Review Article

Combinational Approaches Targeting Various Aspects Involved in Intestinal Barrier Dysfunction-Induced Anxiety

Author(s): Anita Murugan Pallar and Pravin Popatrao Kale*

Volume 23, Issue 11, 2022

Published on: 21 June, 2022

Page: [1085 - 1098] Pages: 14

DOI: 10.2174/1389450123666220428093419

Price: $65

Open Access Journals Promotions 2
Abstract

Anxiety disorder is one of the most prevalent psychiatric disorders. The high prevalence of comorbid gastrointestinal disorders and anxiety, as well as various limitations in current therapy, have necessitated the search for alternative techniques. The Gut-Brain Axis is the connecting link between the gut and the brain. One of the reasons for the Gut-Brain Axis malfunction resulting in HPA axis stimulation and anxiety is intestinal barrier dysfunction. Gut microorganisms, lipopolysaccharides, and other factors can stimulate the disruption of this intestinal barrier. Tight junction proteins, the epithelial barrier, the mucosal membrane, the Toll-like receptor/Myeloid differentiation factor 88 pathway, the activated immune system, and the HPA axis could all be potential targets for anxiety caused by intestinal barrier disruption. Quercetin and Rebamipide, Berberine and Agomelatine, Angiotensin II receptor type 1 blockers, and Lubiprostone can act on these targets to provide an anxiolytic effect.

Keywords: Anxiety, intestinal barrier dysfunction, gut brain axis, tight junction proteins, immune system, HPA axis, cortisol.

Graphical Abstract
[1]
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. Future Neurol 2011; 6(4): 531-71.
[http://dx.doi.org/10.2217/fnl.11.34] [PMID: 21901080]
[2]
Gelfuso ÉA, Rosa DS, Fachin AL, Mortari MR, Cunha AO, Beleboni RO. Anxiety: a systematic review of neurobiology, traditional pharmaceuticals and novel alternatives from medicinal plants. CNS Neurol Disord Drug Targets 2014; 13(1): 150-65.
[http://dx.doi.org/10.2174/18715273113129990102] [PMID: 24040796]
[3]
Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci 2015; 17(3): 327-35.
[http://dx.doi.org/10.31887/DCNS.2015.17.3/bbandelow] [PMID: 26487813]
[4]
Adwas AA, Jbireal JM, Azab AE. Anxiety: Insights into signs, symptoms, etiology, pathophysiology, and treatment. East African Scholars Journal of Medical Sciences 2019; 2(October): 80-91.
[5]
Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004; 9(11): 984-997, 979.
[http://dx.doi.org/10.1038/sj.mp.4001551] [PMID: 15278097]
[6]
Fond G, Loundou A, Hamdani N, et al. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 2014; 264(8): 651-60.
[http://dx.doi.org/10.1007/s00406-014-0502-z] [PMID: 24705634]
[7]
Keefer L, Kane SV. Kane S v. Considering the bidirectional pathways between depression and IBD: Recommendations for comprehensive IBD care. Gastroenterol Hepatol (N Y) 2017; 13(3): 164-9.
[PMID: 28539843]
[8]
Lee YT, Hu LY, Shen CC, et al. Risk of psychiatric disorders following irritable bowel syndrome: A nationwide population-based cohort study. PLoS One 2015; 10(7): e0133283.
[http://dx.doi.org/10.1371/journal.pone.0133283] [PMID: 26222511]
[9]
Midenfjord I, Polster A, Sjövall H, Törnblom H, Simrén M. Anxiety and depression in irritable bowel syndrome: Exploring the interaction with other symptoms and pathophysiology using multivariate analyses. Neurogastroenterol Motil 2019; 31(8): e13619.
[http://dx.doi.org/10.1111/nmo.13619] [PMID: 31056802]
[10]
Shah E, Rezaie A, Riddle M, Pimentel M. Psychological disorders in gastrointestinal disease: epiphenomenon, cause or consequence? Ann Gastroenterol 2014; 27(3): 224-30.
[PMID: 24974805]
[11]
Sinagra E, Romano C, Cottone M. Psychopharmacological treatment and psychological interventions in irritable bowel syndrome. Gastroenterol Res Pract 2012; 2012: 486067.
[http://dx.doi.org/10.1155/2012/486067] [PMID: 22956940]
[12]
Neuendorf R, Harding A, Stello N, Hanes D, Wahbeh H. Depression and anxiety in patients with Inflammatory Bowel Disease: A systematic review. J Psychosom Res 2016; 87: 70-80.
[http://dx.doi.org/10.1016/j.jpsychores.2016.06.001] [PMID: 27411754]
[13]
Banerjee A, Sarkhel S, Sarkar R, Dhali GK. Anxiety and depression in irritable bowel syndrome. Indian J Psychol Med 2017; 39(6): 741-5.
[http://dx.doi.org/10.4103/IJPSYM.IJPSYM_46_17] [PMID: 29284804]
[14]
Madhu SV. Madhu S v. Psychological comorbidity in diabetes mellitus-need for early recognition and treatment. Int J Diabetes Dev Ctries 2018; 38(3): 257-9.
[http://dx.doi.org/10.1007/s13410-018-0684-4]
[15]
Bener A, Dafeeah EE. Impact of depression and anxiety disorders on gastrointestinal symptoms and its prevalence in the general population. Biomed Res 2011; 22(4): 407-15.
[16]
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2): 203-9.
[PMID: 25830558]
[17]
Stephens MAC, McCaul ME, Wand GS. The potential role of glucocorticoids and the HPA axis in alcohol dependence. Neurobiology of Alcohol Dependence 2014; 429-50.
[http://dx.doi.org/10.1016/B978-0-12-405941-2.00021-3]
[18]
Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 2015; 9: 392.
[http://dx.doi.org/10.3389/fncel.2015.00392] [PMID: 26528128]
[19]
Farhadi A, Banan A, Fields J, Keshavarzian A. Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol 2003; 18(5): 479-97.
[http://dx.doi.org/10.1046/j.1440-1746.2003.03032.x] [PMID: 12702039]
[20]
Michielan A, D’Incà R. Intestinal permeability in inflammatory bowel disease: Pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm 2015; 2015: 628157.
[21]
Zhou Q, Zhang B, Verne GN. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain 2009; 146(1-2): 41-6.
[http://dx.doi.org/10.1016/j.pain.2009.06.017] [PMID: 19595511]
[22]
Cox AJ, Zhang P, Bowden DW, et al. Increased intestinal permeability as a risk factor for type 2 diabetes. Diabetes Metab 2017; 43(2): 163-6.
[http://dx.doi.org/10.1016/j.diabet.2016.09.004] [PMID: 27745826]
[23]
Li X, Atkinson MA. The role for gut permeability in the pathogenesis of type 1 diabetes-a solid or leaky concept? Pediatr Diabetes 2015; 16(7): 485-92.
[24]
Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc 2020; 4(2): bvz039.
[http://dx.doi.org/10.1210/jendso/bvz039] [PMID: 32099951]
[25]
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70(4): 631-59.
[http://dx.doi.org/10.1007/s00018-012-1070-x] [PMID: 22782113]
[26]
Martìn-Padura I, Lostaglio S, Schneemann M, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142(1): 117-27.
[http://dx.doi.org/10.1083/jcb.142.1.117] [PMID: 9660867]
[27]
Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 2005; 171(6): 939-45.
[http://dx.doi.org/10.1083/jcb.200510043] [PMID: 16365161]
[28]
Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009; 9(11): 799-809.
[http://dx.doi.org/10.1038/nri2653] [PMID: 19855405]
[29]
Principi N, Cozzali R, Farinelli E, Brusaferro A, Esposito S. Gut dysbiosis and irritable bowel syndrome: The potential role of probiotics. J Infect 2018; 76(2): 111-20.
[http://dx.doi.org/10.1016/j.jinf.2017.12.013] [PMID: 29291933]
[30]
Pizzorno J. Toxins from the gut. Integr Med (Encinitas) 2014; 13(6): 8-11.
[PMID: 26770119]
[31]
Bischoff SC. ‘Gut health’: a new objective in medicine? BMC Med 2011; 9(1): 24.
[http://dx.doi.org/10.1186/1741-7015-9-24] [PMID: 21401922]
[32]
Qin HY, Cheng CW, Tang XD, Bian ZX. Impact of psychological stress on irritable bowel syndrome. World J Gastroenterol 2014; 20(39): 14126-31.
[http://dx.doi.org/10.3748/wjg.v20.i39.14126] [PMID: 25339801]
[33]
Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol 2014; 14(1): 189.
[http://dx.doi.org/10.1186/s12876-014-0189-7] [PMID: 25407511]
[34]
Nighot M, Rawat M, Al-Sadi R, Castillo EF, Nighot P, Ma TY. Lipopolysaccharide-induced increase in intestinal permeability is mediated by TAK-1 activation of IKK and MLCK/MYLK gene. Am J Pathol 2019; 189(4): 797-812.
[http://dx.doi.org/10.1016/j.ajpath.2018.12.016] [PMID: 30711488]
[35]
Cryan JF, O’Riordan KJ, Cowan CSM, et al. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99(4): 1877-2013.
[http://dx.doi.org/10.1152/physrev.00018.2018] [PMID: 31460832]
[36]
Lambert GP. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci 2009; 87(14)(Suppl.): E101-8.
[http://dx.doi.org/10.2527/jas.2008-1339] [PMID: 18791134]
[37]
Rekatsina M, Paladini A, Cifone MG, Lombardi F, Pergolizzi JV, Varrassi G. Influence of microbiota on NSAID enteropathy: a systematic review of current knowledge and the role of probiotics. Adv Ther 2020; 37(5): 1933-45.
[http://dx.doi.org/10.1007/s12325-020-01338-6] [PMID: 32291647]
[38]
Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 2009; 136(6): 2015-31.
[http://dx.doi.org/10.1053/j.gastro.2009.01.072] [PMID: 19462507]
[39]
Abreu MT, Thomas LS, Arnold ET, Lukasek K, Michelsen KS, Arditi M. TLR signaling at the intestinal epithelial interface. J Endotoxin Res 2003; 9(5): 322-30.
[http://dx.doi.org/10.1177/09680519030090050901] [PMID: 14577850]
[40]
Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 2013; 182(2): 375-87.
[http://dx.doi.org/10.1016/j.ajpath.2012.10.014] [PMID: 23201091]
[41]
Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. Journal of immunology (Baltimore, Md : 1950) 2015; 195(10): 4999-5010.
[http://dx.doi.org/10.4049/jimmunol.1402598]
[42]
Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004; 4(7): 499-511.
[http://dx.doi.org/10.1038/nri1391] [PMID: 15229469]
[43]
Julio-Pieper M, Bravo JA, Aliaga E, Gotteland M. Review article: intestinal barrier dysfunction and central nervous system disorders--a controversial association. Aliment Pharmacol Ther 2014; 40(10): 1187-201.
[http://dx.doi.org/10.1111/apt.12950] [PMID: 25262969]
[44]
Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18(6): 666-73.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[45]
Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol 2021; 11(5): 1463-82.
[http://dx.doi.org/10.1016/j.jcmgh.2021.02.007] [PMID: 33610769]
[46]
Becattini S, Taur Y, Pamer EG. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 2016; 22(6): 458-78.
[http://dx.doi.org/10.1016/j.molmed.2016.04.003] [PMID: 27178527]
[47]
Feng Y, Huang Y, Wang Y, Wang P, Song H, Wang F. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS One 2019; 14(6): e0218384.
[http://dx.doi.org/10.1371/journal.pone.0218384] [PMID: 31211803]
[48]
Zhu L, Ni Z, Luo X, Wang X, World J. Respirol. World J Respirol 2017; 7(1): 17-28.
[http://dx.doi.org/10.5320/wjr.v7.i1.17]
[49]
Chamoun-Emanuelli AM, Bryan LK, Cohen ND, et al. NSAIDs disrupt intestinal homeostasis by suppressing macroautophagy in intestinal epithelial cells. Sci Rep 2019; 9(1): 14534.
[http://dx.doi.org/10.1038/s41598-019-51067-2] [PMID: 31601922]
[50]
Bhatt AP, Gunasekara DB, Speer J, et al. Nonsteroidal anti-inflammatory drug-induced leaky gut modeled using polarized monolayers of primary human intestinal epithelial cells. ACS Infect Dis 2018; 4(1): 46-52.
[http://dx.doi.org/10.1021/acsinfecdis.7b00139] [PMID: 29094594]
[51]
Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol 2020; 319(5): G589-608.
[http://dx.doi.org/10.1152/ajpgi.00245.2020] [PMID: 32902315]
[52]
Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D. Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol 2001; 281(4): G907-15.
[http://dx.doi.org/10.1152/ajpgi.2001.281.4.G907] [PMID: 11557510]
[53]
Hosoi T, Okuma Y, Matsuda T, Nomura Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton Neurosci 2005; 120(1-2): 104-7.
[http://dx.doi.org/10.1016/j.autneu.2004.11.012] [PMID: 15919243]
[54]
Li Y, Hao Y, Zhu J, Owyang C. Serotonin released from intestinal enterochromaffin cells mediates luminal non-cholecystokinin-stimulated pancreatic secretion in rats. Gastroenterology 2000; 118(6): 1197-207.
[http://dx.doi.org/10.1016/S0016-5085(00)70373-8] [PMID: 10833495]
[55]
Strader AD, Woods SC. Gastrointestinal hormones and food intake. Gastroenterology 2005; 128(1): 175-91.
[http://dx.doi.org/10.1053/j.gastro.2004.10.043] [PMID: 15633135]
[56]
Howland RH. Vagus nerve stimulation. Curr Behav Neurosci Rep 2014; 1(2): 64-73.
[http://dx.doi.org/10.1007/s40473-014-0010-5] [PMID: 24834378]
[57]
Elnazer HY, Baldwin DS. Investigation of cortisol levels in patients with anxiety disorders: a structured review. Curr Top Behav Neurosci 2014; 18: 191-216.
[http://dx.doi.org/10.1007/7854_2014_299] [PMID: 24659553]
[58]
Boots AW, Haenen GRMM, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008; 585(2-3): 325-37.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[59]
Lee B, Yeom M, Shim I, Lee H, Hahm DH. Protective effects of quercetin on anxiety-like symptoms and neuroinflammation induced by lipopolysaccharide in rats. Evid Based Complement Alternat Med 2020; 2020: 4892415.
[http://dx.doi.org/10.1155/2020/4892415] [PMID: 32419805]
[60]
Kawabata K, Kawai Y, Terao J. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats. J Nutr Biochem 2010; 21(5): 374-80.
[http://dx.doi.org/10.1016/j.jnutbio.2009.01.008] [PMID: 19423323]
[61]
Jäger AK, Saaby L. Flavonoids and the CNS. Molecules 2011; 16(2): 1471-85.
[http://dx.doi.org/10.3390/molecules16021471] [PMID: 21311414]
[62]
Bhutada P, Mundhada Y, Bansod K, et al. Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34(6): 955-60.
[http://dx.doi.org/10.1016/j.pnpbp.2010.04.025] [PMID: 20447436]
[63]
Samad N, Saleem A, Yasmin F, Shehzad MA. Quercetin protects against stress-induced anxiety- and depression-like behavior and improves memory in male mice. Physiol Res 2018; 67(5): 795-808.
[http://dx.doi.org/10.33549/physiolres.933776] [PMID: 30044120]
[64]
Lee B-H, Hwang S-H, Choi S-H, Shin T-J, Kang J, Lee S-M, et al. Quercetin inhibits α3β4 nicotinic acetylcholine receptor-mediated ion currents expressed in xenopus oocytes. kjpp 2011; 15(1): 17-22.
[65]
Hai Y, Zhang Y, Liang Y, et al. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives. Food Front 2020; 1(4): 420-34.
[http://dx.doi.org/10.1002/fft2.50]
[66]
Suzuki T, Hara H. Quercetin enhances intestinal barrier function through the assembly of zonula [corrected] occludens-2, occludin, and claudin-1 and the expression of claudin-4 in Caco-2 cells. J Nutr 2009; 139(5): 965-74.
[http://dx.doi.org/10.3945/jn.108.100867] [PMID: 19297429]
[67]
Das N, Sikder K, Bhattacharjee S, et al. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice. Food Funct 2013; 4(6): 889-98.
[http://dx.doi.org/10.1039/c3fo30241e] [PMID: 23644882]
[68]
Ma JQ, Li Z, Xie WR, Liu CM, Liu SS. Quercetin protects mouse liver against CCl4-induced inflammation by the TLR2/4 and MAPK/NF-κB pathway. Int Immunopharmacol 2015; 28(1): 531-9.
[http://dx.doi.org/10.1016/j.intimp.2015.06.036] [PMID: 26218279]
[69]
Ogino K, Hobara T, Ishiyama H, et al. Antiulcer mechanism of action of rebamipide, a novel antiulcer compound, on diethyldithiocarbamate-induced antral gastric ulcers in rats. Eur J Pharmacol 1992; 212(1): 9-13.
[http://dx.doi.org/10.1016/0014-2999(92)90065-C] [PMID: 1313372]
[70]
Xu N, Zhang C, Jing L, Mou S, Cao X, Yu Z. Protective effect and mechanism of rebamipide on NSAIDs associated small bowel injury. Int Immunopharmacol 2021; 90: 107136.
[http://dx.doi.org/10.1016/j.intimp.2020.107136] [PMID: 33218942]
[71]
Ogasawara N, Sasaki M, Itoh Y. Rebamipide suppresses TLR?TBK1 signaling the society for free radical research Japan 1880 50860912-0009 10.3164/j9cb.10-69 JJCBN Kyj bn10-6 Original Article c oto, Japan ournal of clinical biochemistry and nutrition pathway resulting in regulating IRF3/7. J Clin Biochem Nutr 2011; 48(2): 154-60.
[72]
Kim SK, Choe JY, Park KY. Rebamipide suppresses monosodium urate crystal-induced interleukin-1β Production through regulation of oxidative stress and caspase-1 in THP-1 Cells. Inflammation 2016; 39(1): 473-82.
[http://dx.doi.org/10.1007/s10753-015-0271-5] [PMID: 26454448]
[73]
Tanigawa T, Watanabe T, Otani K, et al. Rebamipide inhibits indomethacin-induced small intestinal injury: possible involvement of intestinal microbiota modulation by upregulation of α-defensin 5. Eur J Pharmacol 2013; 704(1-3): 64-9.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.010] [PMID: 23428631]
[74]
Suzuki T, Yoshida N, Nakabe N, et al. Prophylactic effect of rebamipide on aspirin-induced gastric lesions and disruption of tight junctional protein zonula occludens-1 distribution. J Pharmacol Sci 2008; 106(3): 469-77.
[http://dx.doi.org/10.1254/jphs.FP0071422] [PMID: 18360096]
[75]
Banan A, Fitzpatrick L, Zhang Y, Keshavarzian A. OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability. Free Radic Biol Med 2001; 30(3): 287-98.
[http://dx.doi.org/10.1016/S0891-5849(00)00471-8] [PMID: 11165875]
[76]
Fujimori S, Takahashi Y, Gudis K, et al. Rebamipide has the potential to reduce the intensity of NSAID-induced small intestinal injury: a double-blind, randomized, controlled trial evaluated by capsule endoscopy. J Gastroenterol 2011; 46(1): 57-64.
[http://dx.doi.org/10.1007/s00535-010-0332-3] [PMID: 20924615]
[77]
Rainer Q, Xia L, Guilloux J-P, et al. Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int J Neuropsychopharmacol 2012; 15(3): 321-35.
[http://dx.doi.org/10.1017/S1461145711000356] [PMID: 21473810]
[78]
Ochoa-Sanchez R, Rainer Q, Comai S, et al. Anxiolytic effects of the melatonin MT(2) receptor partial agonist UCM765: comparison with melatonin and diazepam. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39(2): 318-25.
[http://dx.doi.org/10.1016/j.pnpbp.2012.07.003] [PMID: 22789661]
[79]
Kennedy SH, Eisfeld BS. Agomelatine and its therapeutic potential in the depressed patient. Neuropsychiatr Dis Treat 2007; 3(4): 423-8.
[PMID: 19300571]
[80]
de Bodinat C, Guardiola-Lemaitre B, Mocaër E, Renard P, Muñoz C, Millan MJ. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 2010; 9(8): 628-42.
[http://dx.doi.org/10.1038/nrd3140] [PMID: 20577266]
[81]
Stahl SM. Mood Disorders and Antidepressants: Stahl’s Essential Psychopharmacology. Cambridge University Press 2013.
[82]
Stein DJ, Khoo JP, Ahokas A, et al. 12-week double-blind randomized multicenter study of efficacy and safety of agomelatine (25-50 mg/day) versus escitalopram (10-20 mg/day) in out-patients with severe generalized anxiety disorder. Eur Neuropsychopharmacol 2018; 28(8): 970-9.
[http://dx.doi.org/10.1016/j.euroneuro.2018.05.006] [PMID: 30135032]
[83]
Dhangar RR, Kale PP, Kadu PK, Prabhavalkar K. Possible benefits of considering glutamate with melatonin or orexin or oxytocin as a combination approach in the treatment of anxiety. Curr Pharmacol Rep 2020; 6(1): 1-7.
[http://dx.doi.org/10.1007/s40495-019-00207-3]
[84]
Imanshahidi M, Hosseinzadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res 2008; 22(8): 999-1012.
[http://dx.doi.org/10.1002/ptr.2399] [PMID: 18618524]
[85]
Kulkarni SK, Dhir A. On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol 2008; 589(1-3): 163-72.
[http://dx.doi.org/10.1016/j.ejphar.2008.05.043] [PMID: 18585703]
[86]
Neag MA, Mocan A, Echeverría J, et al. Berberine: Botanical Occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol 2018; 9(AUG): 557.
[http://dx.doi.org/10.3389/fphar.2018.00557] [PMID: 30186157]
[87]
Peng WH, Wu CR, Chen CS, Chen CF, Leu ZC, Hsieh MT. Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models: interaction with drugs acting at 5-HT receptors. Life Sci 2004; 75(20): 2451-62.
[http://dx.doi.org/10.1016/j.lfs.2004.04.032] [PMID: 15350820]
[88]
Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. Effect of berberine on depression- and anxiety-like behaviors and activation of the noradrenergic system induced by development of morphine dependence in rats. Korean J Physiol Pharmacol 2012; 16(6): 379-86.
[http://dx.doi.org/10.4196/kjpp.2012.16.6.379] [PMID: 23269899]
[89]
Alavijeh MM, Vaezi G, Khaksari M, Hojati V. Berberine hydrochloride attenuates voluntary methamphetamine consumption and anxiety-like behaviors via modulation of oxytocin receptors in methamphetamine addicted rats. Physiol Behav 2019; 206: 157-65.
[http://dx.doi.org/10.1016/j.physbeh.2019.03.024] [PMID: 30922821]
[90]
Kong LD, Cheng CHK, Tan RX. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med 2001; 67(1): 74-6.
[http://dx.doi.org/10.1055/s-2001-10874] [PMID: 11270727]
[91]
Gong J, Hu M, Huang Z, et al. Berberine attenuates intestinal mucosal barrier dysfunction in type 2 diabetic rats. Front Pharmacol 2017; 8: 42.
[http://dx.doi.org/10.3389/fphar.2017.00042] [PMID: 28217099]
[92]
Hou Q, Zhu S, Zhang C, et al. Berberine improves intestinal epithelial tight junctions by upregulating A20 expression in IBS-D mice. Biomed Pharmacother 2019; 118: 109206.
[http://dx.doi.org/10.1016/j.biopha.2019.109206] [PMID: 31306972]
[93]
Gu L, Li N, Li Q, et al. The effect of berberine in vitro on tight junctions in human Caco-2 intestinal epithelial cells. Fitoterapia 2009; 80(4): 241-8.
[http://dx.doi.org/10.1016/j.fitote.2009.02.005] [PMID: 19243699]
[94]
Haspula D, Clark MA. Molecular basis of the brain renin angiotensin system in cardiovascular and neurologic disorders: uncovering a key role for the astroglial angiotensin type 1 receptor AT1R. J Pharmacol Exp Ther 2018; 366(2): 251-64.
[http://dx.doi.org/10.1124/jpet.118.248831] [PMID: 29752427]
[95]
Uijl E, Ren L, Danser AHJ. Angiotensin generation in the brain: a re-evaluation. Clin Sci (Lond) 2018; 132(8): 839-50.
[http://dx.doi.org/10.1042/CS20180236] [PMID: 29712882]
[96]
Gong X, Hu H, Qiao Y, et al. The involvement of renin-angiotensin system in lipopolysaccharide-induced behavioral changes, neuroinflammation, and disturbed insulin signaling. Front Pharmacol 2019; 10: 318.
[http://dx.doi.org/10.3389/fphar.2019.00318] [PMID: 31001119]
[97]
Saavedra JM, Ando H, Armando I, et al. Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists. Regul Pept 2005; 128(3): 227-38.
[http://dx.doi.org/10.1016/j.regpep.2004.12.015] [PMID: 15837532]
[98]
Armando I, Carranza A, Nishimura Y, et al. Peripheral administration of an angiotensin II AT(1) receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation Stress. Endocrinology 2001; 142(9): 3880-9.
[http://dx.doi.org/10.1210/endo.142.9.8366] [PMID: 11517166]
[99]
Llano López LH, Caif F, García S, et al. Anxiolytic-like effect of losartan injected into amygdala of the acutely stressed rats. Pharmacol Rep 2012; 64(1): 54-63.
[http://dx.doi.org/10.1016/S1734-1140(12)70730-2] [PMID: 22580520]
[100]
Reinecke A, Browning M, Klein Breteler J, et al. Angiotensin regulation of amygdala response to threat in high-trait-anxiety individuals. Biol Psychiatry Cogn Neurosci Neuroimaging 2018; 3(10): 826-35.
[http://dx.doi.org/10.1016/j.bpsc.2018.05.007] [PMID: 29980493]
[101]
Robles-Vera I, Toral M, de la Visitación N, et al. Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. Br J Pharmacol 2020; 177(9): 2006-23.
[http://dx.doi.org/10.1111/bph.14965] [PMID: 31883108]
[102]
Lembo AJ, Johanson JF, Parkman HP, Rao SS, Miner PB Jr, Ueno R. Long-term safety and effectiveness of lubiprostone, a chloride channel (ClC-2) activator, in patients with chronic idiopathic constipation. Dig Dis Sci 2011; 56(9): 2639-45.
[http://dx.doi.org/10.1007/s10620-011-1801-0] [PMID: 21769655]
[103]
Li F, Fu T, Tong WD, et al. Lubiprostone is effective in the treatment of chronic idiopathic constipation and irritable bowel syndrome: a systematic review and meta-analysis of randomized controlled trials. Mayo Clin Proc 2016; 91(4): 456-68.
[http://dx.doi.org/10.1016/j.mayocp.2016.01.015] [PMID: 27046523]
[104]
Nishii N, Oshima T, Li M, et al. Lubiprostone induces claudin-1 and protects intestinal barrier function. Pharmacology 2020; 105(1-2): 102-8.
[http://dx.doi.org/10.1159/000503054] [PMID: 31536982]
[105]
Zong Y, Zhu S, Zhang S, Zheng G, Wiley JW, Hong S. Chronic stress and intestinal permeability: Lubiprostone regulates glucocorticoid receptor-mediated changes in colon epithelial tight junction proteins, barrier function, and visceral pain in the rodent and human. Neurogastroenterol Motil 2019; 31(2): e13477.
[http://dx.doi.org/10.1111/nmo.13477] [PMID: 30284340]
[106]
Kato T, Honda Y, Kurita Y, et al. Lubiprostone improves intestinal permeability in humans, a novel therapy for the leaky gut: A prospective randomized pilot study in healthy volunteers. PLoS One 2017; 12(4): e0175626.
[http://dx.doi.org/10.1371/journal.pone.0175626] [PMID: 28410406]
[107]
Armando I, Volpi S, Aguilera G, Saavedra JM. Angiotensin II AT1 receptor blockade prevents the hypothalamic corticotropin-releasing factor response to isolation stress. Brain Res 2007; 1142: 92-9.
[http://dx.doi.org/10.1016/j.brainres.2007.01.037] [PMID: 17306778]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy