Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Editorial

Strategies for Controlling Biofilm-forming Microbial Pathogens on Biotic and Abiotic Surfaces

Author(s): Fazlurrahman Khan*

Volume 23, Issue 10, 2022

Published on: 08 June, 2022

Page: [956 - 959] Pages: 4

DOI: 10.2174/1389450123666220429115255

Open Access Journals Promotions 2
[1]
Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002; 292(2): 107-13.
[http://dx.doi.org/10.1078/1438-4221-00196] [PMID: 12195733]
[2]
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35(4): 322-32.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011] [PMID: 20149602]
[3]
Kernien JF, Snarr BD, Sheppard DC, Nett JE. The interface between fungal biofilms and innate immunity. Front Immunol 2018; 8: 1968.
[http://dx.doi.org/10.3389/fimmu.2017.01968] [PMID: 29375581]
[4]
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. Microb Cell 2021; 8(2): 28-56.
[http://dx.doi.org/10.15698/mic2021.02.741] [PMID: 33553418]
[5]
Arzmi MH, Alnuaimi AD, Dashper S, Cirillo N, Reynolds EC, McCullough M. Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent. Med Mycol 2016; 54(8): 856-64.
[http://dx.doi.org/10.1093/mmy/myw042] [PMID: 27354487]
[6]
Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022; 399(10325): 629-55.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[7]
Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8(9): 623-33.
[http://dx.doi.org/10.1038/nrmicro2415] [PMID: 20676145]
[8]
Donlan RM. Biofilms: Microbial life on surfaces. Emerg Infect Dis 2002; 8(9): 881-90.
[http://dx.doi.org/10.3201/eid0809.020063] [PMID: 12194761]
[9]
Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 2002; 295(5559): 1487-7.
[http://dx.doi.org/10.1126/science.295.5559.1487] [PMID: 11859186]
[10]
Costa OYA, Raaijmakers JM, Kuramae EE. Microbial extracellular polymeric substances: Ecological function and impact on soil aggrega-tion. Front Microbiol 2018; 9: 1636.
[http://dx.doi.org/10.3389/fmicb.2018.01636] [PMID: 30083145]
[11]
Lopez-Ribot JL. Large-scale biochemical profiling of the Candida albicans biofilm matrix: New compositional, structural, and functional insights. MBio 2014; 5(5): e01781-14.
[http://dx.doi.org/10.1128/mBio.01781-14] [PMID: 25205098]
[12]
Wolfaardt GM, Lawrence JR, Korber DR. Function of EPSMicrobial extracellular polymeric substances. Springer 1999; pp. 171-200.
[http://dx.doi.org/10.1007/978-3-642-60147-7_10]
[13]
Zhang K, Li X, Yu C, Wang Y. Promising therapeutic strategies against microbial biofilm challenges. Front Cell Infect Microbiol 2020; 10: 359.
[http://dx.doi.org/10.3389/fcimb.2020.00359] [PMID: 32850471]
[14]
Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim YM. Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol 2020; 46(6): 665-88.
[http://dx.doi.org/10.1080/1040841X.2020.1822278] [PMID: 33022189]
[15]
Wuyts J, Van Dijck P, Holtappels M. Fungal persister cells: The basis for recalcitrant infections? PLoS Pathog 2018; 14(10): e1007301.
[http://dx.doi.org/10.1371/journal.ppat.1007301] [PMID: 30335865]
[16]
Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol 2017; 15(8): 453-64.
[http://dx.doi.org/10.1038/nrmicro.2017.42] [PMID: 28529326]
[17]
Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018; 4(12): e01067.
[http://dx.doi.org/10.1016/j.heliyon.2018.e01067] [PMID: 30619958]
[18]
Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the food industry: Health aspects and control methods. Front Microbiol 2018; 9: 898.
[http://dx.doi.org/10.3389/fmicb.2018.00898] [PMID: 29867809]
[19]
Abdallah M, Benoliel C, Drider D, Dhulster P, Chihib NE. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol 2014; 196(7): 453-72.
[http://dx.doi.org/10.1007/s00203-014-0983-1] [PMID: 24744186]
[20]
Carter MQ, Brandl MT. Biofilms in fresh vegetables and fruits. In: Biofilms in the Food Environment. 2015; pp. 176-204.
[http://dx.doi.org/10.1002/9781118864036.ch7]
[21]
Ng CG, Loke MF, Goh KL, Vadivelu J, Ho B. Biofilm formation enhances Helicobacter pylori survivability in vegetables. Food Microbiol 2017; 62: 68-76.
[http://dx.doi.org/10.1016/j.fm.2016.10.010] [PMID: 27889168]
[22]
Jahid IK, Ha S-D. A review of microbial biofilms of produce: Future challenge to food safety. Food Sci Biotechnol 2012; 21(2): 299-316.
[http://dx.doi.org/10.1007/s10068-012-0041-1]
[23]
Han N, Mizan MFR, Jahid IK, Ha S-D. Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature. Food Control 2016; 70: 161-6.
[http://dx.doi.org/10.1016/j.foodcont.2016.05.054]
[24]
Cappitelli F, Polo A, Villa F. Biofilm formation in food processing environments is still poorly understood and controlled. Food Eng Rev 2014; 6(1): 29-42.
[http://dx.doi.org/10.1007/s12393-014-9077-8]
[25]
Cantón R, Morosini M-I. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev 2011; 35(5): 977-91.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00295.x] [PMID: 21722146]
[26]
Khan F, Park SK, Bamunuarachchi NI, Oh D, Kim YM. Caffeine-loaded gold nanoparticles: Antibiofilm and anti-persister activities against pathogenic bacteria. Appl Microbiol Biotechnol 2021; 105(9): 3717-31.
[http://dx.doi.org/10.1007/s00253-021-11300-3] [PMID: 33900427]
[27]
Bamunuarachchi NI, Khan F, Kim YM. Inhibition of virulence factors and biofilm formation of Acinetobacter baumannii by naturally-derived and synthetic drugs. Curr Drug Targets 2021; 22(7): 734-59.
[http://dx.doi.org/10.2174/1389450121666201023122355] [PMID: 33100201]
[28]
Khan F, Pham DTN, Kim YM. Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104(5): 1955-76.
[http://dx.doi.org/10.1007/s00253-020-10360-1] [PMID: 31970432]
[29]
Khan F, Khan MM, Kim YM. Recent progress and future perspectives of antibiofilm drugs immobilized on nanomaterials. Curr Pharm Biotechnol 2018; 19(8): 631-43.
[http://dx.doi.org/10.2174/1389201019666180828090052] [PMID: 30152281]
[30]
Barros CHN, Casey E. A review of nanomaterials and technologies for enhancing the antibiofilm activity of natural products and phyto-chemicals. ACS Appl Nano Mater 2020; 3(9): 8537-56.
[http://dx.doi.org/10.1021/acsanm.0c01586]
[31]
Tran HM, Tran H, Booth MA, et al. Nanomaterials for treating bacterial biofilms on implantable medical devices. Nanomaterials (Basel) 2020; 10(11): E2253.
[http://dx.doi.org/10.3390/nano10112253] [PMID: 33203046]
[32]
Li X, Sun L, Zhang P, Wang Y. Novel approaches to combat medical device-associated biofilms. Coatings 2021; 11(3): 294.
[http://dx.doi.org/10.3390/coatings11030294]
[33]
P S V V S N.. A Review on surface modifications and coatings on implants to prevent biofilm. Regen Eng Transl Med 2020; 6(3): 330-46.
[http://dx.doi.org/10.1007/s40883-019-00116-3]
[34]
Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. Antimicrobial and antibiofilm peptides. Biomolecules 2020; 10(4): 652.
[http://dx.doi.org/10.3390/biom10040652] [PMID: 32340301]
[35]
Fleming D, Rumbaugh KP. Approaches to dispersing medical biofilms. Microorganisms 2017; 5(2): 15.
[http://dx.doi.org/10.3390/microorganisms5020015] [PMID: 28368320]
[36]
Wood S, Nattress B, Kirkham J, et al. An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo. J Photochem Photobiol B 1999; 50(1): 1-7.
[http://dx.doi.org/10.1016/S1011-1344(99)00056-1] [PMID: 10443029]
[37]
Tahmassebi JF, Drogkari E, Wood SR. A study of the control of oral plaque biofilms via antibacterial photodynamic therapy. Eur Arch Paediatr Dent 2015; 16(6): 433-40.
[http://dx.doi.org/10.1007/s40368-014-0165-5] [PMID: 26385341]
[38]
Tian F, Li J, Nazir A, Tong Y. Bacteriophage - A promising alternative measure for bacterial biofilm control. Infect Drug Resist 2021; 14: 205-17.
[http://dx.doi.org/10.2147/IDR.S290093] [PMID: 33505163]
[39]
Mai-Prochnow A, Zhou R, Zhang T, et al. Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. npj Biofilms Microbiomes 2021; 7(1): 1.
[40]
Parrino B, Schillaci D, Carnevale I, et al. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2019; 161: 154-78.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.036] [PMID: 30347328]
[41]
Mulat M, Pandita A, Khan F. Medicinal plant compounds for combating the multi-drug resistant pathogenic bacteria: A review. Curr Pharm Biotechnol 2019; 20(3): 183-96.
[http://dx.doi.org/10.2174/1872210513666190308133429] [PMID: 30854956]
[42]
Khan F, Oloketuyi SF, Kim YM. Diversity of bacteria and bacterial products as antibiofilm and antiquorum sensing drugs against pathogenic bacteria. Curr Drug Targets 2019; 20(11): 1156-79.
[http://dx.doi.org/10.2174/1389450120666190423161249] [PMID: 31020938]
[43]
Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, Cavanagh J. Anti-biofilm compounds derived from marine sponges. Mar Drugs 2011; 9(10): 2010-35.
[http://dx.doi.org/10.3390/md9102010] [PMID: 22073007]
[44]
Sahoo A, Swain SS, Behera A, Sahoo G, Mahapatra PK, Panda SK. Antimicrobial peptides derived from insects offer a novel therapeutic option to combat biofilm: A review. Front Microbiol 2021; 12: 661195.
[http://dx.doi.org/10.3389/fmicb.2021.661195] [PMID: 34248873]
[45]
Khan F, Pham DTN, Oloketuyi SF, Manivasagan P, Oh J, Kim YM. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces 2020; 185: 110627.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110627] [PMID: 31732391]
[46]
Khan F, Yu H, Kim YM. Bactericidal activity of usnic acid-chitosan nanoparticles against persister cells of biofilm-forming pathogenic bacteria. Mar Drugs 2020; 18(5): E270.
[http://dx.doi.org/10.3390/md18050270] [PMID: 32443816]
[47]
Jahanizadeh S, Yazdian F, Marjani A, Omidi M, Rashedi H. Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation. Int J Biol Macromol 2017; 105(Pt 1): 757-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.101] [PMID: 28746888]
[48]
Iadnut A, Mamoon K, Thammasit P, et al. In vitro antifungal and antivirulence activities of biologically synthesized ethanolic extract of propolis-loaded PLGA nanoparticles against Candida albicans. Evid Based Complement Alternat Med 2019; 2019: 3715481.
[http://dx.doi.org/10.1155/2019/3715481] [PMID: 31871479]
[49]
Letsididi KS, Lou Z, Letsididi R, Mohammed K, Maguy BL. Antimicrobial and antibiofilm effects of trans-cinnamic acid nanoemulsion and its potential application on lettuce. Lebensm Wiss Technol 2018; 94: 25-32.
[http://dx.doi.org/10.1016/j.lwt.2018.04.018]
[50]
Zhang G, Liu J, Li R, et al. Conjugation of inulin improves anti-biofilm activity of chitosan. Mar Drugs 2018; 16(5): E151.
[http://dx.doi.org/10.3390/md16050151] [PMID: 29734657]
[51]
Singh A, Gautam PK, Verma A, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol Rep (Amst) 2020; 25: e00427-7.
[http://dx.doi.org/10.1016/j.btre.2020.e00427] [PMID: 32055457]
[52]
Khan F, Kang MG, Jo DM, et al. Phloroglucinol-gold and -zinc oxide nanoparticles: Antibiofilm and antivirulence activities towards Pseudomonas aeruginosa PAO1. Mar Drugs 2021; 19(11): 601.
[http://dx.doi.org/10.3390/md19110601] [PMID: 34822472]
[53]
Khan F, Manivasagan P, Lee JW, Pham DTN, Oh J, Kim YM. Fucoidan-stabilized gold nanoparticle-mediated biofilm inhibition, attenuation of virulence and motility properties in Pseudomonas aeruginosa PAO1. Mar Drugs 2019; 17(4): E208.
[http://dx.doi.org/10.3390/md17040208] [PMID: 30987163]
[54]
Grassi L, Maisetta G, Esin S, Batoni G. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol 2017; 8: 2409.
[http://dx.doi.org/10.3389/fmicb.2017.02409] [PMID: 29375486]
[55]
Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 2010; 83(2): 89-105.
[http://dx.doi.org/10.1016/j.mimet.2010.08.018] [PMID: 20816706]

© 2024 Bentham Science Publishers | Privacy Policy