Open Access Journals Promotions 2
Abstract

Background: Microbial resistance has become a worldwide public health problem and may lead to morbidity and mortality in affected patients.

Objectives: Therefore, this work aimed to evaluate the antibacterial activity of quinone-4- oxoquinoline derivatives.

Methods: These derivatives were evaluated against Gram-positive and Gram-negative bacteria by their antibacterial activity, anti-biofilm, and hemolytic activities and in silico assays.

Results: The quinone-4-oxoquinoline derivatives presented broad-spectrum antibacterial activities and, in some cases, were more active than commercially available reference drugs. These compounds also inhibited bacterial adhesion, and the assays revealed seven non-hemolytic derivatives. The derivatives seem to cause damage to the bacterial cell membrane, and those containing the carboxyl group at the C-3 position of the 4-quinolonic nucleus were more active than those containing a carboxyethyl group.

Conclusion: The isoquinoline-5,8-dione nucleus also favored antimicrobial activity. The study showed that the target of the derivatives must be a non-conventional hydrophobic allosteric binding pocket on the DNA gyrase enzyme.

Keywords: Drug resistance, Antibacterial agents, Quinone derivatives, 4-Oxoquinolines, Gram-positive bacterial infections, Gram-negative bacterial infections.

Graphical Abstract
[1]
Naeem, A.; Badshah, S.L.; Muska, M.; Ahmad, N.; Khan, K. The current case of quinolones: Synthetic approaches and antibacterial activity. Molecules, 2016, 21(4), 268.
[http://dx.doi.org/10.3390/molecules21040268] [PMID: 27043501]
[2]
Reiter, J.; Hübbers, A.M.; Albrecht, F.; Leichert, L.I.O.; Slusarenko, A.J. Allicin, a natural antimicrobial defence substance from garlic, inhibits DNA gyrase activity in bacteria. Int. J. Med. Microbiol., 2020, 310(1), 151359.
[http://dx.doi.org/10.1016/j.ijmm.2019.151359] [PMID: 31585716]
[3]
Upadhyay, H.C. Coumarin-1,2,3-triazole hybrid molecules: An emerging scaffold for combating drug resistance. Curr. Top. Med. Chem., 2021, 21(8), 737-752.
[http://dx.doi.org/10.2174/1568026621666210303145759] [PMID: 33655863]
[4]
Abushaheen, M.A.; Muzaheed, A.J.; Fatani, A.J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D.D.; Jhugroo, C.; Vellappally, S.; Khan, A.A.; Shaik, J.; Jhugroo, P. Antimicrobial resistance, mechanisms and its clinical significance. Dis. Mon., 2020, 66(6), 100971.
[http://dx.doi.org/10.1016/j.disamonth.2020.100971] [PMID: 32201008]
[5]
CDC. Antibiotic resistance threats in the United States 2019 Available from, https://www.cdc.gov/drugresistance/biggest-threats.html
[6]
Durand, G.A.; Raoult, D.; Dubourg, G. Antibiotic discovery: History, methods and perspectives. Int. J. Antimicrob. Agents, 2019, 53(4), 371-382.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.11.010] [PMID: 30472287]
[7]
Pancek, A.; Smekalova, M.; Vecrova, R.; Bogdanov1, K.; Roderova, M.; Kolar M.; Kilianova, M.; Hradilova, S.; Froning, J.P.; Havr-dova, M.; Prucek, R.; Zboril, R.; Kvitek, L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf. B Biointerfaces, 2016, 142, 392-399.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.007] [PMID: 26970828]
[8]
Wang, M.; Gao, R.; Zheng, M.; Sang, P.; Li, C.; Zhang, E.; Li, Q.; Cai, J. Development of Bis-cyclic Imidazolidine-4-one derivatives as potent antibacterial agents. J. Med. Chem., 2020, 63(24), 15591-15602.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00171] [PMID: 32914977]
[9]
Guan, Q.; Bhowmick, B.; Upadhyay, A.; Han, Q. Structure and functions of bacterial outer membrane Protein A, A potential therapeutic target for bacterial infection. Curr. Top. Med. Chem., 2021, 21(13), 1129-1138.
