://dx.doi.org/10.1523/JNEUROSCI.21-17-06480.2001 ] [PMID: 11517237]
[50]
Singh, P.; Walia, V. Anxiolytic like effect of l-carnitine in mice: Evidences for the involvement of NO-SGC-CGMP signaling pathway Behav. Brain Res., 2, 2020, 391, 112689.
[51]
Yazir, Y.; Utkan, T.; Aricioglu, F. Inhibition of neuronal nitric oxide synthase and soluble guanylate cyclase prevents depression-like behaviour in rats exposed to chronic unpredictable mild stress. Basic Clin. Pharmacol. Toxicol., 2012, 111(3), 154-160.
[http://dx.doi.org/10.1111/j.1742-7843.2012.00877.x ] [PMID: 22385503]
[52]
Moretti, M.; Freitas, A.E.; Budni, J.; Fernandes, S.C.P.; Balen, G. de O.; Rodrigues, A.L.S. Involvement of nitric oxide-cGMP pathway in the antidepressant-like effect of ascorbic acid in the tail suspension test. Behav. Brain Res., 2011, 225(1), 328-333.
[http://dx.doi.org/10.1016/j.bbr.2011.07.024 ] [PMID: 21802450]
[53]
Chaudhari, U.P.; Trivedi, N.D.; Patil, S.R.R.; Banerjee, S. Molecular docking studies of L-Name with the neuronal nitric oxide synthase. Int. J. Chemtech Res., 2010, 2, 122-128.
[54]
da Silva Leal, V.M.; Bonassoli, V.T.; Soares, L.M.; Milani, H.; de Oliveira, R.M.W. Depletion of 5 hydroxy-triptamine (5-HT) affects the antidepressant-like effect of neuronal nitric oxide synthase inhibitor in mice. Neurosci. Lett., 2017, 656, 131-137.
[http://dx.doi.org/10.1016/j.neulet.2017.07.035 ] [PMID: 28746839]
[55]
Peana, A.T.; Marzocco, S.; Popolo, A.; Pinto, A. (-)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci., 2006, 78(7), 719-723.
[http://dx.doi.org/10.1016/j.lfs.2005.05.065 ] [PMID: 16137709]
[56]
Vogelzangs, N.; de Jonge, P.; Smit, J.H.; Bahn, S.; Penninx, B.W. Cytokine production capacity in depression and anxiety. Transl. Psychiatry, 2016, 6(5), e825.
[http://dx.doi.org/10.1038/tp.2016.92 ] [PMID: 27244234]
[57]
Zou, W.; Feng, R.; Yang, Y. Changes in the serum levels of inflammatory cytokines in antidepressant drug-naïve patients with major depression. PLoS One, 2018, 13(6), e0197267.
[http://dx.doi.org/10.1371/journal.pone.0197267 ] [PMID: 29856741]
[58]
Brymer, K.J.; Romay-Tallon, R.; Allen, J.; Caruncho, H.J.; Kalynchuk, L.E. Exploring the potential antidepressant mechanisms of TNFα antagonists. Front. Neurosci., 2019, 13, 98.
[http://dx.doi.org/10.3389/fnins.2019.00098 ] [PMID: 30804748]
[59]
Kenis, G.; Maes, M. Effects of antidepressants on the production of cytokines. Int. J. Neuropsychopharmacol., 2002, 5(4), 401-412.
[http://dx.doi.org/10.1017/S1461145702003164 ] [PMID: 12466038]
[60]
Herr, N.; Bode, C.; Duerschmied, D. The effects of serotonin in immune cells. Front. Cardiovasc. Med., 2017, 4, 48.
[http://dx.doi.org/10.3389/fcvm.2017.00048 ] [PMID: 28775986]
[61]
Postal, M.; Appenzeller, S. The role of tumor necrosis factor-alpha (TNF-α) in the pathogenesis of systemic lupus erythematosus. Cytokine, 2011, 56(3), 537-543.
[http://dx.doi.org/10.1016/j.cyto.2011.08.026 ] [PMID: 21907587]
[62]
Postal, M.; Lapa, A.T.; Sinicato, N.A.; de Oliveira Peliçari, K.; Peres, F.A.; Costallat, L.T.; Fernandes, P.T.; Marini, R.; Appenzeller, S.; Appenzeller, S. Depressive symptoms are associated with tumor necrosis factor alpha in systemic lupus erythematosus. J. Neuroinflammation, 2016, 13(1), 5.
[http://dx.doi.org/10.1186/s12974-015-0471-9 ] [PMID: 26732584]
[63]
Krishnadas, R.; Cavanagh, J. Depression : An inflammatory illness? J. Neurol. Neurosurg. Psychiatry, 2012, 83(5), 495-502.
[64]
Baud, V.; Karin, M.; Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol., 2001, 11, 372-377.
[65]
Alshammari, M.A.; Khan, M.R.; Majid Mahmood, H.; Alshehri, A.O.; Alasmari, F.F.; Alqahtani, F.M.; Alasmari, A.F.; Alsharari, S.D.; Alhossan, A.; Ahmad, S.F.; Nadeem, A.; Alshammari, T.K. Systemic TNF-α blockade attenuates anxiety and depressive-like behaviors in db/db mice through downregulation of inflammatory signaling in peripheral immune cells. Saudi Pharm. J., 2020, 28(5), 621-629.
[http://dx.doi.org/10.1016/j.jsps.2020.04.001 ] [PMID: 32435144]
[66]
Uzzan, S.; Azab, A.N. Anti-TNF- α compounds as a treatment for depression. Molecules, 2021, 26(8), 2368.
[67]
Ting, Y-C.; Yang, A.C.; Tsai, S-J. Molecular sciences role of interleukin-6 in depressive disorder. Int. J. Mol. Sci., 2020, 21(6), 1-22.
[http://dx.doi.org/10.3390/ijms21062194]
[68]
Jones, M.E.; Lebonville, C.L.; Barrus, D.; Lysle, D.T. The role of brain interleukin-1 in stress-enhanced fear learning. Neuropsychopharmacology, 2015, 40(5), 1289-1296.
[http://dx.doi.org/10.1038/npp.2014.317 ] [PMID: 25430780]
[69]
Rossi, S.; Sacchetti, L.; Napolitano, F.; De Chiara, V.; Motta, C.; Studer, V.; Musella, A.; Barbieri, F.; Bari, M.; Bernardi, G.; Maccarrone, M.; Usiello, A.; Centonze, D. Interleukin-1β causes anxiety by interacting with the endocannabinoid system. J. Neurosci., 2012, 32(40), 13896-13905.
[http://dx.doi.org/10.1523/JNEUROSCI.1515-12.2012 ] [PMID: 23035099]
[70]
Rangel, M.P.; de Mello, J.C.P.; Audi, E.A. Evaluation of neurotransmitters involved in the anxiolytic and panicolytic effect of the aque-ous fraction of Paullinia cupana (guaraná) in elevated T maze. Rev. Bras. Farmacogn., 2013, 23(2), 358-365.
[http://dx.doi.org/10.1590/S0102-695X2013005000024]
[71]
Hansen, K.B.; Yi, F.; Perszyk, R.E.; Furukawa, H.; Wollmuth, L.P.; Gibb, A.J.; Traynelis, S.F. Structure, function, and allosteric modula-tion of NMDA receptors. J. Gen. Physiol., 2018, 150(8), 1081-1105.
[http://dx.doi.org/10.1085/jgp.201812032 ] [PMID: 30037851]
[72]
Lee, C.H.; Lü, W.; Michel, J.C.; Goehring, A.; Du, J.; Song, X.; Gouaux, E. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature, 2014, 511(7508), 191-197.
[http://dx.doi.org/10.1038/nature13548 ] [PMID: 25008524]
[73]
Niciu, M.J.; Henter, I.D.; Luckenbaugh, D.A.; Zarate, C.A., Jr; Charney, D.S. Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: Ketamine and other compounds. Annu. Rev. Pharmacol. Toxicol., 2014, 54(1), 119-139.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135950 ] [PMID: 24392693]
[74]
Zorumski, C.F.; Izumi, Y.; Mennerick, S. Ketamine: NMDA receptors and beyond. J. Neurosci., 2016, 36(44), 11158-11164.
[http://dx.doi.org/10.1523/JNEUROSCI.1547-16.2016 ] [PMID: 27807158]
[75]
Barkus, C.; McHugh, S.B.; Sprengel, R.; Seeburg, P.H.; Rawlins, J.N.P.; Bannerman, D.M. Hippocampal NMDA receptors and anxiety: At the interface between cognition and emotion. Eur. J. Pharmacol., 2010, 626(1), 49-56.
[http://dx.doi.org/10.1016/j.ejphar.2009.10.014 ] [PMID: 19836379]
[76]
Amidfar, M.; Woelfer, M.; Réus, G.Z.; Quevedo, J.; Walter, M.; Kim, Y.K. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 94, 109668.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109668 ] [PMID: 31207274]
[77]
Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat. Med., 2016, 22(3), 238-249.
[http://dx.doi.org/10.1038/nm.4050 ] [PMID: 26937618]
[78]
Duman, R.S.; Li, N.; Liu, R.J.; Duric, V.; Aghajanian, G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology, 2012, 62(1), 35-41.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.044 ] [PMID: 21907221]
[79]
Duman, R.S.; Li, N. A neurotrophic hypothesis of depression : Role of synaptogenesis in the actions of NMDA receptor antagonists. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 367, 2475-2484.
[80]
López, V.; Nielsen, B.; Solas, M.; Ramírez, M.J.; Jäger, A.K. Exploring pharmacological mechanisms of lavender (Lavandula angustifo-lia) essential oil on central nervous system targets. Front. Pharmacol., 2017, 8, 280.
[http://dx.doi.org/10.3389/fphar.2017.00280 ] [PMID: 28579958]
[81]
Pourtaqi, N.; Imenshahidi, M.; Razavi, B.M.; Hosseinzadeh, H. Effect of linalool on the acquisition and reinstatement of morphine-induced conditioned place preference in mice. Avicenna J. Phytomed., 2017, 7(3), 242-249.
[PMID: 28748171]
[82]
Stepanenko, Y.D.; Boikov, S.I.; Sibarov, D.A.; Abushik, P.A.; Vanchakova, N.P.; Belinskaia, D.; Shestakova, N.N.; Antonov, S.M. Dual action of amitriptyline on NMDA receptors: Enhancement of Ca-dependent desensitization and trapping channel block. Sci. Rep., 2019, 9(1), 19454.
[http://dx.doi.org/10.1038/s41598-019-56072-z ] [PMID: 31857688]
[83]
Sibarov, D.A.; Giniatullin, R.; Antonov, S.M. High sensitivity of cerebellar neurons to homocysteine is determined by expression of GluN2C and GluN2D subunits of NMDA receptors. Biochem. Biophys. Res. Commun., 2018, 506(3), 648-652.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.140 ] [PMID: 30454701]
[84]
Volkmann, R.A.; Fanger, C.M.; Anderson, D.R.; Sirivolu, V.R.; Paschetto, K.; Gordon, E.; Virginio, C.; Gleyzes, M.; Buisson, B.; Steidl, E.; Mierau, S.B.; Fagiolini, M.; Menniti, F.S. MPX-004 and MPX-007: New pharmacological tools to study the physiology of nmda re-ceptors containing the GluN2A subunit. PLoS One, 2016, 11(2), e0148129.
[http://dx.doi.org/10.1371/journal.pone.0148129 ] [PMID: 26829109]
[85]
Edman, S.; McKay, S.; Macdonald, L.J.; Samadi, M.; Livesey, M.R.; Hardingham, G.E.; Wyllie, D.J.A. TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner. Neuropharmacology, 2012, 63(3), 441-449.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.027 ] [PMID: 22579927]
[86]
Hasbi, A.; Perreault, M.L.; Shen, M.Y.F.; Zhang, L.; To, R.; Fan, T.; Nguyen, T.; Ji, X.; O’Dowd, B.F.; George, S.R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: Effective selective antagonism. FASEB J., 2014, 28(11), 4806-4820.
[http://dx.doi.org/10.1096/fj.14-254037 ] [PMID: 25063849]
[87]
Shen, M.Y.F.; Perreault, M.L.; Bambico, F.R.; Jones-Tabah, J.; Cheung, M.; Fan, T.; Nobrega, J.N.; George, S.R. Rapid anti-depressant and anxiolytic actions following dopamine D1-D2 receptor heteromer inactivation. Eur. Neuropsychopharmacol., 2015, 25(12), 2437-2448.
[http://dx.doi.org/10.1016/j.euroneuro.2015.09.004 ] [PMID: 26431907]
[88]
Perreault, M.L.; Hasbi, A.; O’Dowd, B.F.; George, S.R. Heteromeric dopamine receptor signaling complexes: Emerging neurobiology and disease relevance. Neuropsychopharmacology, 2014, 39(1), 156-168.
[http://dx.doi.org/10.1038/npp.2013.148 ] [PMID: 23774533]
[89]
Mańko, M.; Geracitano, R.; Capogna, M. Functional connectivity of the main intercalated nucleus of the mouse amygdala. J. Physiol., 2011, 589(Pt 8), 1911-1925.
[http://dx.doi.org/10.1113/jphysiol.2010.201475 ] [PMID: 21224220]
[90]
Pavlova, I.V.; Rysakova, M.P.; Sergeeva, M.I. Effects of blockade of D1 and D2 receptors in the basolateral amygdala on the behavior of rats with high and low levels of anxiety and fear. Neurosci. Behav. Physiol., 2016, 46(9), 1-11.
[http://dx.doi.org/10.1007/s11055-016-0352-4]
[91]
Russo, S.J.; Nestler, E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci., 2013, 14(9), 609-625.
[http://dx.doi.org/10.1038/nrn3381 ] [PMID: 23942470]
[92]
Duman, R.S.; Voleti, B. Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents. Trends Neurosci., 2012, 35(1), 47-56.
[http://dx.doi.org/10.1016/j.tins.2011.11.004 ] [PMID: 22217452]
[93]
Hasbi, A.; Nguyen, T.; Rahal, H.; Manduca, J.D.; Miksys, S.; Tyndale, R.F.; Madras, B.K.; Perreault, M.L.; George, S.R. Sex difference in dopamine D1-D2 receptor complex expression and signaling affects depression- and anxiety-like behaviors. Biol. Sex Differ., 2020, 11(1), 8.
[http://dx.doi.org/10.1186/s13293-020-00285-9 ] [PMID: 32087746]
[94]
Gilsbach, R.; Hein, L. Are the pharmacology and physiology of α₂ adrenoceptors determined by α₂-heteroreceptors and autoreceptors respectively? Br. J. Pharmacol., 2012, 165(1), 90-102.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01533.x ] [PMID: 21658028]
[95]
Uys, M.M.; Shahid, M.; Harvey, B.H. Therapeutic potential of selectively targeting the α2c-adrenoceptor in cognition, depression, and schizophrenia-new developments and future perspective. Front. Psychiatry, 2017, 8, 144.
[http://dx.doi.org/10.3389/fpsyt.2017.00144 ] [PMID: 28855875]
[96]
Pertovaara, A. The noradrenergic pain regulation system: A potential target for pain therapy. Eur. J. Pharmacol., 2013, 716(1-3), 2-7.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.067 ] [PMID: 23500194]
[97]
Höcker, J.; Weber, B.; Tonner, P.H.; Scholz, J.; Brand, P.A.; Ohnesorge, H.; Bein, B. Meperidine, remifentanil and tramadol but not sufentanil interact with A2-adrenoceptors in A2A-, A2B- and A2C-adrenoceptor knock out mice brain. Eur. J. Pharmacol., 2008, 582, 70-77.
[http://dx.doi.org/10.1016/j.ejphar.2007.12.022 ] [PMID: 18234187]
[98]
Millan, M.J. Evidence that an alpha 2A-adrenoceptor subtype mediates antinociception in mice. Eur. J. Pharmacol., 1992, 215(2-3), 355-356.
[http://dx.doi.org/10.1016/0014-2999(92)90059-D ] [PMID: 1356794]
[99]
Balogh, B.; Szilágyi, A.; Gyires, K.; Bylund, D.B.; Mátyus, P. Molecular modelling of subtypes (A2A, A2B and A2C) of A2-adrenoceptors: A comparative study. Neurochem. Int., 2009, 55, 355-361.
[http://dx.doi.org/10.1016/j.neuint.2009.05.004 ] [PMID: 19447153]
[100]
Ostopovici-Halip, L.; Curpăn, R.; Mracec, M.; Bologa, C.G. Structural determinants of the alpha2 adrenoceptor subtype selectivity. J. Mol. Graph. Model., 2011, 29(8), 1030-1038.
[http://dx.doi.org/10.1016/j.jmgm.2011.04.011 ] [PMID: 21602069]
[101]
Diamanti, E.; Del Bello, F.; Carbonara, G.; Carrieri, A.; Fracchiolla, G.; Giannella, M.; Mammoli, V.; Piergentili, A.; Pohjanoksa, K.; Quaglia, W.; Scheinin, M.; Pigini, M. Might the observed α(2A)-adrenoreceptor agonism or antagonism of allyphenyline analogues be as-cribed to different molecular conformations? Bioorg. Med. Chem., 2012, 20(6), 2082-2090.
[http://dx.doi.org/10.1016/j.bmc.2012.01.035 ] [PMID: 22341244]
[102]
Sharp, T.; Cowen, P.J. 5-HT and depression: Is the glass half-full? Curr. Opin. Pharmacol., 2011, 11(1), 45-51.
[http://dx.doi.org/10.1016/j.coph.2011.02.003 ] [PMID: 21377932]
[103]
Action, A.; Serotonin, I.S.; Relevant, S.; An, T.O.; Depression, U.O.F. What has serotonin to do with depression. World Psychiatry, 2015, 14(2), 158-160.
[104]
Moret, C. Importance of norepinephrine in depression. Neuropsychiatr. Dis. Treat., 2011, 7, 9-13.
[105]
Sørensen, L.; Andersen, J.; Thomsen, M.; Hansen, S.M.R.; Zhao, X.; Sandelin, A.; Strømgaard, K.; Kristensen, A.S. Interaction of anti-depressants with the serotonin and norepinephrine transporters. J. Biol. Chem., 2012, 287, 43694-43707.
[106]
Andersen, J.; Taboureau, O.; Hansen, K.B.; Olsen, L.; Egebjerg, J.; Strømgaard, K.; Kristensen, A.S. Location of the antidepressant bind-ing site in the serotonin transporter importance of SER-438 in recognition of citalopram and tricyclic. J. Biol. Chem., 2009, 284, 10276-10284.
[107]
Sinning, S.; Musgaard, M.; Jensen, M.; Severinsen, K.; Celik, L.; Koldsø, H.; Meyer, T.; Bols, M.; Jensen, H.H.; Schiøtt, B.; Wiborg, O. Binding and orientation of tricyclic antidepressants within the central substrate site of the human serotonin. JBC, 2010, 285, 8363-8374.
[http://dx.doi.org/10.1074/jbc.M109.045401]
[108]
Pellow, S.; File, S.E. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmacol. Biochem. Behav., 1986, 24(3), 525-529.
[http://dx.doi.org/10.1016/0091-3057(86)90552-6 ] [PMID: 2871560]
[109]
Archer, J. Tests for emotionality in rats and mice: A review. Anim. Behav., 1973, 21(2), 205-235.
[http://dx.doi.org/10.1016/S0003-3472(73)80065-X ] [PMID: 4578750]
[110]
Pultrini, A.M.; Galindo, L.A.; Costa, M. Effects of the essential oil from Citrus aurantium L. in experimental anxiety models in mice. Life Sci., 2006, 78(15), 1720-1725.
[http://dx.doi.org/10.1016/j.lfs.2005.08.004 ] [PMID: 16253279]
[111]
Dunham, N.W.; Miya, T.S. A note on a simple apparatus for detecting neurological deficit in rats and mice. J. Am. Pharm. Assoc. Am. Pharm. Assoc. (Baltim), 1957, 46, 208-209.
[http://dx.doi.org/10.1002/jps.3030460322]
[112]
Can, A.; Dao, D.T.; Arad, M.; Terrillion, C.E.; Piantadosi, S.C.; Gould, T.D. The mouse forced swim test. J. Vis. Exp., 2012, 59, e3638.
[PMID: 22314943]
[113]
Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The protein data bank: A computer-based archival file for macromolecular structures. Arch. Biochem. Biophys., 1978, 185(2), 584-591.
[http://dx.doi.org/10.1016/0003-9861(78)90204-7 ] [PMID: 626512]
[114]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427 ] [PMID: 29788355]
[115]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[116]
Lovell, S.C.; Davis, I.W.; Adrendall, W.B.; de Bakker, P.I.W.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 2003, 50(3), 437-450.
[117]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58, 9, 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104 ] [PMID: 25860834]
[118]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717 ] [PMID: 28256516]
[119]
Lapczynski, A.; Foxenberg, R.J.; Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance material review on tetrahydrolinalool. Food Chem. Toxicol., 2008, 46(Suppl. 11), S286-S288.
[http://dx.doi.org/10.1016/j.fct.2008.06.076 ] [PMID: 18640232]
[120]
de Almeida, A.A.C.; Costa, J.P.; de Carvalho, R.B.F.; de Sousa, D.P.; de Freitas, R.M. Evaluation of acute toxicity of a natural compound (+)-limonene epoxide and its anxiolytic-like action. Brain Res., 2012, 1448, 56-62.
[http://dx.doi.org/10.1016/j.brainres.2012.01.070 ] [PMID: 22364736]
[121]
Guzmán-Gutiérrez, S.L.; Gómez-Cansino, R.; García-Zebadúa, J.C.; Jiménez-Pérez, N.C.; Reyes-Chilpa, R. Antidepressant activity of Litsea glaucescens essential oil: Identification of β-pinene and linalool as active principles. J. Ethnopharmacol., 2012, 143(2), 673-679.
[http://dx.doi.org/10.1016/j.jep.2012.07.026 ] [PMID: 22867633]
[122]
Umezu, T.; Nagano, K.; Ito, H.; Kosakai, K.; Sakaniwa, M.; Morita, M. Anticonflict effects of lavender oil and identification of its active constituents. Pharmacol. Biochem. Behav., 2006, 85(4), 713-721.
[http://dx.doi.org/10.1016/j.pbb.2006.10.026 ] [PMID: 17173962]
[123]
Mori, T.; Shibasaki, M.; Ogawa, Y.; Hokazono, M.; Wang, T.C.; Rahmadi, M.; Suzuki, T. Comparison of the behavioral effects of bu-propion and psychostimulants. Eur. J. Pharmacol., 2013, 718(1-3), 370-375.
[http://dx.doi.org/10.1016/j.ejphar.2013.07.046 ] [PMID: 23993950]
[124]
Nielsen, J.A.; Shannon, N.J.; Bero, L.; Moore, K.E. Effects of acute and chronic bupropion on locomotor activity and dopaminergic neurons. Pharmacol. Biochem. Behav., 1986, 24(4), 795-799.
[http://dx.doi.org/10.1016/0091-3057(86)90413-2 ] [PMID: 3086903]
[125]
Rauhut, A.S.; Hawrylak, M.; Mardekian, S.K. Bupropion differentially alters the aversive, locomotor and rewarding properties of nico-tine in CD-1 mice. Pharmacol. Biochem. Behav., 2008, 90(4), 598-607.
[http://dx.doi.org/10.1016/j.pbb.2008.05.002 ] [PMID: 18556053]
[126]
Oil, L. Evaluation of motor coordination and antidepressant activities of Cinnamomum osmophloeum Ct. linalool leaf oil in rodent model. Molecules, 2021, 26(10), 3037.
[127]
Souto-Maior, F.N.; Fonsêca, D.V.; Salgado, P.R.R.; Monte, L.O.; de Sousa, D.P.; de Almeida, R.N. Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide. Pharm. Biol., 2017, 55(1), 63-67.
[http://dx.doi.org/10.1080/13880209.2016.1228682 ] [PMID: 27622736]
[128]
Lader, M.H. Limitations on the use of benzodiazepines in anxiety and insomnia: Are they justified? Eur. Neuropsychopharmacol., 1999, 9(Suppl. 6), S399-S405.
[http://dx.doi.org/10.1016/S0924-977X(99)00051-6 ] [PMID: 10622686]
[129]
Prevot, T.D.; Li, G.; Vidojevic, A.; Misquitta, K.A.; Fee, C.; Santrac, A.; Knutson, D.E.; Stephen, M.R.; Kodali, R.; Zahn, N.M.; Arnold, L.A.; Scholze, P.; Fisher, J.L.; Marković, B.D.; Banasr, M.; Cook, J.M.; Savic, M.; Sibille, E. Novel benzodiazepine-like ligands with var-ious anxiolytic, antidepressant, or pro-cognitive profiles. Mol. Neuropsychiatry, 2019, 5(2), 84-97.
[http://dx.doi.org/10.1159/000496086 ] [PMID: 31192221]
[130]
Yuen, E.; Swanson, S.; Witkin, J.M. Prediction of human efficacious antidepressant doses using the mouse forced swim test. Pharmacol. Biochem. Behav., 2017, 161, 22-29.
[http://dx.doi.org/10.1016/j.pbb.2017.09.002 ] [PMID: 28888484]
[131]
Kalueff, A.V.; Tuohimaa, P. Experimental modeling of anxiety and depression. Acta Neurobiol. Exp. (Warsz.), 2004, 64(4), 439-448.
[PMID: 15586660]
[132]
Rizvi, S.J.; Pizzagalli, D.A.; Sproule, B.A.; Kennedy, S.H. Assessing anhedonia in depression: Potentials and pitfalls. Neurosci. Biobehav. Rev., 2016, 65, 21-35.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.004 ] [PMID: 26959336]
[133]
McMakin, D.L.; Olino, T.M.; Porta, G.; Dietz, L.J.; Emslie, G.; Clarke, G.; Wagner, K.D.; Asarnow, J.R.; Ryan, N.D.; Birmaher, B.; Shamseddeen, W.; Mayes, T.; Kennard, B.; Spirito, A.; Keller, M.; Lynch, F.L.; Dickerson, J.F.; Brent, D.A. Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment-resistant depression. J. Am. Acad. Child Adolesc. Psychiatry, 2012, 51(4), 404-411.
[http://dx.doi.org/10.1016/j.jaac.2012.01.011 ] [PMID: 22449646]
[134]
Uher, R.; Perlis, R.H.; Henigsberg, N.; Zobel, A.; Rietschel, M.; Mors, O.; Hauser, J.; Dernovsek, M.Z.; Souery, D.; Bajs, M.; Maier, W.; Aitchison, K.J.; Farmer, A.; McGuffin, P. Depression symptom dimensions as predictors of antidepressant treatment outcome: Replica-ble evidence for interest-activity symptoms. Psychol. Med., 2012, 42(5), 967-980.
[http://dx.doi.org/10.1017/S0033291711001905 ] [PMID: 21929846]
[135]
Müller, W.E.; Sillani, G.; Schuwald, A.; Friedland, K. Pharmacological basis of the anxiolytic and antidepressant properties of Silexan®, an essential oil from the flowers of lavender. Neurochem. Int., 2021, 143, 104899.
[http://dx.doi.org/10.1016/j.neuint.2020.104899 ] [PMID: 33181239]
[136]
Kasper, S.; Gastpar, M.; Müller, W.E.; Volz, H.P.; Möller, H.J.; Dienel, A.; Schläfke, S. Silexan, an orally administered Lavandula oil preparation, is effective in the treatment of ‘subsyndromal’ anxiety disorder: A randomized, double-blind, placebo controlled trial. Int. Clin. Psychopharmacol., 2010, 25(5), 277-287.
[http://dx.doi.org/10.1097/YIC.0b013e32833b3242 ] [PMID: 20512042]
[137]
Sartori, D.P.; Oliveira, N.F.; Valentim, J.T.; Silva, D.M.A.; Mallman, A.S.V.; Oliveira, I.C.M.; Chaves, R.C.; Capibaribe, V.C.; Carvalho, A.M.R.; Rebouças, M.O.; Macedo, D.S.; Chaves Filho, A.J.M.; Fonteles, M.M.F.; Gutierrez, S.J.C.; Barbosa-Filho, J.M.; Mottin, M.; An-drade, C.H.; Sousa, F.C.F. Involvement of monoaminergic targets in the antidepressant- and anxiolytic-like effects of the synthetic alka-mide riparin IV: Elucidation of further mechanisms through pharmacological, neurochemistry and computational approaches. Behav. Brain Res., 2020, 383, 112487.
[http://dx.doi.org/10.1016/j.bbr.2020.112487 ] [PMID: 31987932]
[138]
da Silva Calixto, P.; de Almeida, R.N.; Stiebbe Salvadori, M.G.S.; Dos Santos Maia, M.; Filho, J.M.B.; Scotti, M.T.; Scotti, L. In silico study examining new phenylpropanoids targets with antidepressant activity. Curr. Drug Targets, 2021, 22(5), 539-554.
[http://dx.doi.org/10.2174/1389450121666200902171838 ] [PMID: 32881667]
[139]
Isyaku, Y.; Uzairu, A.; Uba, S. Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon, 2020, 6(4), e03724.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03724 ] [PMID: 32322718]
[140]
Wang, Y.; Liu, H.; Fan, Y.; Chen, X.; Yang, Y.; Zhu, L.; Zhao, J.; Chen, Y.; Zhang, Y. In silico prediction of human intravenous pharma-cokinetic parameters with improved accuracy. J. Chem. Inf. Model., 2019, 59(9), 3968-3980.
[http://dx.doi.org/10.1021/acs.jcim.9b00300 ] [PMID: 31403793]
[141]
Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182 ] [PMID: 27218427]
[142]
Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42, W32-8.
[http://dx.doi.org/10.1093/nar/gku293 ] [PMID: 24792161]
[143]
Mohamed, A.A.; El-Kadi, A. P-Glycoprotein effects on drugs pharmacokinetics and drug-drug- interactions and their clinical implica-tions. Libyan J. Pharm. Clin. Pharmacol., 2012, 1, 48154.
[144]
Mealey, K.L.; Waiting, D.; Raunig, D.L.; Schmidt, K.R.; Nelson, F.R. Oral bioavailability of P-glycoprotein substrate drugs do not differ between ABCB1-1Δ and ABCB1 wild type dogs. J. Vet. Pharmacol. Ther., 2010, 33(5), 453-460.
[http://dx.doi.org/10.1111/j.1365-2885.2010.01170.x ] [PMID: 20840389]
[145]
Silva, P.; de Almeida, M.; Silva, J.; Albino, S.; Espírito-Santo, R.; Lima, M.; Villarreal, C.; Moura, R.; Santos, V. (E)-2-Cyano-3-(1H-Indol-3-yl)-N-Phenylacrylamide, a hybrid compound derived from indomethacin and paracetamol: Design, synthesis and evaluation of the anti-inflammatory potential. Int. J. Mol. Sci., 2020, 21(7), 1-17.
[http://dx.doi.org/10.3390/ijms21072591 ] [PMID: 32276463]
[146]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting small-molecule pharmacokinetic properties using graph-based signatures (Theory- how to enterpret pkcsm result). J. Med. Chem., 2015, 58(9), 4066-4072.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy