Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Synthesis and Anti-Cancer Applications of Benzimidazole Derivatives - Recent Studies

Author(s): Yogesh K. Tyagi, Geetan jali and Ram Singh*

Volume 22, Issue 19, 2022

Published on: 17 August, 2022

Page: [3280 - 3290] Pages: 11

DOI: 10.2174/1871520622666220429134818

Price: $65

Abstract

Background: Cancer is a life-threatening disease. Anti-cancer drugs are the focus of research. The heterocyclic molecules like benzimidazole occupy a central position in searching for novel and effective anti-cancer drugs. The medicinal chemists designed and synthesized several benzimidazole derivatives and conjugates to evaluate them as potential anti-cancer agents.

Objective: The purpose of this compilation of literature is to cover the progress of benzimidazole-based anti-cancer agents, their synthesis, and their evaluation for cancer disease treatment.

Methods: The recent literatures have been collected from various search engines and peer-reviewed journals.

Results: The compounds like benzimidazole derivatives of dehydroabietic acid, piperidyl benzimidazole carboxamide, benzimidazole-quinazolinone hybrids, benzimidazole-thiazole conjugate, and benzimidazole pendant cyanopyrimidine derivatives have been discussed in detail.

Conclusion: This review article will help the medicinal chemists to design and synthesize benzimidazole-based molecules and evaluate them as anti-cancer agents.

Keywords: Cancer, anticancer agents, benzimidazole, heterocyclic molecules, bicyclic molecules, medicinal applications.

Graphical Abstract
[1]
Vestergaard, A.A. Benzimidazole: Preparation and Applications; Nova Science Publishers, Inc.: New York, 2020. Available from: novapublishers.com
[2]
Prajapat, P.; Kumawat, M.; Talesara, G.L.; Kalal, P.; Agarwal, S.; Kapoor, C.S. Benzimidazole scaffold as a versatile biophore in drug discovery: A review. Chem. Biol. Int., 2018, 8, 1-10.
[3]
Ajani, O.O.; Aderohunmu, D.V.; Ikpo, C.O.; Adedapo, A.E.; Olanrewaju, I.O. Functionalized benzimidazole scaffolds: Privileged heterocycle for drug design in therapeutic medicine. Arch. Pharm. (Weinheim), 2016, 349(7), 475-506.
[http://dx.doi.org/10.1002/ardp.201500464] [PMID: 27213292]
[4]
Sivakumar, R.; Pradeepchandran, R.; Jayaveera, K.N.; Kumarnallasivan, P.; Vijaianand, P.R.; Venkatnarayanan, R. Benzimidazole: An attractive pharmacophore in medicinal chemistry. Int. J. Pharm. Res., 2011, 3, 19-31.
[5]
Bansal, Y.; Minhas, R.; Singhal, A.; Arora, R.K.; Bansal, G. Benzimidazole: A multifacted nucelus for anticancer agents. Curr. Org. Chem., 2021, 25(6), 669-694.
[http://dx.doi.org/10.2174/1385272825666210208141107]
[6]
Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem., 2012, 20(21), 6208-6236.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[7]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[8]
Keri, R.S.; Rajappa, C.K.; Patil, S.A.; Nagaraja, B.M. Benzimidazole-core as an antimycobacterial agent. Pharmacol. Rep., 2016, 68(6), 1254-1265.
[http://dx.doi.org/10.1016/j.pharep.2016.08.002] [PMID: 27686965]
[9]
Shaharyar, M.; Mazumder, A. Benzimidazoles: A biologically active compound. Arab. J. Chem., 2017, 10, S157-S173.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.017]
[10]
Hernández-Covarrubias, C.; Vilchis-Reyes, M.A.; Yépez-Mulia, L.; Sánchez-Díaz, R.; Navarrete-Vázquez, G.; Hernández-Campos, A.; Castillo, R.; Hernández-Luis, F. Exploring the interplay of physicochemical properties, membrane permeability and giardicidal activity of some benzimidazole derivatives. Eur. J. Med. Chem., 2012, 52, 193-204.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.014] [PMID: 22464423]
[11]
Kuş, C.; Ayhan-Kilcigil, G.; Ozbey, S.; Kaynak, F.B.; Kaya, M.; Coban, T.; Can-Eke, B. Synthesis and antioxidant properties of novel N-methyl-1,3,4-thiadiazol-2-amine and 4-methyl-2H-1,2,4-triazole-3(4H)-thione derivatives of benzimidazole class. Bioorg. Med. Chem., 2008, 16(8), 4294-4303.
[http://dx.doi.org/10.1016/j.bmc.2008.02.077] [PMID: 18337107]
[12]
Ziolkowska, N.E.; Michejd, C.J.; Bujacz, G.D. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles. J. Mol. Struct., 2008, 930(1-3), 157-161.
[http://dx.doi.org/10.1016/j.molstruc.2009.05.007]
[13]
Tahlan, S.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A. 2-Mercaptobenzimidazole Schiff bases: Design, synthesis, antimicrobial studies and anticancer activity on HCT-116 cell line. Mini Rev. Med. Chem., 2019, 19(13), 1080-1092.
[http://dx.doi.org/10.2174/1389557518666181009151008] [PMID: 30306865]
[14]
Chimrri, A.; Sarro, A.D.; Sarro, G.D.; Giho, G.; Zappala, M. Synthesis and anticonvulsant properties of 2,3,3a-4-tetrahydro-1-H pyrrolo(1,2-a)benzimidazol-1-one derivatives. Farmaco, 2001, 56(11), 821-826.
[http://dx.doi.org/10.1016/S0014-827X(01)01147-8]
[15]
Tahlan, S.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Mani, V.; Shah, S.A.A. Design, synthesis, SAR study, antimicrobial and anticancer evaluation of novel 2-mercaptobenzimidazole azomethine derivatives. Mini Rev. Med. Chem., 2020, 20(15), 1559-1571.
[http://dx.doi.org/10.2174/1389557518666180903151849] [PMID: 30179132]
[16]
Lavrador-Erb, K.; Ravula, S.B.; Yu, J.; Zamani-Kord, S.; Moree, W.J.; Petroski, R.E.; Wen, J.; Malany, S.; Hoare, S.R.; Madan, A.; Crowe, P.D.; Beaton, G. The discovery and structure-activity relationships of 2-(piperidin-3-yl)-1H-benzimidazoles as selective, CNS penetrating H1-antihistamines for insomnia. Bioorg. Med. Chem. Lett., 2010, 20(9), 2916-2919.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.027] [PMID: 20347297]
[17]
Bhise, U.N.; Kumar, S.B.V.; Ramanatham, V.; Vaidya, S.D. Synthesis, antibacterial, antiasthmatic and antidiabetic activities of novel N-substituted benzimidazoles. Eur. J. Med. Chem., 2008, 43, 986-995.
[18]
Navarrete-Vázquez, G.; Rojano-Vilchis, M.M.; Yépez-Mulia, L.; Meléndez, V.; Gerena, L.; Hernández-Campos, A.; Castillo, R.; Hernández-Luis, F. Synthesis and antiprotozoal activity of some 2-(trifluoromethyl)-1H-benzimidazole bioisosteres. Eur. J. Med. Chem., 2006, 41(1), 135-141.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.001] [PMID: 16260067]
[19]
Kuo, H-L.; Lien, J-C.; Chung, C-H.; Chang, C-H.; Lo, S-C.; Tsai, I-C.; Peng, H-C.; Kuo, S-C.; Huang, T-F. NP-184[2-(5-methyl-2-furyl) benzimidazole], a novel orally active antithrombotic agent with dual antiplatelet and anticoagulant activities. Naunyn Schmiedebergs Arch. Pharmacol., 2010, 381(6), 495-505.
[http://dx.doi.org/10.1007/s00210-010-0505-x] [PMID: 20349046]
[20]
Patil, A.; Ganguly, S.; Surana, S. Synthesis and antiulcer activity of 2-[5-substituted-1-H-benzo(d) imidazol-2-yl sulfinyl]methyl-3-substituted quinazoline-4-(3H) ones. J. Chem. Sci., 2010, 122(3), 443-450.
[http://dx.doi.org/10.1007/s12039-010-0052-5]
[21]
Starcević, K.; Kralj, M.; Ester, K.; Sabol, I.; Grce, M.; Pavelić, K.; Karminski-Zamola, G. Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles. Bioorg. Med. Chem., 2007, 15(13), 4419-4426.
[http://dx.doi.org/10.1016/j.bmc.2007.04.032] [PMID: 17482821]
[22]
Zhang, J.; Wang, J-L.; Zhou, Z-M.; Li, Z-H.; Xue, W-Z.; Xua, D. Hao, Li-P.; Han, X-F.; Fei, F.; Liu, T.; Liang, A-H. Design, synthesis and biological activity of 6-substituted carbamoyl benzimidazoles as new nonpeptidic angiotensin II AT1 receptor antagonists. Bioorg. Med. Chem., 2012, 20(14), 4208-4216.
[http://dx.doi.org/10.1016/j.bmc.2012.05.056] [PMID: 22727371]
[23]
Heneberg, P.; Svoboda, J.; Pech, P. Claustral colony founding does not prevent sensitivity to the detrimental effects of azole fungicides on the fecundity of ants. J. Environ. Manage., 2021, 280, 111740.
[http://dx.doi.org/10.1016/j.jenvman.2020.111740] [PMID: 33272659]
[24]
Heneberg, P.; Bogusch, P.; Astapenková, A.; Řezáč, M. Neonicotinoid insecticides hinder the pupation and metamorphosis into adults in a crabronid wasp. Sci. Rep., 2020, 10(1), 7077.
[http://dx.doi.org/10.1038/s41598-020-63958-w] [PMID: 32341495]
[25]
Pech, P.; Heneberg, P. Benomyl treatment decreases fecundity of ant queens. J. Invertebr. Pathol., 2015, 130, 61-63.
[http://dx.doi.org/10.1016/j.jip.2015.06.012] [PMID: 26149821]
[26]
Cheson, B.D.; Leoni, L. Bendamustine: Mechanism of action and clinical data. Clin. Adv. Hematol. Oncol., 2011, 9(8)(Suppl. 19), 1-11.
[PMID: 22362008]
[27]
Pishvaian, M.J.; Wang, H.; Parenti, S.; He, A.R.; Hwang, J.J.; Ley, L.; Difebo, H.; Smaglo, B.G.; Kim, S.S.; Weinberg, B.A.; Weiner, L.M.; Marshall, J.; Brody, J.R. Final report of a phase I/II study of veliparib (Vel) in combination with 5-FU and oxaliplatin (FOLFOX) in patients (pts) with metastatic pancreatic cancer (mPDAC). J. Clin. Oncol., 2019, 37(15)(Suppl.), 4015-4015.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.4015]
[28]
Thomas, X.; Heiblig, M. An evaluation of glasdegib for the treatment of acute myelogenous leukemia. Expert Opin. Pharmacother., 2020, 21(5), 523-530.
[http://dx.doi.org/10.1080/14656566.2020.1713094] [PMID: 32027196]
[29]
Vahlquist, A.; Blockhuys, S.; Steijlen, P.; van Rossem, K.; Didona, B.; Blanco, D.; Traupe, H. Oral liarozole in the treatment of patients with moderate/severe lamellar ichthyosis: Results of a randomized, double-blind, multinational, placebo-controlled phase II/III trial. Br. J. Dermatol., 2014, 170(1), 173-181.
[http://dx.doi.org/10.1111/bjd.12626] [PMID: 24102348]
[30]
Novotny-Diermayr, V.; Hart, S.; Goh, K.C.; Cheong, A.; Ong, L.C.; Hentze, H.; Pasha, M.K.; Jayaraman, R.; Ethirajulu, K.; Wood, J.M.; Jayaraman, R.; Ethirajulu, K.; Wood, J.M. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML. Blood Cancer J., 2012, 2(5), e69.
[http://dx.doi.org/10.1038/bcj.2012.14] [PMID: 22829971]
[31]
Law, C.S.W.; Yeong, K.Y. Benzimidazoles in drug discovery: A patent review. ChemMedChem, 2021, 16(12), 1861-1877.
[http://dx.doi.org/10.1002/cmdc.202100004] [PMID: 33646618]
[32]
El Rashedy, A.A.; Aboul-Enein, H.Y. Benzimidazole derivatives as potential anticancer agents. Mini Rev. Med. Chem., 2013, 13(3), 399-407.
[PMID: 23190032]
[33]
Son, D.S.; Lee, E.S.; Adunyah, S.E. The antitumor potentials of benzimidazole anthelmintics as repurposing drugs. Immune Netw., 2020, 20(4), e29.
[http://dx.doi.org/10.4110/in.2020.20.e29] [PMID: 32895616]
[34]
Yadav, S.; Narasimhan, B.; Kaur, H. Perspectives of benzimidazole derivatives as anticancer agents in the new era. Anticancer. Agents Med. Chem., 2016, 16(11), 1403-1425.
[http://dx.doi.org/10.2174/1871520616666151103113412] [PMID: 26526461]
[35]
Kanwal, A.; Saddique, F.A.; Aslam, S.; Ahmad, M.; Zahoor, A.F.; Mohsin, N-A. Benzimidazole ring system as a privileged template for anticancer agents. Pharm. Chem. J., 2018, 51(12), 1068-1077.
[http://dx.doi.org/10.1007/s11094-018-1742-4]
[36]
Tahlan, S.; Kumar, S.; Kakkar, S.; Narasimhan, B. Benzimidazole scaffolds as promising antiproliferative agents: A review. BMC Chem., 2019, 13(1), 66.
[http://dx.doi.org/10.1186/s13065-019-0579-6] [PMID: 31384813]
[37]
Al-Wasidi, A.S.; Refat, M.S.; Naglah, A.M.; Elhenawy, A.A. Different potential biological activities of benzimidazole derivatives. Egypt. J. Chem., 2021, 64, 2631-2646.
[38]
Rashid, M.; Husain, A.; Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem., 2012, 54, 855-866.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.027] [PMID: 22608854]
[39]
Khokra, S.L.; Choudhary, D. Benzimidazole an important scaffold in drug discovery. Asian J. Biochem. Pharm. Res., 2011, 3, 476-486.
[40]
Hadole, C.D.; Rajput, J.D.; Bendre, R.S. Concise on some biologically important 2-substituted benzimidazole derivatives. Org. Chem. Curr. Res, 2018, 7, 1-9.
[41]
Alzhrani, Z.M.M.; Alam, M.M.; Nazreen, S. Recent advancements on benzimidazole: A versatile scaffold in medicinal chemistry. Mini Rev. Med. Chem., 2022, 22(2), 365-386.
[http://dx.doi.org/10.2174/1389557521666210331163810] [PMID: 33797365]
[42]
Shrivastava, N.; Naim, M.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure–activity relationship. Arch. Pharm. (Weinheim), 2017, 350(6), e1700040.
[http://dx.doi.org/10.1002/ardp.201700040]
[43]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[44]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[45]
Yu, B.; Yu, D.Q.; Liu, H.M. Spirooxindoles: Promising scaffolds for anticancer agents. Eur. J. Med. Chem., 2015, 97, 673-698.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.056] [PMID: 24994707]
[46]
Spanò, V.; Rocca, R.; Barreca, M.; Giallombardo, D.; Montalbano, A.; Carbone, A.; Raimondi, M.V.; Gaudio, E.; Bortolozzi, R.; Bai, R.; Tassone, P.; Alcaro, S.; Hamel, E.; Viola, G.; Bertoni, F.; Barraja, P. Pyrrolo[2′,3′:3,4]cyclohepta[1,2-d][1,2]oxazoles, a new class of antimitotic agents active against multiple Malignant Cell types. J. Med. Chem., 2020, 63(20), 12023-12042.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01315] [PMID: 32986419]
[47]
Spanò, V.; Barreca, M.; Rocca, R.; Bortolozzi, R.; Bai, R.; Carbone, A.; Raimondi, M.V.; Piccionello, A.P.; Montalbano, A.; Alcaro, S.; Hamel, E.; Viola, G.; Barraja, P. Insight on [1,3]thiazolo[4,5-e]isoindoles as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2021, 212, 113122.
[http://dx.doi.org/10.1016/j.ejmech.2020.113122] [PMID: 33401199]
[48]
Barreca, M.; Spanò, V.; Raimondi, M.V.; Montalbano, A.; Bai, R.; Gaudio, E.; Alcaro, S.; Hamel, E.; Bertoni, F.; Barraja, P. Evaluation of [1,2]oxazolo[5,4-e]isoindoles in lymphoma cells. Eur. J. Cancer, 2020, 138S2, S35-S36.
[49]
Spriano, F.; Barreca, M.; Miguel-Gordo, M.; O’Brien, S.; Arribas, A.J.; Jennings, L.; Thomas, O.; Bertoni, F. Screening of fractions from marine sponges and other invertebrates to identify new lead compounds with anti-tumor activity in lymphoma models. Eur. J. Cancer, 2020, 138S2, S17.
[http://dx.doi.org/10.1016/S0959-8049(20)31110-2]
[50]
Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem., 2020, 208, 112783.
[http://dx.doi.org/10.1016/j.ejmech.2020.112783] [PMID: 32916311]
[51]
Yang, Y.Q.; Chen, H.; Liu, Q.S.; Sun, Y.; Gu, W. Synthesis and anticancer evaluation of novel 1H-benzo[d]imidazole derivatives of dehydroabietic acid as PI3Kα inhibitors. Bioorg. Chem., 2020, 100, 103845.
[http://dx.doi.org/10.1016/j.bioorg.2020.103845] [PMID: 32344183]
[52]
Hoffmann, K.J.; Carlsen, P.H.J. Study of an efficient and selective bromination reaction of substituted thiophenes. Synth. Commun., 1999, 29(9), 1607-1610.
[http://dx.doi.org/10.1080/00397919908086142]
[53]
Fonseca, T.; Gigante, B.; Marques, M.M.; Gilchrist, T.L.; De Clercq, E. Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorg. Med. Chem., 2004, 12(1), 103-112.
[http://dx.doi.org/10.1016/j.bmc.2003.10.013] [PMID: 14697775]
[54]
Gamble, A.B.; Garner, J.; Gordon, C.P.; O’Conner, S.M.J.; Keller, P.A. Aryl nitro reduction with iron powder or stannous chloride under ultrasonic irradiation. Synth. Commun., 2007, 37(16), 2777-2786.
[http://dx.doi.org/10.1080/00397910701481195]
[55]
Zhou, S.; Liu, L.; Li, H.; Eilers, G.; Kuang, Y.; Shi, S.; Yan, Z.; Li, X.; Corson, J.M.; Meng, F.; Zhou, H.; Sheng, Q.; Fletcher, J.A.; Ou, W.B. Multipoint targeting of the PI3K/mTOR pathway in mesothelioma. Br. J. Cancer, 2014, 110(10), 2479-2488.
[http://dx.doi.org/10.1038/bjc.2014.220] [PMID: 24762959]
[56]
Zhang, S.; Nie, S.; Huang, D.; Feng, Y.; Xie, M. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system. J. Agric. Food Chem., 2014, 62(7), 1581-1589.
[http://dx.doi.org/10.1021/jf4053012] [PMID: 24506418]
[57]
Fan, Y.H.; Ding, H.W.; Liu, D.D.; Song, H.R.; Xu, Y.N.; Wang, J. Novel 4-aminoquinazoline derivatives induce growth inhibition, cell cycle arrest and apoptosis via PI3Kα inhibition. Bioorg. Med. Chem., 2018, 26(8), 1675-1685.
[http://dx.doi.org/10.1016/j.bmc.2018.02.015] [PMID: 29475582]
[58]
Zhang, X.; Zhang, C.; Tang, L.; Lu, K.; Zhao, H.; Wu, W.; Jiang, Y. Synthesis and biological evaluation of piperidyl benzimidazole carboxamide derivatives as potent PARP-1 inhibitors and antitumor agents. Chin. Chem. Lett., 2020, 31(1), 136-140.
[http://dx.doi.org/10.1016/j.cclet.2019.04.045]
[59]
Lipshutz, B.H.; Pfeiffer, S.S.; Reed, A.B. Selective cleavage of Cbz-protected amines. Org. Lett., 2001, 3(26), 4145-4148.
[http://dx.doi.org/10.1021/ol016693l] [PMID: 11784163]
[60]
Paul, R.; Anderson, G.W.N.N. ′-Carbonyldiimidazole, a new peptide forming reagent. J. Am. Chem. Soc., 1960, 82(17), 4596-4600.
[http://dx.doi.org/10.1021/ja01502a038]
[61]
Fan, C.; Zhong, T.; Yang, H.; Yang, Y.; Wang, D.; Yang, X.; Xu, Y.; Fan, Y. Design, synthesis, biological evaluation of 6-(2-amino-1H-benzo[d]imidazole-6-yl)quinazolin-4(3H)-one derivatives as novel anticancer agents with Aurora kinase inhibition. Eur. J. Med. Chem., 2020, 190, 112108.
[http://dx.doi.org/10.1016/j.ejmech.2020.112108] [PMID: 32058239]
[62]
Malinowski, Z.; Fornal, E.; Nowak, M.; Kontek, R.; Gajek, G.; Borek, B. Synthesis and biological evaluation of some amino- and sulfanyl-3H-quinazolin-4-one derivatives as potential anticancer agents. Monatsh. Chem., 2015, 146(10), 1723-1731.
[http://dx.doi.org/10.1007/s00706-015-1508-6]
[63]
Bavetsias, V.; Skelton, L.A.; Yafai, F.; Mitchell, F.; Wilson, S.C.; Allan, B.; Jackman, A.L. The design and synthesis of water-soluble analogues of CB30865, a quinazolin-4-one-based antitumor agent. J. Med. Chem., 2002, 45(17), 3692-3702.
[http://dx.doi.org/10.1021/jm011081s] [PMID: 12166942]
[64]
Yadav, R.R.; Guru, S.K.; Joshi, P.; Mahajan, G.; Mintoo, M.J.; Kumar, V.; Bharate, S.S.; Mondhe, D.M.; Vishwakarma, R.A.; Bhushan, S.; Bharate, S.B. 6-Aryl substituted 4-(4-cyanomethyl) phenylamino quinazolines as a new class of isoform-selective PI3K-alpha inhibitors. Eur. J. Med. Chem., 2016, 122, 731-743.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.006] [PMID: 27479483]
[65]
Zhang, H.; Xin, M.H.; Xie, X.X.; Mao, S.; Zuo, S.J.; Lu, S.M.; Zhang, S.Q. Synthesis and antitumor activity evaluation of PI3K inhibitors containing 3-substituted quinazolin-4(3H)-one moiety. Bioorg. Med. Chem., 2015, 23(24), 7765-7776.
[http://dx.doi.org/10.1016/j.bmc.2015.11.027] [PMID: 26652969]
[66]
Li, F.; Frett, B.; Li, H.Y. Selective reduction of halogenated nitroarenes with hydrazine hydrate in the presence of Pd/C. Synlett, 2014, 25(10), 1403-1408.
[http://dx.doi.org/10.1055/s-0033-1339025] [PMID: 26843785]
[67]
Frei, R.; Breitbach, A.S.; Blackwell, H.E. 2-Aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. Engl., 2012, 51(21), 5226-5229.
[http://dx.doi.org/10.1002/anie.201109258] [PMID: 22488868]
[68]
Srour, A.M.; Ahmed, N.S.; Abd El-Karim, S.S.; Anwar, M.M.; El-Hallouty, S.M.; El-Hallouty, S.M. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg. Med. Chem., 2020, 28(18), 115657.
[http://dx.doi.org/10.1016/j.bmc.2020.115657] [PMID: 32828424]
[69]
Yi, W.; Dubois, C.; Yahiaoui, S.; Haudecoeur, R.; Belle, C.; Song, H.; Hardré, R.; Réglier, M.; Boumendjel, A. Refinement of arylthiosemicarbazone pharmacophore in inhibition of mushroom tyrosinase. Eur. J. Med. Chem., 2011, 46(9), 4330-4335.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.003] [PMID: 21777998]
[70]
Makam, P.; Kankanala, R.; Prakash, A.; Kannan, T. 2-(2-Hydrazinyl)thiazole derivatives: Design, synthesis and in vitro antimycobacterial studies. Eur. J. Med. Chem., 2013, 69, 564-576.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.054] [PMID: 24095750]
[71]
Gaffer, H.E.; Khalifa, M.E. Eco-friendly synthesis of some thiosemicarbazones and their applications as intermediates for 5-arylazothiazole disperse dyes. Molecules, 2015, 20(12), 21982-21991.
[http://dx.doi.org/10.3390/molecules201219820] [PMID: 26690111]
[72]
Malla Reddy, V.; Ravinder Reddy, K. Synthesis and antimicrobial activity of some novel 4-(1H-benz[d]imidazol-2yl)-1,3-thiazol-2-amines. Chem. Pharm. Bull. (Tokyo), 2010, 58(7), 953-956.
[http://dx.doi.org/10.1248/cpb.58.953] [PMID: 20606345]
[73]
Polunin, R.A.; Kozytskiy, A.V.; Kolotilov, S.V. Photovoltaic characteristics of bis(2 benzimidazolyl)-bisthiazole deposited on TiO2 in the presence of Zn2+ ions. Theor. Exp. Chem., 2015, 51(3), 196-201.
[http://dx.doi.org/10.1007/s11237-015-9416-8]
[74]
Atmaca, H.; İlhan, S.; Batır, M.B.; Pulat, C.C.; Güner, A.; Bektaş, H. Novel benzimidazole derivatives: Synthesis, in vitro cytotoxicity, apoptosis and cell cycle studies. Chem. Biol. Interact., 2020, 327, 109163.
[http://dx.doi.org/10.1016/j.cbi.2020.109163] [PMID: 32534988]
[75]
Ren, Y.; Wang, Y.; Li, G.; Zhang, Z.; Ma, L.; Cheng, B.; Chen, J. Discovery of novel benzimidazole and indazole analogues as tubulin polymerization inhibitors with potent anticancer activities. J. Med. Chem., 2021, 64(8), 4498-4515.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01837] [PMID: 33788562]
[76]
Norio, M.; Kinji, Y.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 20(36), 3437-3440.
[http://dx.doi.org/10.1016/S0040-4039(01)95429-2]
[77]
Haoran, W.; Akhtar, W.; Nainwal, L.M.; Kaushik, S.K.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Synthesis and biological evaluation of benzimidazole pendant cyanopyrimidine derivatives as anticancer agents. J. Heterocycl. Chem., 2020, 57, 3350-3360.
[http://dx.doi.org/10.1002/jhet.4052]
[78]
Kappe, C.O. 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49(32), 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
[79]
El-Meguid, E.A.A.; El-Deen, E.M.M.; Nael, M.A.; Anwar, M.M. Novel benzimidazole derivatives as anti-cervical cancer agents of potential multi-targeting kinase inhibitory activity. Arab. J. Chem., 2020, 13(12), 9179-9195.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.041]
[80]
Rahbari, R.; Sheahan, T.; Modes, V.; Collier, P.; Macfarlane, C.; Badge, R.M. A novel L1 retrotransposon marker for HeLa cell line identification. Biotechniques, 2009, 46(4), 277-284.
[http://dx.doi.org/10.2144/000113089] [PMID: 19450234]
[81]
Chen, X.; Yang, X.; Mao, F.; Wei, J.; Xu, Y.; Li, B.; Zhu, J.; Ni, S.; Jia, L.; Li, J. Development of novel benzimidazole-derived neddylation inhibitors for suppressing tumor growth in vitro and in vivo. Eur. J. Med. Chem., 2021, 210, 112964.
[http://dx.doi.org/10.1016/j.ejmech.2020.112964] [PMID: 33129593]
[82]
Gai, W.; Peng, Z.; Liu, C.H.; Zhang, L.; Jiang, H. Advances in cancer treatment by targeting the neddylation pathway. Front. Cell Dev. Biol., 2021, 9, 653882.
[http://dx.doi.org/10.3389/fcell.2021.653882] [PMID: 33898451]
[83]
Ibrahim, H.A.; Refaat, H.M. Versatile mechanisms of 2-substituted benzimidazoles in targeted cancer therapy. Future J. Pharmaceut. Sci., 2020, 6, 41.
[84]
Chai, J.Y.; Jung, B.K.; Hong, S.J. Albendazole and mebendazole as anti-parasitic and anti-cancer agents: An update. Korean J. Parasitol., 2021, 59(3), 189-225.
[http://dx.doi.org/10.3347/kjp.2021.59.3.189] [PMID: 34218593]
[85]
Guerini, A.E.; Triggiani, L.; Maddalo, M.; Bonù, M.L.; Frassine, F.; Baiguini, A.; Alghisi, A.; Tomasini, D.; Borghetti, P.; Pasinetti, N.; Bresciani, R.; Magrini, S.M.; Buglione, M. Mebendazole as a candidate for drug repurposing in oncology: An extensive review of current literature. Cancers (Basel), 2019, 11(9), 1284.
[http://dx.doi.org/10.3390/cancers11091284]
[86]
Choi, H.S.; Ko, Y.S.; Jin, H.; Kang, K.M.; Ha, I.B.; Jeong, H.; Song, H-N.; Kim, H.J.; Jeong, B.K. Anticancer effect of benzimidazole derivatives, especially mebendazole, on triple-negative breast cancer (TNBC) and radiotherapy-resistant TNBC in vivo and in vitro. Molecules, 2021, 26(17), 5118.
[http://dx.doi.org/10.3390/molecules26175118] [PMID: 34500557]
[87]
Sireesha, R.; Sreenivasulu, R.; Chandrasekhar, C.; Jadav, S.S.; Pavani, Y.; Rao, M.V.B.; Subbarao, M. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β-carboline derivatives. J. Mol. Struct., 2021, 1226, 129351.
[http://dx.doi.org/10.1016/j.molstruc.2020.129351]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy