Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Commentary

The Tryptophan Catabolite or Kynurenine Pathway’s Role in Major Depression

Author(s): Abbas F. Almulla* and Michael Maes

Volume 22, Issue 21, 2022

Published on: 09 June, 2022

Page: [1731 - 1735] Pages: 5

DOI: 10.2174/1568026622666220428095250

Open Access Journals Promotions 2
[1]
Messaoud, A.; Rym, M.; Wahiba, D.; Neffati, F.; Najjar, M.F.; Gobbi, G.; Manchia, M.; Valtorta, F.; Lotfi, G.; Comai, S. Investigation of the relationship among cortisol, pro-inflammatory cytokines, and the degradation of tryptophan into kynurenine in patients with major depression and suicidal behavior. Curr. Top. Med. Chem., 2021. [Epub ahead of print].
[http://dx.doi.org/10.2174/1568026621666210909160210] [PMID: 34503408]
[2]
Bonaccorso, S.; Meltzer, H.; Maes, M. Psychological and behavioural effects of interferons. Curr. Opin. Psychiatry, 2000, 13(6), 673-677.
[http://dx.doi.org/10.1097/00001504-200011000-00034]
[3]
Maes, M.; Leonard, B.E.; Myint, A.M.; Kubera, M.; Verkerk, R. The new ‘5-HT’ hypothesis of depression: Cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 702-721.
[http://dx.doi.org/10.1016/j.pnpbp.2010.12.017] [PMID: 21185346]
[4]
Maes, M. A review on citation amnesia in depression and inflammation research. Neuroendocrinol. Lett., 2015, 36(1), 1-6.
[PMID: 25789583]
[5]
Maes, M.; Carvalho, A.F. The compensatory immune-regulatory reflex system (CIRS) in depression and bipolar disorder. Mol. Neurobiol., 2018, 55(12), 8885-8903.
[http://dx.doi.org/10.1007/s12035-018-1016-x] [PMID: 29611101]
[6]
Vasupanrajit, A.; Jirakran, K.; Tunvirachaisakul, C.; Solmi, M.; Maes, M. Inflammation and nitro-oxidative stress in current suicidal attempts and current suicidal ideation: a systematic review and meta-analysis. Mol. Psychiatry, 2022, 27(3), 1350-1361.
[http://dx.doi.org/10.1038/s41380-021-01407-4]
[7]
Bonaccorso, S.; Marino, V.; Puzella, A.; Pasquini, M.; Biondi, M.; Artini, M.; Almerighi, C.; Verkerk, R.; Meltzer, H.; Maes, M. Increased depressive ratings in patients with hepatitis C receiving interferon-α-based immunotherapy are related to interferon-α-induced changes in the serotonergic system. J. Clin. Psychopharmacol., 2002, 22(1), 86-90.
[http://dx.doi.org/10.1097/00004714-200202000-00014] [PMID: 11799348]
[8]
Myint, A.M.; Kim, Y.K. Cytokine-serotonin interaction through IDO: A neurodegeneration hypothesis of depression. Med. Hypotheses, 2003, 61(5-6), 519-525.
[http://dx.doi.org/10.1016/S0306-9877(03)00207-X] [PMID: 14592780]
[9]
Maes, M.; Rief, W. Diagnostic classifications in depression and somatization should include biomarkers, such as disorders in the tryptophan catabolite (TRYCAT) pathway. Psychiatry Res., 2012, 196(2-3), 243-249.
[http://dx.doi.org/10.1016/j.psychres.2011.09.029] [PMID: 22364930]
[10]
Kanchanatawan, B.; Hemrungrojn, S.; Thika, S.; Sirivichayakul, S.; Ruxrungtham, K.; Carvalho, A.F.; Geffard, M.; Anderson, G.; Maes, M. Changes in tryptophan catabolite (TRYCAT) pathway patterning are associated with mild impairments in declarative memory in schizophrenia and deficits in semantic and episodic memory coupled with increased false-memory creation in deficit schizophrenia. Mol. Neurobiol., 2018, 55(6), 5184-5201.
[http://dx.doi.org/10.1007/s12035-017-0751-8] [PMID: 28875464]
[11]
Maes, M.; Kubera, M.; Leunis, J.C. The gut-brain barrier in major depression: Intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol. Lett., 2008, 29(1), 117-124.
[PMID: 18283240]
[12]
Liu, T.; Zhong, S.; Liao, X.; Chen, J.; He, T.; Lai, S.; Jia, Y. A meta-analysis of oxidative stress markers in depression. PLoS One, 2015, 10(10), e0138904.
[http://dx.doi.org/10.1371/journal.pone.0138904] [PMID: 26445247]
[13]
Maes, M.; Congio, A.; Moraes, J.B.; Bonifacio, K.L.; Barbosa, D.S.; Vargas, H.O.; Morris, G.; Puri, B.K.; Michelin, A.P.; Nunes, S.O.V. Early life trauma predicts affective phenomenology and the effects are partly mediated by staging coupled with lowered lipid-associated antioxidant defences. Biomol. Concepts, 2018, 9(1), 115-130.
[http://dx.doi.org/10.1515/bmc-2018-0010] [PMID: 30471214]
[14]
Goda, K.; Hamane, Y.; Kishimoto, R.; Ogishi, Y. Radical scavenging properties of tryptophan metabolites. Estimation of their radical reactivity. Adv. Exp. Med. Biol., 1999, 467, 397-402.
[http://dx.doi.org/10.1007/978-1-4615-4709-9_50] [PMID: 10721081]
[15]
Morris, G.; Carvalho, A.F.; Anderson, G.; Galecki, P.; Maes, M. The many neuroprogressive actions of Tryptophan Catabolites. (TRYCATs) that may be associated with the pathophysiology of neuro-immune disorders. Curr. Pharm. Des., 2016, 22(8), 963-977.
[http://dx.doi.org/10.2174/1381612822666151215102420] [PMID: 26667000]
[16]
Guillemin, G.J.; Cullen, K.M.; Lim, C.K.; Smythe, G.A.; Garner, B.; Kapoor, V.; Takikawa, O.; Brew, B.J. Characterization of the kynurenine pathway in human neurons. J. Neurosci., 2007, 27(47), 12884-12892.
[http://dx.doi.org/10.1523/JNEUROSCI.4101-07.2007] [PMID: 18032661]
[17]
Smith, A.J.; Smith, R.A.; Stone, T.W. 5-Hydroxyanthranilic acid, a tryptophan metabolite, generates oxidative stress and neuronal death via p38 activation in cultured cerebellar granule neurones. Neurotox. Res., 2009, 15(4), 303-310.
[http://dx.doi.org/10.1007/s12640-009-9034-0] [PMID: 19384564]
[18]
Reyes Ocampo, J.; Lugo Huitrón, R.; González-Esquivel, D.; Ugalde-Muñiz, P.; Jiménez-Anguiano, A.; Pineda, B.; Pedraza-Chaverri, J.; Ríos, C.; Pérez de la Cruz, V. Kynurenines with neuroactive and redox properties: Relevance to aging and brain diseases. Oxid. Med. Cell. Longev., 2014, 2014, 646909.
[http://dx.doi.org/10.1155/2014/646909] [PMID: 24693337]
[19]
Guidetti, P.; Schwarcz, R. 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur. J. Neurosci., 1999, 11(11), 3857-3863.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00806.x] [PMID: 10583474]
[20]
Goldstein, L.E.; Leopold, M.C.; Huang, X.; Atwood, C.S.; Saunders, A.J.; Hartshorn, M.; Lim, J.T.; Faget, K.Y.; Muffat, J.A.; Scarpa, R.C.; Chylack, L.T., Jr; Bowden, E.F.; Tanzi, R.E.; Bush, A.I. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid generate hydrogen peroxide and promote alpha-crystallin cross-linking by metal ion reduction. Biochemistry, 2000, 39(24), 7266-7275.
[http://dx.doi.org/10.1021/bi992997s] [PMID: 10852726]
[21]
Santamaría, A.; Galván-Arzate, S.; Lisý, V.; Ali, S.F.; Duhart, H.M.; Osorio-Rico, L.; Ríos, C.; St’astný, F. Quinolinic acid induces oxidative stress in rat brain synaptosomes. Neuroreport, 2001, 12(4), 871-874.
[http://dx.doi.org/10.1097/00001756-200103260-00049] [PMID: 11277599]
[22]
Okuda, S.; Nishiyama, N.; Saito, H.; Katsuki, H. 3-Hydroxykynu-renine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J. Neurochem., 1998, 70(1), 299-307.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70010299.x] [PMID: 9422375]
[23]
Dykens, J.A.; Sullivan, S.G.; Stern, A. Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Biochem. Pharmacol., 1987, 36(2), 211-217.
[http://dx.doi.org/10.1016/0006-2952(87)90691-5] [PMID: 2949752]
[24]
Tanaka, M.; Bohár, Z.; Martos, D.; Telegdy, G.; Vécsei, L. Antidepressant-like effects of kynurenic acid in a modified forced swim test. Pharmacol. Rep., 2020, 72(2), 449-455.
[http://dx.doi.org/10.1007/s43440-020-00067-5] [PMID: 32162182]
[25]
Almulla, A.F.; Vasupanrajit, A.; Tunvirachaisakul, C. The tryptophan catabolite or kynurenine pathway in schizophrenia: meta-analysis reveals dissociations between central, serum, and plasma compartments. Mol. Psychiatry, 2022. Epub ahead of print
[http://dx.doi.org/10.1038/s41380-022-01552-4]
[26]
Fernstrom, J.D.; Hirsch, M.J.; Faller, D.V. Tryptophan concentrations in rat brain. Failure to correlate with free serum tryptophan or its ratio to the sum of other serum neutral amino acids. Biochem. J., 1976, 160(3), 589-595.
[http://dx.doi.org/10.1042/bj1600589] [PMID: 1016241]
[27]
Curzon, G. Transport Mechanisms of Tryptophan in Blood Cells, Nerve Cells, and at the Blood-Brain Barrier; Baumann, P., Ed.; Springer: Vienna, 1979, pp. 81-92.
[http://dx.doi.org/10.1007/978-3-7091-2243-3_7]
[28]
Badawy, A.A.B.; Doughrty, D.M.; Marsh-Richard, D.M.; Steptoe, A. Activation of liver tryptophan pyrrolase mediates the decrease in tryptophan availability to the brain after acute alcohol consumption by normal subjects. Alcohol Alcohol., 2009, 44(3), 267-271.
[http://dx.doi.org/10.1093/alcalc/agp005] [PMID: 19201692]
[29]
Kita, T.; Morrison, P.F.; Heyes, M.P.; Markey, S.P. Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the L-kynurenine and quinolinic acid pools in brain. J. Neurochem., 2002, 82(2), 258-268.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00955.x] [PMID: 12124427]
[30]
Fukui, S.; Schwarcz, R.; Rapoport, S.I.; Takada, Y.; Smith, Q.R. Blood-brain barrier transport of kynurenines: Implications for brain synthesis and metabolism. J. Neurochem., 1991, 56(6), 2007-2017.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb03460.x] [PMID: 1827495]
[31]
Gál, E.M.; Sherman, A.D. L-kynurenine: Its synthesis and possible regulatory function in brain. Neurochem. Res., 1980, 5(3), 223-239.
[http://dx.doi.org/10.1007/BF00964611] [PMID: 6154900]
[32]
Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci., 2012, 13(7), 465-477.
[http://dx.doi.org/10.1038/nrn3257] [PMID: 22678511]
[33]
da Silva Dias, I.C.; Carabelli, B.; Ishii, D.K.; de Morais, H.; de Carvalho, M.C.; Rizzo de Souza, L.E.; Zanata, S.M.; Brandão, M.L.; Cunha, T.M.; Ferraz, A.C.; Cunha, J.M.; Zanoveli, J.M. Indoleamine-2,3-Dioxygenase/Kynurenine pathway as a potential pharmacological target to treat depression associated with diabetes. Mol. Neurobiol., 2016, 53(10), 6997-7009.
[http://dx.doi.org/10.1007/s12035-015-9617-0] [PMID: 26671617]
[34]
Réus, G.Z.; Becker, I.R.T.; Scaini, G.; Petronilho, F.; Oses, J.P.; Kaddurah-Daouk, R.; Ceretta, L.B.; Zugno, A.I.; Dal-Pizzol, F.; Quevedo, J.; Barichello, T. The inhibition of the kynurenine pathway prevents behavioral disturbances and oxidative stress in the brain of adult rats subjected to an animal model of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 81, 55-63.
[http://dx.doi.org/10.1016/j.pnpbp.2017.10.009] [PMID: 29030243]
[35]
Tomaszewska, E. Muszyński, S.; Kuc, D.; Dobrowolski, P.; Lamorski, K.; Smolińska, K.; Donaldson, J.; Świetlicka, I.; Mielnik-Błaszczak, M.; Paluszkiewicz, P.; Parada-Turska, J. Chronic dietary supplementation with kynurenic acid, a neuroactive metabolite of tryptophan, decreased body weight without negative influence on densitometry and mandibular bone biomechanical endurance in young rats. PLoS One, 2019, 14(12), e0226205.
[http://dx.doi.org/10.1371/journal.pone.0226205] [PMID: 31809528]
[36]
Żarnowski, T; Chorągiewicz, T; Tulidowicz-Bielak, M; Thaler, S; Rejdak, R; Żarnowski, I; Turski, W.A; Gasior, M. Ketogenic diet increases concentrations of kynurenic acid in discrete brain structures of young and adult rats. J. Neural Transm., 2012, 119(6), 679-684.
[http://dx.doi.org/10.1007/s00702-011-0750-2]
[37]
Deora, G.S.; Kantham, S.; Chan, S.; Dighe, S.N.; Veliyath, S.K.; McColl, G.; Parat, M-O.; McGeary, R.P.; Ross, B.P. Multifunctional analogs of kynurenic acid for the treatment of Alzheimer’s Disease: Synthesis, pharmacology, and molecular modeling studies. ACS Chem. Neurosci., 2017, 8(12), 2667-2675.
[http://dx.doi.org/10.1021/acschemneuro.7b00229] [PMID: 28825789]
[38]
Tóth, F.; Cseh, E.K.; Vécsei, L. Natural molecules and neuroprotection: Kynurenic acid, pantethine and α-lipoic acid. Int. J. Mol. Sci., 2021, 22(1), E403.
[http://dx.doi.org/10.3390/ijms22010403] [PMID: 33401674]

© 2024 Bentham Science Publishers | Privacy Policy