[http://dx.doi.org/10.2174/1568026621666210705164319] [PMID: 34225622]
[10]
Bianco, A.; Capano, M.S.; Mascaro, V.; Pileggi, C.; Pavia, M. Prospective surveillance of healthcare-associated infections and patterns of antimicrobial resistance of pathogens in an Italian intensive care unit. Antimicrob. Resist. Infect. Control, 2018, 7(1), 48.
[http://dx.doi.org/10.1186/s13756-018-0337-x] [PMID: 29636910]
[11]
Viderman, D.; Brotfain, E.; Khamzina, Y.; Kapanova, G.; Zhumadilov, A.; Poddighe, D. Bacterial resistance in the intensive care unit of developing countries: Report from a tertiary hospital in Kazakhstan. J. Glob. Antimicrob. Resist., 2019, 17, 35-38.
[http://dx.doi.org/10.1016/j.jgar.2018.11.010] [PMID: 30448518]
[12]
Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist., 2015, 8, 49-61.
[http://dx.doi.org/10.2147/IDR.S55778] [PMID: 25878509]
[13]
Felix, A.L.M.; Medeiros, I.L.; Medeiros, F.D. Allium Sativum: Uma Nova Abordagem Frente a Resistência Microbiana: Uma Revisão. Bases Conceituais Da Saúde, 2019, 7, 107-112.
[http://dx.doi.org/10.22533/at.ed.38119150213]
[14]
Guimarães, D.O.; Da Silva Momesso, L.; Pupo, M.T. Antibiticos: Importância terapêutica e perspectivas para a descoberta e desenvol-vimento de novos agentes. Quim. Nova, 2010, 33(3), 667-679.
[http://dx.doi.org/10.1590/S0100-40422010000300035]
[15]
Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heuer, O.E.; Kahlmeter, G.; Kruse, H.; Laxminarayan, R.; Liebana, E.; Lopez-Cerero, L.; MacGowan, A.; Martins, M.; Rodrguez-Bano, J.; Rolain, J.M.; Segovia, C.; Sigauque, B.; Tacconelli, E.; Wellington, E.; Vila, J. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect., 2015, 6, 22-29.
[http://dx.doi.org/10.1016/j.nmni.2015.02.007] [PMID: 26029375]
[16]
Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology, 2017, 15(1), 65.
[http://dx.doi.org/10.1186/s12951-017-0308-z] [PMID: 28974225]
[17]
Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial resistance in veterinary medicine: An overview. Int. J. Mol. Sci., 2020, 21(6), 1-21.
[http://dx.doi.org/10.3390/ijms21061914] [PMID: 32168903]
[18]
Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Heal., 2021, 3, 32-38.
[http://dx.doi.org/10.1016/j.bsheal.2020.09.004]
[19]
Ladha, G.; Jeevaratnam, K. A novel antibacterial compound produced by Lactobacillus plantarum LJR13 isolated from rumen liquor of goat effectively controls multi-drug resistant human pathogens. Microbiol. Res., 2020, 241, 126563.
[http://dx.doi.org/10.1016/j.micres.2020.126563] [PMID: 32798979]
[20]
Moshafi, M.H.; Bahador, N.; Moghimi, S.; Ejtemaei, R.; Foroumadi, A.; Asadipour, A. Novel levofloxacin derivatives as potent antibac-terial agents. J. Sci. Islam. Repub. Iran., 2017, 28, 127-131.
[21]
Lopez Lopez, L.I.; Nery Flores, S.D.; Silva Belmares, S.Y.; Senz Galindo, A. Naphthoquinones: Biological properties and synthesis of lawsone and derivatives — a structured review. Vitae., 2014, 21, 248-258.
[22]
Novais, J.S.; Moreira, C.S.; Silva, A.C.J.A.; Loureiro, R.S.; S Figueiredo, A.M.; Ferreira, V.F.; Castro, H.C.; da Rocha, D.R. Antibacterial naphthoquinone derivatives targeting resistant strain Gram-negative bacteria in biofilms. Microb. Pathog., 2018, 118, 105-114.
[http://dx.doi.org/10.1016/j.micpath.2018.03.024] [PMID: 29550501]
[23]
Ramos-Peralta, L.; Lopez-Lopez, L.I.; Silva-Belmares, S.Y.; Zugasti-Cruz, A.; Rodriguez-Herrera, C.N.; Anguilar-Gonzalez, N. Naphtho-quinone: Bioactivity and green synthesis; Basic Sci. Technol. Adv. Educ. Programs, 2015, pp. 542-550.
[24]
Rau, G.; Cretu, F.M.; Berbecaru-Iovan, A.; Stanciulescu, C.E.; Andrei, A.M.; Mogosanu, G.D.; Balasoiu, M.; Banita I.M.; Pisoschi, C.G. Screening of thioalkanoic substituted 1,4-naphthoquinones as potent antimicrobial agents. Farmacia, 2016, 64, 876-880.
[25]
Faidallah, H.M.; Girgis, A.S.; Tiwari, A.D.; Honkanadavar, H.H.; Thomas, S.J.; Samir, A.; Kalmouch, A.; Alamry, K.A.; Khan, K.A.; Ibrahim, T.S.; Al-Mahmoudy, A.M.M.; Asiri, A.M.; Panda, S.S. Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. Eur. J. Med. Chem., 2018, 143, 1524-1534.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.042] [PMID: 29126731]
[26]
Hu, Y.Q.; Zhang, S.; Xu, Z.; Lv, Z.S.; Liu, M.L.; Feng, L.S. 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem., 2017, 141, 335-345.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.050] [PMID: 29031077]
[27]
Rameshkumar, N.; Ashokkumar, M.; Subramanian, E.H.; Ilavarasan, R.; Sridhar, S.K. Synthesis of 6-fluoro-1,4-dihydro-4-oxo-quinoline-3-carboxylic acid derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2003, 38(11-12), 1001-1004.
[http://dx.doi.org/10.1016/S0223-5234(03)00151-X] [PMID: 14642332]
[28]
de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A compre-hensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem., 2018, 150, 920-929.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[29]
Graham, J.C.; Rodas, M.; Hillegass, J.; Schulze, G. The performance, reliability and potential application of in silico models for predicting the acute oral toxicity of pharmaceutical compounds. Regul. Toxicol. Pharmacol., 2021, 119, 104816.
[http://dx.doi.org/10.1016/j.yrtph.2020.104816] [PMID: 33166621]
[30]
Nascimento Mello, A.L.; Sagrillo, F.S.; de Souza, A.G.; Costa, A.R.P.; Campos, V.R.; Cunha, A.C.; Imbroisi Filho, R.; da Costa Santos Boechat, F.; Sola-Penna, M.; de Souza, M.C.B.V.; Zancan, P. Selective AMPK activator leads to unfolded protein response downregula-tion and induces breast cancer cell death and autophagy. Life Sci., 2021, 276, 119470.
[http://dx.doi.org/10.1016/j.lfs.2021.119470] [PMID: 33831423]
[31]
Costa, M.O.C.; Beltrame, C.O.; Ferreira, F.A.; Botelho, A.M.N.; Lima, N.C.B.; Souza, R.C.; de Almeida, L.G.P.; Vasconcelos, A.T.R.; Nicols, M.F.; Figueiredo, A.M.S. Complete genome sequence of a variant of the methicillin-resistant Staphylococcus aureus ST239 line-age, strain BMB9393, displaying superior ability to accumulate ica-independent biofilm. Genome Announc., 2013, 1(4), 1-2.
[http://dx.doi.org/10.1128/genomeA.00576-13] [PMID: 23929475]
[32]
2015. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. M100-S25, 2015. Available from: . https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf
[33]
Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. M100, 2012. Available from. https://clsi.org/media/1928/m07ed11_sample.pdf
[34]
Ferreira, F.A.; Souza, R.R.; de Sousa Moraes, B.; de Amorim Ferreira, A.M.; Americo, M.A.; Fracalanzza, S.E.L.; Dos Santos Silva Couceiro, J.N.; Sa Figueiredo, A.M. Impact of agr dysfunction on virulence profiles and infections associated with a novel methicillin-resistant Staphylococcus aureus (MRSA) variant of the lineage ST1-SCCmec IV. BMC Microbiol., 2013, 13(1), 93.
[http://dx.doi.org/10.1186/1471-2180-13-93] [PMID: 23622558]
[35]
Parnham, M.J.; Wetzig, H. Toxicity screening of liposomes. Chem. Phys. Lipids, 1993, 64(1-3), 263-274.
[http://dx.doi.org/10.1016/0009-3084(93)90070-J] [PMID: 8242838]
[36]
Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. Fischer-2003-in vitro cytotoxicit. 2003, 24, 1121-1131..
[37]
Zhou, K.; Zhou, W.; Li, P.; Liu, G.; Zhang, J.; Dai, Y. Mode of action of pentocin 31-1: An antilisteria bacteriocin produced by Lactoba-cillus pentosus from Chinese traditional ham. Food Control, 2008, 19(8), 817-822.
[http://dx.doi.org/10.1016/j.foodcont.2007.08.008]
[38]
Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol., 2010, 130(1), 107-115.
[http://dx.doi.org/10.1016/j.jep.2010.04.025] [PMID: 20435121]
[39]
Masiyk, M.; Janeczko, M.; Martyna, A.; Czernik, S.; Tokarska-Rodak, M.; Chwedczuk, M.; Foll-Josselin, B.; Ruchaud, S.; Bach, S.; Demchuk, O.M.; Kubinski, K. The anti-Candida albicans agent 4-AN inhibits multiple protein kinases. Molecules, 2019, 24(1), 1-12.
[http://dx.doi.org/10.3390/molecules24010153] [PMID: 30609757]
[40]
Privat, C.; Granadino-Roldan, J.M.; Bonet, J.; Tomas, M.S.; Perez, J.J.; Rubio-Martinez, J. Fragment dissolved molecular dynamics: A systematic and efficient method to locate binding sites. Phys. Chem. Chem. Phys., 2021, 4, 1-12.
[41]
Lauderdale, W.J.; Stanton, J.F.; Gauss, J.; Watts, J.D.; Bartlett, R.J. Many-body perturbation theory with a restricted open-shell Hartree-Fock reference. Chem. Phys. Lett., 1991, 187(1-2), 21-28.
[http://dx.doi.org/10.1016/0009-2614(91)90478-R]
[42]
Halgren, T.A. Merck molecular force field. J. Comput. Chem., 2000, 17, 490-519.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P]
[43]
Rocha, G.B.; Freire, R.O.; Simas, A.M.; Stewart, J.J.P. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem., 2006, 27(10), 1101-1111.
[http://dx.doi.org/10.1002/jcc.20425] [PMID: 16691568]
[44]
Guvench, O.; MacKerell, A.D., Jr Computational fragment-based binding site identification by ligand competitive saturation. PLOS Comput. Biol., 2009, 5(7), e1000435.
[http://dx.doi.org/10.1371/journal.pcbi.1000435] [PMID: 19593374]
[45]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690 Available from .https://doi.org/https://doi.org/10.1063/1.448118http://dx.doi.org/10.1063/1.448118
[46]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[47]
Perez, J.J.; Tomas, M.S.; Rubio-Martinez, J. Assessment of the sampling performance of multiple-copy dynamics versus a unique trajec-tory. J. Chem. Inf. Model., 2016, 56(10), 1950-1962.
[http://dx.doi.org/10.1021/acs.jcim.6b00347] [PMID: 27599150]
[48]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[49]
Janeczko, M. Kubinski, K.; Martyna, A.; Muzyczka, A.; Boguszewska-Czubara, A.; Czernik, S.; Tokarska-Rodak, M.; Chwedczuk, M.; Demchuk, O.M.; Golczyk, H.; Masiyk, M. 1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit for-mation of hyphae and show no toxicity toward zebrafish embryos. J. Med. Microbiol., 2018, 67(4), 598-609.
[http://dx.doi.org/10.1099/jmm.0.000700] [PMID: 29461185]
[50]
McLellan, R.A.; Drobitch, R.K.; Monshouwer, M.; Renton, K.W. Fluoroquinolone antibiotics inhibit cytochrome P450-mediated micro-somal drug metabolism in rat and human. Drug Metab. Dispos., 1996, 24(10), 1134-1138.
[PMID: 8894516]
[51]
Holden, M.T.G.; Hsu, L.Y.; Kurt, K.; Weinert, L.A.; Mather, A.E.; Harris, S.R.; Strommenger, B.; Layer, F.; Witte, W.; de Lencastre, H.; Skov, R.; Westh, H.; Zemlickova, H.; Coombs, G.; Kearns, A.M.; Hill, R.L.R.; Edgeworth, J.; Gould, I.; Gant, V.; Cooke, J.; Edwards, G.F.; McAdam, P.R.; Templeton, K.E.; McCann, A.; Zhou, Z.; Castillo-Ramrez, S.; Feil, E.J.; Hudson, L.O.; Enright, M.C.; Balloux, F.; Aanensen, D.M.; Spratt, B.G.; Fitzgerald, J.R.; Parkhill, J.; Achtman, M.; Bentley, S.D.; Nübel, U. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res., 2013, 23(4), 653-664.
[http://dx.doi.org/10.1101/gr.147710.112] [PMID: 23299977]
[52]
De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev., 2020, 33(3), e00181-e19.
[http://dx.doi.org/10.1128/CMR.00181-19] [PMID: 32404435]
[53]
Phillips, C.J.; Wells, N.A.; Martinello, M.; Smith, S.; Woodman, R.J.; Gordon, D.L. Optimizing the detection of methicillin-resistant Staphylococcus aureus with elevated vancomycin minimum inhibitory concentrations within the susceptible range. Infect. Drug Resist., 2016, 9, 87-92.
[http://dx.doi.org/10.2147/IDR.S107961] [PMID: 27330319]
[54]
Moreira, C.S.; Silva, A.C.J.A.; Novais, J.S.; Sa Figueiredo, A.M.; Ferreira, V.F.; da Rocha, D.R.; Castro, H.C. Searching for a potential antibacterial lead structure against bacterial biofilms among new naphthoquinone compounds. J. Appl. Microbiol., 2017, 122(3), 651-662.
[http://dx.doi.org/10.1111/jam.13369] [PMID: 27930849]
[55]
Ferretti, M.D.; Neto, A.T.; Morel, A.F.; Kaufman, T.S.; Larghi, E.L. Synthesis of symmetrically substituted 3,3-dibenzyl-4-hydroxy-3,4-dihydro-1H-quinolin-2-ones, as novel quinoline derivatives with antibacterial activity. Eur. J. Med. Chem., 2014, 81, 253-266.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.024] [PMID: 24852274]
[56]
Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents, 2015, 45(6), 568-585.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.03.001] [PMID: 25857949]
[57]
Motbainor, H.; Bereded, F.; Mulu, W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: A cross-sectional study. BMC Infect. Dis., 2020, 20(1), 92.
[http://dx.doi.org/10.1186/s12879-020-4811-8] [PMID: 32000693]
[58]
Moley, J.P.; McGrath, M.S.; Granger, J.F.; Stoodley, P.; Dusane, D.H. Reduction in Pseudomonas aeruginosa and Staphylococcus aureus biofilms from implant materials in a diffusion dominated environment. J. Orthop. Res., 2018, 36(11), 3081-3085.
[http://dx.doi.org/10.1002/jor.24074] [PMID: 29924414]
[59]
Wu, H.; Moser, C.; Wang, H.Z.; Høiby, N.; Song, Z.J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci., 2015, 7(1), 1-7.
[http://dx.doi.org/10.1038/ijos.2014.65] [PMID: 25504208]
[60]
Rineh, A.; Soren, O.; McEwan, T.; Ravikumar, V.; Poh, W.H.; Azamifar, F.; Naimi-Jamal, M.R.; Cheung, C.Y.; Elliott, A.G.; Zuegg, J.; Blaskovich, M.A.T.; Cooper, M.A.; Dolange, V.; Christodoulides, M.; Cook, G.M.; Rice, S.A.; Faust, S.N.; Webb, J.S.; Kelso, M.J.; Cook, G.M.; Rice, S.A.; Rice, S.A.; Rice, S.A.; Faust, S.N.; Faust, S.N.; Faust, S.N.; Webb, J.S.; Webb, J.S.; Webb, J.S.; Kelso, M.J.; Kel-so, M.J. Discovery of cephalosporin-3′-diazeniumdiolates that show dual antibacterial and antibiofilm effects against Pseudomonas ae-ruginosa clinical cystic fibrosis isolates and efficacy in a murine respiratory infection model. ACS Infect. Dis., 2020, 6(6), 1460-1479.
[http://dx.doi.org/10.1021/acsinfecdis.0c00070] [PMID: 32329596]
[61]
Sandri, A.; Haagensen, J.A.J.; Veschetti, L.; Johansen, H.K.; Molin, S.; Malerba, G.; Signoretto, C.; Boaretti, M.; Lleo, M.M. Adaptative interactions of Achromobacter spp. with Pseudomonas aerugionosa in cystic fibrosis chronic lung co-infection. Pathogens, 2021, 10(8), 978.
[http://dx.doi.org/10.3390/pathogens10080978] [PMID: 34451442]
[62]
Høiby, N.; Ciofu, O.; Johansen, H.K.; Song, Z.J.; Moser, C.; Jensen, P.Ø.; Molin, S.; Givskov, M.; Tolker-Nielsen, T.; Bjarnsholt, T. The clinical impact of bacterial biofilms. Int. J. Oral Sci., 2011, 3(2), 55-65.
[http://dx.doi.org/10.4248/IJOS11026] [PMID: 21485309]
[63]
Yildirim, H.; Bayrak, N.; Tuyun, A.F.; Kara, E.M.; Çelik, B.Ö.; Gupta, G.K. 2,3-Disubstituted-1,4-naphthoquinones containing an aryla-mine with trifluoromethyl group: Synthesis, biological evaluation, and computational study. RSC Advances, 2017, 7(41), 25753-25764.
[http://dx.doi.org/10.1039/C7RA00868F]
[64]
Moreira, D.R.M.; de Sa, M.S.; Macedo, T.S.; Menezes, M.N.; Reys, J.R.M.; Santana, A.E.G.; Silva, T.L.; Maia, G.L.A.; Barbosa-Filho, J.M.; Camara, C.A.; da Silva, T.M.S.; da Silva, K.N.; Guimarães, E.T.; dos Santos, R.R.; Goulart, M.O.F.; Soares, M.B.P. Evaluation of naphthoquinones identified the acetylated isolapachol as a potent and selective antiplasmodium agent. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 615-621.
[http://dx.doi.org/10.3109/14756366.2014.958083] [PMID: 25431148]
[65]
de Sena Pereira, V.S.; Silva de Oliveira, C.B.; Fumagalli, F.; da Silva Emery, F.; da Silva, N.B.; de Andrade-Neto, V.F. Cytotoxicity, he-molysis and in vivo acute toxicity of 2-hydroxy-3-anilino-1,4-naphthoquinone derivatives; Elsevier Ireland Ltd, 2016.
[http://dx.doi.org/10.1016/j.toxrep.2016.09.007]
[66]
Freire, C.P.V.; Ferreira, S.B.; De Oliveira, N.S.M.; Matsuura, A.B.J.; Gama, I.L.; Da Silva, F.D.C.; De Souza, M.C.B.V.; Lima, E.S.; Fer-reira, V.F. Synthesis and biological evaluation of substituted α- And β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. MedChemComm, 2010, 1(3), 229-232.
[http://dx.doi.org/10.1039/c0md00074d]
[67]
Cheng, Y.; Wei, H.; Sun, R.; Tian, Z.; Zheng, X. Rapid method for protein quantitation by Bradford assay after elimination of the inter-ference of polysorbate 80. Anal. Biochem., 2016, 494, 37-39.
[http://dx.doi.org/10.1016/j.ab.2015.10.013] [PMID: 26545323]
[68]
Cui, W.; Xue, H.; Cheng, H.; Zhang, H.; Jin, J.; Wang, Q. Increasing the amount of phosphoric acid enhances the suitability of Bradford assay for proteomic research. Electrophoresis, 2019, 40(7), 1107-1112.
[http://dx.doi.org/10.1002/elps.201800430] [PMID: 30570157]
[69]
Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus mem-brane. Food Control, 2015, 47, 196-202.
[http://dx.doi.org/10.1016/j.foodcont.2014.07.003]
[70]
van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[http://dx.doi.org/10.1038/nrd1032] [PMID: 12612645]
[71]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[72]
Huang, S.N.; Michaels, S.A.; Mitchell, B.B.; Majdalani, N.; Vanden Broeck, A.; Canela, A.; Tse-Dinh, Y.C.; Lamour, V.; Pommier, Y. Exonuclease VII repairs quinolone-induced damage by resolving DNA gyrase cleavage complexes. Sci. Adv., 2021, 7(10), eabe0384.
[http://dx.doi.org/10.1126/sciadv.abe0384] [PMID: 33658195]
[73]
Dighe, S.N.; Collet, T.A. Recent advances in DNA gyrase-targeted antimicrobial agents. Eur. J. Med. Chem., 2020, 199, 112326.
[http://dx.doi.org/10.1016/j.ejmech.2020.112326] [PMID: 32460040]
[74]
Abdelkreem, R.H.; Yousuf, A.M.; Elmekki, M.A.; Elhassan, M.M. DNA gyrase and Topoisomerase IV mutations and their effect on quinolones resistant Proteus mirabilis among UTIs patients. Pak. J. Med. Sci., 2020, 36(6), 1234-1240.
[http://dx.doi.org/10.12669/pjms.36.6.2207] [PMID: 32968386]
[75]
De Smet, J.; Wagemans, J.; Boon, M.; Ceyssens, P.J.; Voet, M.; Noben, J.P.; Andreeva, J.; Ghilarov, D.; Severinov, K.; Lavigne, R. The bacteriophage LUZ24 “Igy” peptide inhibits the Pseudomonas DNA gyrase. Cell Rep., 2021, 36(8), 109567.
[http://dx.doi.org/10.1016/j.celrep.2021.109567] [PMID: 34433028]
[76]
Sharma, P.; Kumar, M.; Dahiya, S.; Sood, S.; Das, B.K.; Kaur, P.; Kapil, A. Structure based drug discovery and in vitro activity testing for DNA gyrase inhibitors of Salmonella enterica serovar Typhi. Bioorg. Chem., 2020, 104, 104244.
[http://dx.doi.org/10.1016/j.bioorg.2020.104244] [PMID: 32966903]
[77]
Hamada, H.H.; Mohammed, G.E.; Abuo-Rahma, D.A.A.; Abbas, S.H.; Abdelhafez, E-S.M.N. Current trends and future directions of fluoroquinolones. Curr. Med. Chem., 2019, 26(17), 3132-3149.
[http://dx.doi.org/10.2174/0929867325666180214122944]
[78]
Chan, P.F.; Germe, T.; Bax, B.D.; Huang, J.; Thalji, R.K.; Bacque, E.; Checchia, A.; Chen, D.; Cui, H.; Ding, X.; Ingraham, K.; McClos-key, L.; Raha, K.; Srikannathasan, V.; Maxwell, A.; Stavenger, R.A. Thiophene antibacterials that allosterically stabilize DNA-cleavage complexes with DNA gyrase. Proc. Natl. Acad. Sci. USA, 2017, 114(22), E4492-E4500.
[http://dx.doi.org/10.1073/pnas.1700721114] [PMID: 28507124]
[79]
Klostermeier, D. Towards conformation-sensitive inhibition of gyrase: Implications of mechanistic insight for the identification and improvement of inhibitors. Molecules, 2021, 26(5), 12034.
[http://dx.doi.org/10.3390/molecules26051234] [PMID: 33669078]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy