Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

PIASA, A Novel Peptide, Prevents SH-SY5Y Neuroblastoma Cells against Rotenone-induced Toxicity

Author(s): Ahmed Sha Sulthana, Rengasamy Balakrishnan, Mani Renuka, Thangavel Mohankumar, Dharmar Manimaran, Kuppamuthu Arulkumar and Elangovan Namasivayam*

Volume 16, Issue 3, 2023

Published on: 11 August, 2022

Article ID: e270422204117 Pages: 18

DOI: 10.2174/1874467215666220427103045

Price: $65

Open Access Journals Promotions 2
Abstract

Background and Objective: This investigation explores the neuroprotective effect of PIASA, a newly designed peptide, VCSVY, in in-silico and in opposition to rotenone stimulated oxidative stress, mitochondrial dysfunction, and apoptosis in an SH-SY5Y cellular model.

Methods: Docking and visualization of the PIASA and rotenone were progressed against mitochondrial respiratory complex I (MCI). The in-silico analysis showed PIASA to have interaction with the binding sites of rotenone, which may reduce the rotenone interaction and its toxicity too. The SH-SY5Y cells were segregated into four experimental groups: Group I: untreated control cells; Group II: rotenone-only (100 nM) treated cells; Group III: PIASA (5 μM) + rotenone (100 nM) treated cells; and Group IV: PIASA-only (5 μM) treated cells.

Results: We evaluated the cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), apoptosis (dual staining technique), nuclear morphological changes (Hoechst staining technique), the expressions of BAX, Bcl-2, cyt c, pro-caspase 3, and caspase 3, -6, -8, -9, and cleaved caspase 3 by western blot analysis. In SH-SY5Y cells, we further observed the cytotoxicity, oxidative stress and mitochondrial dysfunction in rotenone-only treated cells, whereas pretreatment of PIASA attenuated the rotenone-mediated toxicity. Moreover, rotenone toxicity is caused by complex I inhibition, which leads to mitochondrial dysfunction, increased BAX expression, while downregulating the Bcl-2 expression and cyt c release, and then finally, caspases activation. PIASA pretreatment prevented the cytotoxic effects via the normalization of apoptotic marker expressions influenced by rotenone. In addition, pre-clinical studies are acceptable in rodents to make use of PIASA as a revitalizing remedial agent, especially for PD in the future.

Conclusion: Collectively, our results propose that PIASA mitigated rotenone-stimulated oxidative stress, mitochondrial dysfunction, and apoptosis in rotenone-induced SH-SY5Y cells.

Keywords: Parkinson’s disease, SH-SY5Y cells, peptide, cell viability, apoptosis, degeneration.

Graphical Abstract
[1]
Bonet-Ponce, L.; Singleton, A.B. Make dopamine neurons great again: An exciting new therapeutic option in parkinson’s disease. Mov. Disord., 2017, 32(8), 1164.
[http://dx.doi.org/10.1002/mds.27078] [PMID: 28631854]
[2]
Baig, M.H.; Ahmad, K.; Rabbani, G.; Danishuddin, M.; Choi, I.; Ahmad, K.; Rabbani, G.; Danishuddin, I. hoi, C. Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr. Neuropharmacol., 2018, 16(6), 740-748.
[http://dx.doi.org/10.2174/1570159X15666171016163510] [PMID: 29046156]
[3]
Modgil, S.; Lahiri, D.K.; Sharma, V.L.; Anand, A. Role of early life exposure and environment on neurodegeneration: Implications on brain disorders. Transl. Neurodegener., 2014, 3, 9.
[http://dx.doi.org/10.1186/2047-9158-3-9] [PMID: 24847438]
[4]
Tsui, J.K.; Calne, D.B.; Wang, Y.; Schulzer, M.; Marion, S.A. Occupational risk factors in Parkinson’s disease. Can. J. Public Health, 1999, 90, 334-337.
[5]
Sanders, L.H.; Timothy Greenamyre, J. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic. Biol. Med., 2013, 62, 111-120.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.003] [PMID: 23328732]
[6]
Zamzami, N.; Susin, S.A.; Marchetti, P.; Hirsch, T.; Gómez-Monterrey, I.; Castedo, M.; Kroemer, G. Mitochondrial control of nuclear apoptosis. J. Exp. Med., 1996, 183(4), 1533-1544.
[http://dx.doi.org/10.1084/jem.183.4.1533] [PMID: 8666911]
[7]
Sherer, T.B.; Kim, J.H.; Betarbet, R.; Greenamyre, J.T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp. Neurol., 2003, 179(1), 9-16.
[http://dx.doi.org/10.1006/exnr.2002.8072] [PMID: 12504863]
[8]
Venkatesh, G.V.; Rajasankar, S.; Ramkumar, M.; Dhanalakshmi, C.; Manivasagam, T. Justin Thenmozh, i A.; Essa, M.M.; Chidambaram, R. Agaricusblazei extract attenuates rotenoneinduced apoptosis through its mitochondrial protective and antioxidant properties in SHSY5Y neuroblastoma cells. Nutr. Neurosci., 2016, 1, 11.
[9]
Morris, G.P.; Clark, I.A.; Vissel, B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol. Commun., 2014, 18(2), 135.
[http://dx.doi.org/10.1186/s40478-014-0135-5]
[10]
Baig, M.H.; Ahmad, K.; Saeed, M.; Alharbi, A.M.; Barreto, G.E.; Ashraf, G.M.; Choi, I. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed. Pharmacother., 2018, 103, 574-581.
[http://dx.doi.org/10.1016/j.biopha.2018.04.025] [PMID: 29677544]
[11]
Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[12]
Benson, N.; Cucurull-Sanchez, L.; Demin, O.; Smirnov, S.; van der Graaf, P. Reducing systems biology to practice in pharmaceutical company research; selected case studies. Adv. Exp. Med. Biol., 2012, 736, 607-615.
[http://dx.doi.org/10.1007/978-1-4419-7210-1_36] [PMID: 22161355]
[13]
Cheruvara, H.; Allen-Baume, V.L.; Kad, N.M.; Mason, J.M. Intracellular screening of a peptide library to derive a potent peptide inhibitor of α-synuclein aggregation. J. Biol. Chem., 2015, 290(12), 7426-7435.
[http://dx.doi.org/10.1074/jbc.M114.620484] [PMID: 25616660]
[14]
Trogera, F.; Delpb, J.; Funkeb, M.; Stelc, W.; Colasa, C.; Leistb, M.; Waterc, B.; Eckera, G.F. Identification of mitochondrial toxicants by combined in silico and in vitro studies - A structure-based view on the adverse outcome pathway. Comput. Toxicol., 2020, 14-100123.
[http://dx.doi.org/10.1016/j.comtox.2020.100123]
[15]
Dhanalakshmi, C.; Manivasagam, T.; Nataraj, J.; Thenmozhi, A.J.; Essa, M.M. Neurosupportive role of vanillin, a natural phenolic compound, on rotenone-induced neurotoxicity in SHSY5Y neuroblastoma cells. Evid. Based Complement. Alternat. Med., 2015, 6, 26028.
[16]
Chang, W. Teng, J. β-asarone prevents Aβ25-35-induced inflammatory responses and autophagy in SH-SY5Y cells: down expression Beclin-1, LC3B and up expression Bcl-2. Int. J. Clin. Exp. Med., 2015, 8(11), 20658-20663.
[17]
Balakrishnan, R.; Elangovan, N.; Mohankumar, T.; Nataraj, N.; Manivasagam, T.; Thenmozhi, A.; Mohamed Essa, M.; Akbar, M.; Abdul Sattar Khan, M. Isolongifolene attenuates rotenone-induced mitochondrial dysfunction, oxidative stress and apoptosis. Frontiers in Bioscience-Scholar, 2018, 10(2), 248-261.
[18]
Nataraj, J.; Manivasagam, T.; Justin Thenmozhi, A.; Essa, M.M. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr. Neurosci., 2016, 20, 351-359.
[19]
Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? Br. J. Pharmacol., 2004, 142(2), 231-255.
[http://dx.doi.org/10.1038/sj.bjp.0705776] [PMID: 15155533]
[20]
Jayaraj, R.L.; Tamilselvam, K.; Manivasagam, T.; Elangovan, N. Neuroprotective effect of CNB-001, a novel pyrazole derivative of curcumin on biochemical and apoptotic markers against rotenone-induced SK-NSH cellular model of Parkinson’s disease. J. Mol. Neurosci., 2013, 51, 863-870.
[21]
Tamilselvam, K.; Braidy, N.; Manivasagam, T.; Essa, M.M.; Prasad, N.R.; Karthikeyan, S.; Thenmozhi, A.J.; Selvaraju, S.; Guillemin, G.J. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid. Med. Cell. Longev., 2013, 102741.
[22]
Tan, Z.; Xu, H.M.; Shen, X.; Jiang, H. Nesfatin-1 antagonized rotenone-induced neurotoxicity in MES23.5 dopaminergic cells. Peptides, 2015, 69, 109-114.
[23]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 7(72), 248-254.
[24]
Hu, L.F.; Lu, M.; Wu, Z.Y.; Wong, P.T.; Bian, J.S. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol. Pharmacol., 2009, 75, 27-34.
[25]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[26]
Cabri, W.; Cantelmi, P.; Corbisiero, D.; Fantoni, T.; Ferrazzano, L.; Martelli, G.; Mattellone, A.; Tolomelli, A. Therapeutic peptides targeting PPI in clinical development: Overview, mechanism of action and perspectives. Front. Mol. Biosci., 2021, 8(565), 697586.
[http://dx.doi.org/10.3389/fmolb.2021.697586] [PMID: 34195230]
[27]
Pamies, D.; Block, K.; Lau, P.; Gribaldo, L.; Pardo, C.A.; Barreras, P.; Smirnova, L.; Wiersma, D.; Zhao, L.; Harris, G.; Hartung, T.; Hogberg, H.T. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol. Appl. Pharmacol., 2018, 354, 101-114.
[http://dx.doi.org/10.1016/j.taap.2018.02.003] [PMID: 29428530]
[28]
Cunha, M.P.; Martín-de-Saavedra, M.D.; Romero, A.; Parada, E.; Egea, J.; Del Barrio, L.; Rodrigues, A.L.; López, M.G. Protective effect of creatine against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells: Involvement of intracellular signaling pathways. Neuroscience, 2013, 238, 185-194.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.030] [PMID: 23485810]
[29]
Xicoy, H.; Wieringa, B.; Martens, G.J. The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol Neurodegene. Mol. Neurodegener., 2017, 12(1), 10.
[30]
Jianhan, Y.; Xu, H.; Shen, X.; Jiang, H. Ghrelin protects MES23.5 cells against rotenone via inhibiting mitochondrial dysfunction and apoptosis. Neuropeptides, 2015, 56, 69-74.
[http://dx.doi.org/10.1016/j.npep.2015.09.011] [PMID: 26459609]
[31]
Fiskum, G.; Rosenthal, R.E.; Vereczki, V.; Martin, E.; Hoffman, G.E.; Chinopoulos, C.; Kowaltowski, A. Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J. Bioenerg. Biomembr., 2004, 36(4), 347-352.
[http://dx.doi.org/10.1023/B:JOBB.0000041766.71376.81] [PMID: 15377870]
[32]
Menke, T.; Gille, G.; Reber, F.; Janetzky, B.; Andler, W.; Funk, R.H.; Reichmann, H. Coenzyme Q10 reduces the toxicity of rotenone in neuronal cultures by preserving the mitochondrial membrane potential. Biofactors, 2003, 18(1-4), 65-72.
[http://dx.doi.org/10.1002/biof.5520180208] [PMID: 14695921]
[33]
Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 2016, 21, 72.
[34]
Lee, S.Y.; Hur, S.J. Angiotensin converting enzyme inhibitory and antioxidant activities of enzymatic hydrolysates of Korean native cattle (Hanwoo) myofibrillar protein. BioMed Res. Int., 2017, 9.
[35]
Guo, C.; Su, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res., 2013, 8(21), 2003-2014.
[36]
Yanumula, A.; Cusick, J.K. Biochemistry, extrinsic pathway of apoptosis; StatPearls: Treasure Island, (FL), 2021.
[37]
Loreto, C.; La Rocca, G.; Anzalone, R.; Caltabiano, R.; Vespasiani, G.; Castorina, S.; Ralph, D.J.; Cellek, S.; Musumeci, G.; Giunta, S.; Djinovic, R.; Basic, D.; Sansalone, S. The role of intrinsic pathway in apoptosis activation and progression in Peyronie’s disease. BioMed Res. Int., 2014, 2014, 616149.
[http://dx.doi.org/10.1155/2014/616149] [PMID: 25197653]
[38]
Borner, C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol. Immunol., 2003, 39(11), 615-647.
[http://dx.doi.org/10.1016/S0161-5890(02)00252-3] [PMID: 12493639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy