Generic placeholder image

Current Women`s Health Reviews

Editor-in-Chief

ISSN (Print): 1573-4048
ISSN (Online): 1875-6581

Review Article

An Overview of Potential Applications for Nanotechnology, Probiotics, and Medicinal Plants in Infertility Problems

Author(s): Nooshin Salmany, Hajie Lotfi, Rana Keyhanmanesh* and Rafighe Ghiasi*

Volume 19, Issue 4, 2023

Published on: 13 October, 2022

Article ID: e270422204099 Pages: 16

DOI: 10.2174/1573404818666220427083700

Price: $65

conference banner
Abstract

Various assisted reproductive technologies (ART) are applied in the infertility treatment. However, considerable attention is addressed to use alternative approaches, such as non-biotechnology, probiotics, and traditional medicinal plants to treat cancerous and non-cancerous cases of infertility. Nanotechnology was remarkably aided in treatment, diagnosis, and drug delivery. The existing data of this technology might demonstrate the enormous potential of nanomaterials and their viability in clinical trials for the study of reproductive issues. In order to understand the function of the microbiome in infertility and the many good effects of probiotics in illnesses such as colon cancer, obesity, diabetes, and inflammatory bowel disease, research on infertility must be conducted. Healthy reproductive systems are important for successful fertility in males and females, and using probiotics can help reduce the associated complications. Besides, in vivo models are required to determine the probiotics proper administration, identify the functional species, effective doses, administration forms, and the effects of their combination with conventional antibiotics. In addition, medicinal herbs should be explored, notably in the treatment of male infertility and the improvement of sperm abnormalities. The antioxidant capacity, anti-inflammatory reactions, increased sperm production, and increased testosterone levels in the blood are all examples of medicinal plant benefits. More study is needed to establish specific findings on which substances are involved and have effective and safe fertility potential. This review presents an overview of potential applications for nanotechnology, probiotics, and medicinal plants in infertility, discussing the advantages, their feasibility, and associated concerns, which demand more investigations to set of clinical applications.

Keywords: Infertility, nanotechnology, probiotics, medicinal plants, bowel disease, cancer photothermal therapy.

Graphical Abstract
[1]
Larsen, U. Research on infertility: Which definition should we use? Fertil. Steril., 2005, 83(4), 846-852.
[http://dx.doi.org/10.1016/j.fertnstert.2004.11.033] [PMID: 15820788]
[2]
Zegers-Hochschild, F.; Adamson, G.D.; de Mouzon, J.; Ishihara, O.; Mansour, R.; Nygren, K.; Sullivan, E.; Vanderpoel, S. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary on ART terminology. Fertil. Steril., 2009, 92(5), 1520-1524.
[http://dx.doi.org/10.1016/j.fertnstert.2009.09.009] [PMID: 19828144]
[3]
Marchbanks, P.A.; Peterson, H.B.; Rubin, G.L.; Wingo, P.A. Research on infertility: Definition makes a difference. Am. J. Epidemiol., 1989, 130(2), 259-267.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a115332] [PMID: 2750725]
[4]
Thonneau, P.; Marchand, S.; Tallec, A.; Ferial, M.L.; Ducot, B.; Lansac, J.; Lopes, P.; Tabaste, J.M.; Spira, A. Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988-1989). Hum. Reprod., 1991, 6(6), 811-816.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a137433] [PMID: 1757519]
[5]
Saleh, R.A.; Agarwal, A. Oxidative stress and male infertility: From research bench to Clinical practice. J. Androl., 2002, 23(6), 737-752.
[PMID: 12399514]
[6]
Lotti, F.; Maggi, M. Ultrasound of the male genital tract in relation to male reproductive health. Hum. Reprod. Update, 2015, 21(1), 56-83.
[http://dx.doi.org/10.1093/humupd/dmu042] [PMID: 25038770]
[7]
Blake, D.D.; Proctor, M.; Johnson, N.; Olive, D. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst. Rev., 2002, (2)CD002118,
[http://dx.doi.org/10.1002/14651858.CD002118]
[8]
Fassbender, A.; Dorien, O.; De Moor, B.; Waelkens, E.; Meuleman, C.; Tomassetti, C.; Peeraer, K.; D’Hooghe, T. Biomarkers of endometriosis. In: Endometriosis; Springer, 2014; pp. 321-339.
[9]
Senapati, S.; Barnhart, K.T. Biomarkers for ectopic pregnancy and pregnancy of unknown location. Fertil. Steril., 2013, 99(4), 1107-1116.
[http://dx.doi.org/10.1016/j.fertnstert.2012.11.038] [PMID: 23290746]
[10]
Oktay, K.; Karlikaya, G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N. Engl. J. Med., 2000, 342(25), 1919-1919.
[http://dx.doi.org/10.1056/NEJM200006223422516] [PMID: 10877641]
[11]
Handyside, A. H.; Lesko, J. G.; Tarin, J. J.; Winston, R. M.; Hughes, M. R. Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis., 1992, 327(13), 905-909.
[12]
Verlinsky, Y.; Rechitsky, S.; Schoolcraft, W.; Strom, C.; Kuliev, A. Preimplantation diagnosis for Fanconi anemia combined with HLA matching. JAMA, 2001, 285(24), 3130-3133.
[http://dx.doi.org/10.1001/jama.285.24.3130] [PMID: 11427142]
[13]
Marina, S.; Marina, F.; Alcolea, R.; Nadal, J.; Expósito, R.; Huguet, J. Pregnancy following intracytoplasmic sperm injection from an HIV-1-seropositive man. Hum. Reprod., 1998, 13(11), 3247-3249.
[http://dx.doi.org/10.1093/humrep/13.11.3247] [PMID: 9853889]
[14]
Yuan, J.; Duan, R.; Yang, H.; Luo, X.; Xi, M. Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int. J. Nanomedicine, 2012, 7, 2921-2928.
[http://dx.doi.org/10.2147/IJN.S32641] [PMID: 22745553]
[15]
Thaxton, C.S.; Elghanian, R.; Thomas, A.D.; Stoeva, S.I.; Lee, J.S.; Smith, N.D.; Schaeffer, A.J.; Klocker, H.; Horninger, W.; Bartsch, G.; Mirkin, C.A. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci., 2009, 106(44), 18437-18442.
[http://dx.doi.org/10.1073/pnas.0904719106] [PMID: 19841273]
[16]
Miyake, Y.; Ishikawa, S.; Kimura, Y.; Son, A.; Imai, H.; Matsuda, T.; Yamada, H.; Toshimitsu, A.; Kondo, T. Pharmacokinetics of chiral dendrimer-triamine-coordinated Gd-MRI contrast agents evaluated by in vivo MRI and estimated by in vitro QCM. Sensors, 2015, 15(12), 31973-31986.
[http://dx.doi.org/10.3390/s151229900] [PMID: 26694418]
[17]
Sriraman, S.K.; Pan, J.; Sarisozen, C.; Luther, E.; Torchilin, V. Enhanced cytotoxicity of folic acid-targeted liposomes co-loaded with C6 ceramide and doxorubicin: In vitro evaluation on HeLa, A2780-ADR, and H69-AR cells. Mol. Pharm., 2016, 13(2), 428-437.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00663] [PMID: 26702994]
[18]
Jiang, D.; Li, L.; Zeng, B.Y. Treatment of Chinese herbal medicine for female infertility. Int. Rev. Neurobiol., 2017, 135, 233-247.
[http://dx.doi.org/10.1016/bs.irn.2017.02.011] [PMID: 28807160]
[19]
Xia, J.F.; Inagaki, Y.; Zhang, J.F.; Wang, L.; Song, P.P. Chinese medicine as complementary therapy for female infertility. Chin. J. Integr. Med., 2017, 23(4), 245-252.
[http://dx.doi.org/10.1007/s11655-016-2510-5] [PMID: 27484764]
[20]
Smith, J.F.; Eisenberg, M.L.; Millstein, S.G.; Nachtigall, R.D.; Shindel, A.W.; Wing, H.; Cedars, M.; Pasch, L.; Katz, P.P.; Group, I.O.P.P. The use of complementary and alternative fertility treatment in couples seeking fertility care: Data from a prospective cohort in the United States. Fertil. Steril., 2010, 93(7), 2169-2174.
[http://dx.doi.org/10.1016/j.fertnstert.2010.02.054] [PMID: 20338559]
[21]
Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; Brotman, R.M.; Davis, C.C.; Ault, K.; Peralta, L.; Forney, L.J. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4680-4687.
[http://dx.doi.org/10.1073/pnas.1002611107] [PMID: 20534435]
[22]
Barbonetti, A.; Cinque, B.; Vassallo, M.R.C.; Mineo, S.; Francavilla, S.; Cifone, M.G.; Francavilla, F. Effect of vaginal probiotic lactobacilli on in vitro-induced sperm lipid peroxidation and its impact on sperm motility and viability. Fertil. Steril., 2011, 95(8), 2485-2488.
[http://dx.doi.org/10.1016/j.fertnstert.2011.03.066] [PMID: 21497805]
[23]
Zeineldin, R. Nanotechnology for cancer screening and diagnosis: From innovations to clinical applications. In: Biomaterials for Cancer Therapeutics, 2nd ed; , 2020; pp. 261-289.
[24]
Xie, H.; Liu, M.; You, B.; Luo, G.; Chen, Y.; Liu, B.; Jiang, Z.; Chu, P.K.; Shao, J.; Yu, X.F. Biodegradable Bi2 O2 Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small, 2020, 16(1), e1905208.
[http://dx.doi.org/10.1002/smll.201905208] [PMID: 31805221]
[25]
Mohajeri, N.; Mostafavi, E.; Zarghami, N. The feasibility and usability of DNA-dot bioconjugation to antibody for targeted in vitro cancer cell fluorescence imaging. J. Photochem. Photobiol. B, 2020, 209, 111944.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111944] [PMID: 32619869]
[26]
Hashemi, F.; Heidari, F.; Mohajeri, N.; Mahmoodzadeh, F.; Zarghami, N. Fluorescence intensity enhancement of green carbon dots: Synthesis, characterization and cell imaging. Photochem. Photobiol., 2020, 96(5), 1032-1040.
[http://dx.doi.org/10.1111/php.13261] [PMID: 32187697]
[27]
Nandhini, J.T.; Ezhilarasan, D.; Rajeshkumar, S. An ecofriendly synthesized gold nanoparticles induces cytotoxicity via apoptosis in HepG2 cells. Environ. Toxicol., 2020, 36(1), 24-32.
[http://dx.doi.org/10.1002/tox.23007] [PMID: 32794643]
[28]
Won, H.J.; Robby, A.I.; Jhon, H.S.; In, I.; Ryu, J.H.; Park, S.Y. Wireless label-free electrochemical detection of cancer cells by MnO2-Decorated polymer dots. Sens. Actuators B Chem., 2020, 320, 128391.
[http://dx.doi.org/10.1016/j.snb.2020.128391]
[29]
Ou, L.; Zhong, S.; Ou, J.; Tian, J. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis. Acta Pharmacol. Sin., 2021, 42(1), 10-17.
[PMID: 32457416]
[30]
Nguyen, M-A.; Wyatt, H.; Susser, L.; Geoffrion, M.; Rasheed, A.; Duchez, A-C.; Cottee, M.L.; Afolayan, E.; Farah, E.; Kahiel, Z.; Côté, M.; Gadde, S.; Rayner, K.J. Delivery of microRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano, 2019, 13(6), 6491-6505.
[http://dx.doi.org/10.1021/acsnano.8b09679] [PMID: 31125197]
[31]
Leszek, J.; Md Ashraf, G.; Tse, W.H.; Zhang, J.; Gasiorowski, K.; Avila-Rodriguez, M.F.; Tarasov, V.V.; Barreto, G.E.; Klochkov, S.G.; Bachurin, S.O.; Aliev, G. Nanotechnology for Alzheimer Disease. Curr. Alzheimer Res., 2017, 14(11), 1182-1189.
[http://dx.doi.org/10.2174/1567205014666170203125008] [PMID: 28164767]
[32]
Laroui, H.; Rakhya, P.; Xiao, B.; Viennois, E.; Merlin, D. Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Dig. Liver Dis., 2013, 45(12), 995-1002.
[http://dx.doi.org/10.1016/j.dld.2013.03.019] [PMID: 23660079]
[33]
Theiss, A.L.; Laroui, H.; Obertone, T.S.; Chowdhury, I.; Thompson, W.E.; Merlin, D.; Sitaraman, S.V. Nanoparticle-based therapeutic delivery of prohibitin to the colonic epithelial cells ameliorates acute murine colitis. Inflamm. Bowel Dis., 2011, 17(5), 1163-1176.
[http://dx.doi.org/10.1002/ibd.21469] [PMID: 20872832]
[34]
Serra, P.; Santamaria, P. Nanoparticle-based approaches to immune tolerance for the treatment of autoimmune diseases. Eur. J. Immunol., 2018, 48(5), 751-756.
[http://dx.doi.org/10.1002/eji.201747059] [PMID: 29427438]
[35]
Maldonado, R.A.; LaMothe, R.A.; Ferrari, J.D.; Zhang, A-H.; Rossi, R.J.; Kolte, P.N.; Griset, A.P.; O’Neil, C.; Altreuter, D.H.; Browning, E.; Johnston, L.; Farokhzad, O.C.; Langer, R.; Scott, D.W.; von Andrian, U.H.; Kishimoto, T.K. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl. Acad. Sci. USA, 2015, 112(2), E156-E165.
[http://dx.doi.org/10.1073/pnas.1408686111] [PMID: 25548186]
[36]
Clemente-Casares, X.; Blanco, J.; Ambalavanan, P.; Yamanouchi, J.; Singha, S.; Fandos, C.; Tsai, S.; Wang, J.; Garabatos, N.; Izquierdo, C.; Agrawal, S.; Keough, M.B.; Yong, V.W.; James, E.; Moore, A.; Yang, Y.; Stratmann, T.; Serra, P.; Santamaria, P. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature, 2016, 530(7591), 434-440.
[http://dx.doi.org/10.1038/nature16962] [PMID: 26886799]
[37]
Ikoba, U.; Peng, H.; Li, H.; Miller, C.; Yu, C.; Wang, Q. Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale, 2015, 7(10), 4291-4305.
[http://dx.doi.org/10.1039/C4NR07682F] [PMID: 25680099]
[38]
Nair, M.; Guduru, R.; Liang, P.; Hong, J.; Sagar, V.; Khizroev, S. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat. Commun., 2013, 4(1), 1707.
[http://dx.doi.org/10.1038/ncomms2717] [PMID: 23591874]
[39]
Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; Simpson, J.L.; van der Poel, S. The international glossary on infertility and fertility care, 2017. Hum. Reprod., 2017, 32(9), 1786-1801.
[http://dx.doi.org/10.1093/humrep/dex234] [PMID: 29117321]
[40]
Sheervalilou, R.; Shahraki, O.; Hasanifard, L.; Shirvaliloo, M.; Mehranfar, S.; Lotfi, H.; Pilehvar-Soltanahmadi, Y.; Bahmanpour, Z.; Zadeh, S.S.; Nazarlou, Z.; Kangarlou, H.; Ghaznavi, H.; Zarghami, N. Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs. Curr. Mol. Med., 2019, 20(1), 13-35.
[http://dx.doi.org/10.2174/1566524019666191001114941] [PMID: 31573884]
[41]
Perfézou, M.; Turner, A.; Merkoçi, A. Cancer detection using nanoparticle-based sensors. Chem. Soc. Rev., 2012, 41(7), 2606-2622.
[http://dx.doi.org/10.1039/C1CS15134G] [PMID: 21796315]
[42]
Bennet, D.; Kim, S. Polymer nanoparticles for smart drug delivery. In: Application of Nanotechnology in Drug Delivery; , 2014; 8, .
[43]
Morishita, Y.; Yoshioka, Y.; Satoh, H.; Nojiri, N.; Nagano, K.; Abe, Y.; Kamada, H.; Tsunoda, S.; Nabeshi, H.; Yoshikawa, T.; Tsutsumi, Y. Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice. Biochem. Biophys. Res. Commun., 2012, 420(2), 297-301.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.153] [PMID: 22417826]
[44]
Chen, H.; Mruk, D.D.; Xia, W.; Bonanomi, M.; Silvestrini, B.; Cheng, C.Y. Effective delivery of male contraceptives behind the Blood-Testis Barri (BTB)-lesson from adjudin. Curr. Med. Chem., 2016, 23(7), 701-713.
[http://dx.doi.org/10.2174/0929867323666160112122724] [PMID: 26758796]
[45]
Suwansa-ard, S.; Kanatharana, P.; Asawatreratanakul, P.; Wongkittisuksa, B.; Limsakul, C.; Thavarungkul, P. Comparison of surface plasmon resonance and capacitive immunosensors for cancer antigen 125 detection in human serum samples. Biosens. Bioelectron., 2009, 24(12), 3436-3441.
[http://dx.doi.org/10.1016/j.bios.2009.04.008] [PMID: 19553100]
[46]
Pham, X.H.; Hahm, E.; Huynh, K.H.; Son, B.S.; Kim, H.M.; Jun, B.H. Sensitive colorimetric detection of prostate specific antigen using a peroxidase-mimicking anti-PSA antibody coated Au nanoparticle. Biochip J., 2020, 14(2), 1-11.
[http://dx.doi.org/10.1007/s13206-019-4204-5]
[47]
Lin, Z.; Monteiro-Riviere, N.A.; Riviere, J.E. Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(2), 189-217.
[http://dx.doi.org/10.1002/wnan.1304] [PMID: 25316649]
[48]
Alalaiwe, A. The clinical pharmacokinetics impact of medical nanometals on drug delivery system. Nanomedicine, 2019, 17, 47-61.
[http://dx.doi.org/10.1016/j.nano.2019.01.004] [PMID: 30664946]
[49]
Wang, A.Z.; Bagalkot, V.; Vasilliou, C.C.; Gu, F.; Alexis, F.; Zhang, L.; Shaikh, M.; Yuet, K.; Cima, M.J.; Langer, R.; Kantoff, P.W.; Bander, N.H.; Jon, S.; Farokhzad, O.C. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem, 2008, 3(9), 1311-1315.
[http://dx.doi.org/10.1002/cmdc.200800091] [PMID: 18613203]
[50]
Birkhäuser, F.D.; Studer, U.E.; Froehlich, J.M.; Triantafyllou, M.; Bains, L.J.; Petralia, G.; Vermathen, P.; Fleischmann, A.; Thoeny, H.C. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur. Urol., 2013, 64(6), 953-960.
[http://dx.doi.org/10.1016/j.eururo.2013.07.032] [PMID: 23916692]
[51]
Yu, M.K.; Kim, D.; Lee, I.H.; So, J.S.; Jeong, Y.Y.; Jon, S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small, 2011, 7(15), 2241-2249.
[http://dx.doi.org/10.1002/smll.201100472] [PMID: 21648076]
[52]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[53]
Mruk, D.D.; Wong, C-H.; Silvestrini, B.; Cheng, C.Y. A male contraceptive targeting germ cell adhesion. Nat. Med., 2006, 12(11), 1323-1328.
[http://dx.doi.org/10.1038/nm1420] [PMID: 17072312]
[54]
Chen, Y.; Deng, Y.; Zhu, C.; Xiang, C. Anti prostate cancer therapy: Aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed. Pharmacother., 2020, 127, 110181.
[http://dx.doi.org/10.1016/j.biopha.2020.110181] [PMID: 32416561]
[55]
Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4(7), 3689-3696.
[http://dx.doi.org/10.1021/nn901877h] [PMID: 20550178]
[56]
Browning, R.J.; Reardon, P.J.T.; Parhizkar, M.; Pedley, R.B.; Edirisinghe, M.; Knowles, J.C.; Stride, E. Drug delivery strategies for platinum-based chemotherapy. ACS Nano, 2017, 11(9), 8560-8578.
[http://dx.doi.org/10.1021/acsnano.7b04092] [PMID: 28829568]
[57]
Poniatowska, G.; Michalski, W.; Kucharz, J.; Jonska-Gmyrek, J.; Wieszczy, P.; Nietupski, K.; Demkow, T.; Dedecjus, M.; Sadowska, M.; Kalinowski, T.; Grochulska-Nalazek, B.; Nowatorska, A.; Stelmasiak, P.; Wiechno, P.J. What is the damage? Testicular germ cell tumour survivors deficient in testosterone at risk of metabolic syndrome and a need for medical intervention. Med. Oncol., 2020, 37(9), 82.
[http://dx.doi.org/10.1007/s12032-020-01407-4] [PMID: 32767179]
[58]
Al-Musawi, S.; Ibraheem, S.; Abdul Mahdi, S.; Albukhaty, S.; Haider, A.J.; Kadhim, A.A.; Kadhim, K.A.; Kadhim, H.A.; Al-Karagoly, H. Smart nanoformulation based on polymeric magnetic nanoparticles and vincristine drug: A novel therapy for apoptotic gene expression in tumors. Life, 2021, 11(1), 71.
[http://dx.doi.org/10.3390/life11010071] [PMID: 33478036]
[59]
Hong, S.S.; Zhang, M.X.; Zhang, M.; Yu, Y.; Chen, J.; Zhang, X-Y.; Xu, C.J. Follicle-stimulating hormone peptide-conjugated nanoparticles for targeted shRNA delivery lead to effective gro-α silencing and antitumor activity against ovarian cancer. Drug Deliv., 2018, 25(1), 576-584.
[http://dx.doi.org/10.1080/10717544.2018.1440667] [PMID: 29461120]
[60]
Zhang, Y.; Dong, Y.; Fu, H.; Huang, H.; Wu, Z.; Zhao, M.; Yang, X.; Guo, Q.; Duan, Y.; Sun, Y. Multifunctional tumor-targeted PLGA nanoparticles delivering Pt(IV)/siBIRC5 for US/MRI imaging and overcoming ovarian cancer resistance. Biomaterials, 2021, 269, 120478.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120478] [PMID: 33213862]
[61]
Zhao, M.D.; Li, J.Q.; Chen, F.Y.; Dong, W.; Wen, L.J.; Fei, W.D.; Zhang, X.; Yang, P.L.; Zhang, X.M.; Zheng, C.H. Co-delivery of curcumin and paclitaxel by “Core-Shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int. J. Nanomedicine, 2019, 14, 9453-9467.
[http://dx.doi.org/10.2147/IJN.S224579] [PMID: 31819443]
[62]
Sánchez-Ramírez, D.R.; Domínguez-Ríos, R.; Juárez, J.; Valdés, M.; Hassan, N.; Quintero-Ramos, A.; Del Toro-Arreola, A.; Barbosa, S.; Taboada, P.; Topete, A.; Daneri-Navarro, A. Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer. Mater. Sci. Eng. C, 2020, 116, 111196.
[http://dx.doi.org/10.1016/j.msec.2020.111196] [PMID: 32806317]
[63]
Xiao, K.; Luo, J.; Fowler, W.L.; Li, Y.; Lee, J.S.; Xing, L.; Cheng, R.H.; Wang, L.; Lam, K.S. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials, 2009, 30(30), 6006-6016.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.015] [PMID: 19660809]
[64]
Bai, D.P.; Zhang, X.F.; Zhang, G.L.; Huang, Y.F.; Gurunathan, S. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int. J. Nanomedicine, 2017, 12, 6521-6535.
[http://dx.doi.org/10.2147/IJN.S140071] [PMID: 28919752]
[65]
Brandhonneur, N.; Hatahet, T.; Amela-Cortes, M.; Molard, Y.; Cordier, S.; Dollo, G. Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer. Eur. J. Pharm. Biopharm., 2018, 125, 95-105.
[http://dx.doi.org/10.1016/j.ejpb.2018.01.007] [PMID: 29355686]
[66]
Winer, I.; Wang, S.; Lee, Y.E.K.; Fan, W.; Gong, Y.; Burgos-Ojeda, D.; Spahlinger, G.; Kopelman, R.; Buckanovich, R.J. F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo. Cancer Res., 2010, 70(21), 8674-8683.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1917] [PMID: 20959470]
[67]
Geng, F.; Song, K.; Xing, J.Z.; Yuan, C.; Yan, S.; Yang, Q.; Chen, J.; Kong, B. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology, 2011, 22(28), 285101.
[http://dx.doi.org/10.1088/0957-4484/22/28/285101] [PMID: 21654036]
[68]
Zhang, W.; Zhang, D.; Tan, J.; Cong, H. Carbon nanotube exposure sensitize human ovarian cancer cells to paclitaxel. J. Nanosci. Nanotechnol., 2012, 12(9), 7211-7214.
[http://dx.doi.org/10.1166/jnn.2012.6506] [PMID: 23035454]
[69]
Deng, Z.; Wang, N.; Ai, F.; Wang, Z.; Zhu, G. Nanomaterial-mediated platinum drug-based combinatorial cancer therapy. View, 2021, 2(1), 20200030.
[http://dx.doi.org/10.1002/VIW.20200030]
[70]
Fatease, A.A.; Shah, V.; Nguyen, D.X.; Cote, B.; LeBlanc, N.; Rao, D.A.; Alani, A.W.G. Chemosensitization and mitigation of Adriamycin-induced cardiotoxicity using combinational polymeric micelles for co-delivery of quercetin/resveratrol and resveratrol/curcumin in ovarian cancer. Nanomedicine, 2019, 19, 39-48.
[http://dx.doi.org/10.1016/j.nano.2019.03.011] [PMID: 31022465]
[71]
Lee, H.J.; Lee, H.J.; Lee, J.M.; Chang, Y.; Woo, S.T. Ultrasmall superparamagnetic iron oxides enhanced MR imaging in rats with experimentally induced endometriosis. Magn. Reson. Imaging, 2012, 30(6), 860-868.
[http://dx.doi.org/10.1016/j.mri.2012.02.020] [PMID: 22554972]
[72]
Zhao, M.D.; Sun, Y.M.; Fu, G.F.; Du, Y.Z.; Chen, F.Y.; Yuan, H.; Zheng, C.H.; Zhang, X.M.; Hu, F.Q. Gene therapy of endometriosis introduced by polymeric micelles with glycolipid-like structure. Biomaterials, 2012, 33(2), 634-643.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.077] [PMID: 21996531]
[73]
Ali, H.; Kilic, G.; Vincent, K.; Motamedi, M.; Rytting, E. Nanomedicine for uterine leiomyoma therapy. Ther. Deliv., 2013, 4(2), 161-175.
[http://dx.doi.org/10.4155/tde.12.144] [PMID: 23343157]
[74]
Kaitu’u-Lino, T.J.; Pattison, S.; Ye, L.; Tuohey, L.; Sluka, P.; MacDiarmid, J.; Brahmbhatt, H.; Johns, T.; Horne, A.W.; Brown, J.; Tong, S. Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies. Endocrinology, 2013, 154(2), 911-919.
[http://dx.doi.org/10.1210/en.2012-1832] [PMID: 23288908]
[75]
Tomoda, K.; Watanabe, A.; Suzuki, K.; Inagi, T.; Terada, H.; Makino, K. Enhanced transdermal permeability of estradiol using combination of PLGA nanoparticles system and iontophoresis. Colloids Surf. B Biointerfaces, 2012, 97, 84-89.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.002] [PMID: 22609586]
[76]
Ali, H.; Kalashnikova, I.; White, M.A.; Sherman, M.; Rytting, E. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int. J. Pharm., 2013, 454(1), 149-157.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.010] [PMID: 23850397]
[77]
Prasad, S.; Trivedi, P.; Malhotra, N.; Patil, M.; Swaminathan, D.; Shukla, S.; Ganla, K. Joint IFS-ISAR-ACE recommendations on resuming/opening up assisted reproductive technology services. J. Hum. Reprod. Sci., 2020, 13(2), 82-88.
[http://dx.doi.org/10.4103/jhrs.JHRS_109_20] [PMID: 32792754]
[78]
Steyaert, S.R.; Leroux-Roels, G.G.; Dhont, M. Infections in IVF: Review and guidelines. Hum. Reprod. Update, 2000, 6(5), 432-441.
[http://dx.doi.org/10.1093/humupd/6.5.432] [PMID: 11045874]
[79]
Whyte, D.; O’Dea, F.; McDonnell, C.; O’Connell, N.H.; Callinan, S.; Brosnan, E.; Powell, J.; Monahan, R.; FitzGerald, R.; Mannix, M.; Greally, T.; Dee, A.; O’Sullivan, P. Mumps epidemiology in the mid-west of Ireland 2004-2008: Increasing disease burden in the university/college setting. Euro Surveill., 2009, 14(16), 19182.
[http://dx.doi.org/10.2807/ese.14.16.19182-en] [PMID: 19389339]
[80]
Otto, W.; Mankertz, A.; Santibanez, S.; Saygili, H.; Wenzel, J.; Jilg, W.; Wieland, W.; Borgmann, S. Ongoing outbreak of mumps affecting adolescents and young adults in Bavaria, Germany, August to October 2010. Euro Surveill., 2010, 15(50), 19748.
[http://dx.doi.org/10.2807/ese.15.50.19748-en] [PMID: 21172171]
[81]
Barták, V. Sperm count, morphology and motility after unilateral mumps orchitis. J. Reprod. Fertil., 1973, 32(3), 491-494.
[http://dx.doi.org/10.1530/jrf.0.0320491] [PMID: 4692345]
[82]
Zhou, X.L.; Sun, P.N.; Huang, T.H.; Xie, Q.D.; Kang, X.J.; Liu, L.M. Effects of hepatitis B virus S protein on human sperm function. Hum. Reprod., 2009, 24(7), 1575-1583.
[http://dx.doi.org/10.1093/humrep/dep050] [PMID: 19279032]
[83]
Huang, J.M.; Huang, T.H.; Qiu, H.Y.; Fang, X.W.; Zhuang, T.G.; Liu, H.X.; Wang, Y.H.; Deng, L-Z.; Qiu, J.W. Effects of hepatitis B virus infection on human sperm chromosomes. World J. Gastroenterol., 2003, 9(4), 736-740.
[http://dx.doi.org/10.3748/wjg.v9.i4.736] [PMID: 12679922]
[84]
Bu, Z.; Kong, H.; Li, J.; Wang, F.; Guo, Y.; Su, Y.; Zhai, J.; Sun, Y. Effect of male hepatitis B virus infection on outcomes of in vitro fertilization and embryo transfer treatment: Insights from couples undergoing oocyte donation. Int. J. Clin. Exp. Med., 2014, 7(7), 1860-1866.
[PMID: 25126191]
[85]
Hadchouel, M.; Scotto, J.; Huret, J.L.; Molinie, C.; Villa, E.; Degos, F.; Brechot, C. Presence of HBV DNA in spermatozoa: A possible vertical transmission of HBV via the germ line. J. Med. Virol., 1985, 16(1), 61-66.
[http://dx.doi.org/10.1002/jmv.1890160109] [PMID: 3840197]
[86]
Goldstone, S.; Palefsky, J.M.; Giuliano, A.R.; Moreira, E.D., Jr; Aranda, C.; Jessen, H.; Hillman, R.J.; Ferris, D.G.; Coutlee, F.; Liaw, K-L.; Marshall, J.B.; Zhang, X.; Vuocolo, S.; Barr, E.; Haupt, R.M.; Guris, D.; Garner, E.I. Prevalence of and risk factors for human papillomavirus (HPV) infection among HIV-seronegative men who have sex with men. J. Infect. Dis., 2011, 203(1), 66-74.
[http://dx.doi.org/10.1093/infdis/jiq016] [PMID: 21148498]
[87]
Nyitray, A.G.; Carvalho da Silva, R.J.; Baggio, M.L.; Lu, B.; Smith, D.; Abrahamsen, M.; Papenfuss, M.; Villa, L.L.; Lazcano-Ponce, E.; Giuliano, A.R. Age-specific prevalence of and risk factors for anal human papillomavirus (HPV) among men who have sex with women and men who have sex with men: The HPV In Men (HIM) study. J. Infect. Dis., 2011, 203(1), 49-57.
[http://dx.doi.org/10.1093/infdis/jiq021] [PMID: 21148496]
[88]
Garolla, A.; Lenzi, A.; Palù, G.; Pizzol, D.; Bertoldo, A.; De Toni, L.; Foresta, C. Human papillomavirus sperm infection and assisted reproduction: A dangerous hazard with a possible safe solution. Hum. Reprod., 2012, 27(4), 967-973.
[http://dx.doi.org/10.1093/humrep/des009] [PMID: 22313870]
[89]
Dulioust, E.; Du, A.L.; Costagliola, D.; Guibert, J.; Kunstmann, J-M.; Heard, I.; Juillard, J.C.; Salmon, D.; Leruez-Ville, M.; Mandelbrot, L.; Rouzioux, C.; Sicard, D.; Zorn, J.R.; Jouannet, P.; De Almeida, M. Semen alterations in HIV-1 infected men. Hum. Reprod., 2002, 17(8), 2112-2118.
[http://dx.doi.org/10.1093/humrep/17.8.2112] [PMID: 12151446]
[90]
Chirgwin, K.D.; Feldman, J.; Muneyyirci-Delale, O.; Landesman, S.; Minkoff, H. Menstrual function in human immunodeficiency virus-infected women without acquired immunodeficiency syndrome. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 1996, 12(5), 489-494.
[http://dx.doi.org/10.1097/00042560-199608150-00008] [PMID: 8757426]
[91]
Cejtin, H.E.; Kalinowski, A.; Bacchetti, P.; Taylor, R.N.; Watts, D.H.; Kim, S.; Massad, L.S.; Preston-Martin, S.; Anastos, K.; Moxley, M.; Minkoff, H.L. Effects of human immunodeficiency virus on protracted amenorrhea and ovarian dysfunction. Obstet. Gynecol., 2006, 108(6), 1423-1431.
[http://dx.doi.org/10.1097/01.AOG.0000245442.29969.5c] [PMID: 17138776]
[92]
Amirjannati, N.; Yaghmaei, F.; Akhondi, M.M.; Nasiri, M.; Heidari-Vala, H.; Sehhat, Z. Molecular and serologic diagnostic approaches; the prevalence of herpes simplex in idiopathic men infertile. Iran. J. Reprod. Med., 2014, 12(5), 327-334.
[PMID: 25031577]
[93]
Joki-Korpela, P.; Sahrakorpi, N.; Halttunen, M.; Surcel, H.M.; Paavonen, J.; Tiitinen, A. The role of Chlamydia trachomatis infection in male infertility. Fertil. Steril., 2009, 91(4)(Suppl.), 1448-1450.
[http://dx.doi.org/10.1016/j.fertnstert.2008.06.051] [PMID: 18706556]
[94]
Mårdh, P.A.; Ripa, T.; Svensson, L.; Weström, L. Chilamydia trachomatis infection in patients with acute salpingitis. N. Engl. J. Med., 1977, 296(24), 1377-1379.
[http://dx.doi.org/10.1056/NEJM197706162962403] [PMID: 859544]
[95]
Figura, N.; Piomboni, P.; Ponzetto, A.; Gambera, L.; Lenzi, C.; Vaira, D.; Peris, C.; Lotano, M.R.; Gennari, L.; Bianciardi, L.; Renieri, T.; Valensin, P.E.; Capitani, S.; Moretti, E.; Colapinto, R.; Baccetti, B.; Gennari, C. Helicobacter pylori infection and infertility. Eur. J. Gastroenterol. Hepatol., 2002, 14(6), 663-669.
[http://dx.doi.org/10.1097/00042737-200206000-00012] [PMID: 12072601]
[96]
Moretti, E.; Figura, N.; Collodel, G.; Ponzetto, A. Can Helicobacter pylori infection influence human reproduction? World J. Gastroenterol., 2014, 20(19), 5567-5574.
[http://dx.doi.org/10.3748/wjg.v20.i19.5567] [PMID: 24914316]
[97]
Kurotsuchi, S.; Ando, H.; Iwase, A.; Ishida, Y.; Hamajima, N.; Kikkawa, F. The plausibility of Helicobacter pylori-related infertility in Japan. Fertil. Steril., 2008, 90(3), 866-868.
[http://dx.doi.org/10.1016/j.fertnstert.2007.06.097] [PMID: 17905240]
[98]
Vouga, M.; Greub, G.; Prod’hom, G.; Durussel, C.; Roth-Kleiner, M.; Vasilevsky, S.; Baud, D. Treatment of genital mycoplasma in colonized pregnant women in late pregnancy is associated with a lower rate of premature labour and neonatal complications. Clin. Microbiol. Infect., 2014, 20(10), 1074-1079.
[http://dx.doi.org/10.1111/1469-0691.12686] [PMID: 24849820]
[99]
Ona, S.; Molina, R.L.; Diouf, K. Mycoplasma genitalium: An overlooked sexually transmitted pathogen in women? Infect. Dis. Obstet. Gynecol., 2016, 2016, 4513089.
[http://dx.doi.org/10.1155/2016/4513089]
[100]
Henkel, R.; Schill, W.B. Sperm separation in patients with urogenital infections. Andrologia, 1998, 30(S1)(Suppl. 1), 91-97.
[http://dx.doi.org/10.1111/j.1439-0272.1998.tb02832.x] [PMID: 9629449]
[101]
Fraczek, M.; Kurpisz, M. Mechanisms of the harmful effects of bacterial semen infection on ejaculated human spermatozoa: Potential inflammatory markers in semen. Folia Histochem. Cytobiol., 2015, 53(3), 201-217.
[http://dx.doi.org/10.5603/fhc.a2015.0019] [PMID: 26306512]
[102]
Montoya, J.G.; Remington, J.S.; Remington, J.S. Management of Toxoplasma gondii infection during pregnancy. Clin. Infect. Dis., 2008, 47(4), 554-566.
[http://dx.doi.org/10.1086/590149] [PMID: 18624630]
[103]
Sun, L.H.; Fan, F.; Wang, J.J.; Gong, J. Acute Toxoplasma gondii infection affects the reproductive function of male mice. Zhonghua Nan Ke Xue, 2008, 14(1), 55-57.
[PMID: 18297814]
[104]
Kumari, S.; Chauhan, A.; Thaper, D.; Prabha, V. Sperm immobilization factor of Candida albicans: A proposed mechanism of infertility in female mice. Glob J Fertil Res, 2019, 5(1), 001-006.
[105]
Cunha-Reis, C.; Machado, A.; Barreiros, L.; Araújo, F.; Nunes, R.; Seabra, V.; Ferreira, D.; Segundo, M.A.; Sarmento, B. das Neves, J. Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J. Control. Release, 2016, 243, 43-53.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.020] [PMID: 27664327]
[106]
Lotfi, H.; Sheervalilou, R.; Zarghami, N. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. Bioimpacts, 2018, 8(2), 139-151.
[http://dx.doi.org/10.15171/bi.2018.16] [PMID: 29977835]
[107]
de Almeida, P.R., III; Murad, A.M.; Silva, L.P.; Rech, E.L.; Alves, E.S. Development of a graphene-based biosensor for detecting recombinant Cyanovirin-N. Biosensors, 2020, 10(12), 206.
[http://dx.doi.org/10.3390/bios10120206] [PMID: 33339087]
[108]
Tang, J.; Xu, Z.; Zhou, L.; Qin, H.; Wang, Y.; Wang, H. Rapid and simultaneous detection of Ureaplasma parvum and Chlamydia trachomatis antibodies based on visual protein microarray using gold nanoparticles and silver enhancement. Diagn. Microbiol. Infect. Dis., 2010, 67(2), 122-128.
[http://dx.doi.org/10.1016/j.diagmicrobio.2010.01.009] [PMID: 20207096]
[109]
Chandran, H.; Rangnekar, A.; Shetty, G.; Schultes, E.A.; Reif, J.H.; LaBean, T.H. An autonomously self-assembling dendritic DNA nanostructure for target DNA detection. Biotechnol. J., 2013, 8(2), 221-227.
[http://dx.doi.org/10.1002/biot.201100499] [PMID: 22965937]
[110]
Singh, R.; Verma, R.; Kaushik, A.; Sumana, G.; Sood, S.; Gupta, R.K.; Malhotra, B.D. Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae detection causing sexually transmitted disease. Biosens. Bioelectron., 2011, 26(6), 2967-2974.
[http://dx.doi.org/10.1016/j.bios.2010.11.047] [PMID: 21190837]
[111]
Bansod, S.; Bonde, S.; Tiwari, V.; Bawaskar, M.; Deshmukh, S.; Gaikwad, S.; Gade, A.; Rai, M. Bioconjugation of gold and silver nanoparticles synthesized by Fusarium oxysporum and their use in rapid identification of Candida species by using bioconjugate-nano-polymerase chain reaction. J. Biomed. Nanotechnol., 2013, 9(12), 1962-1971.
[http://dx.doi.org/10.1166/jbn.2013.1727] [PMID: 24266252]
[112]
Vacas Córdoba, E.; Arnaiz, E.; Relloso, M.; Sánchez-Torres, C.; García, F.; Pérez-Álvarez, L.; Gómez, R.; de la Mata, F.J.; Pion, M.; Muñoz-Fernández, M.Á. Development of sulphated and naphthylsulphonated carbosilane dendrimers as topical microbicides to prevent HIV-1 sexual transmission. AIDS, 2013, 27(8), 1219-1229.
[http://dx.doi.org/10.1097/QAD.0b013e32835f2b7a] [PMID: 23925376]
[113]
Donalisio, M.; Rusnati, M.; Civra, A.; Bugatti, A.; Allemand, D.; Pirri, G.; Giuliani, A.; Landolfo, S.; Lembo, D. Identification of a dendrimeric heparan sulfate-binding peptide that inhibits infectivity of genital types of human papillomaviruses. Antimicrob. Agents Chemother., 2010, 54(10), 4290-4299.
[http://dx.doi.org/10.1128/AAC.00471-10] [PMID: 20643894]
[114]
Steinbach, J.M.; Weller, C.E.; Booth, C.J.; Saltzman, W.M. Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J. Control. Release, 2012, 162(1), 102-110.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.008] [PMID: 22705461]
[115]
Radzig, M.A.; Nadtochenko, V.A.; Koksharova, O.A.; Kiwi, J.; Lipasova, V.A.; Khmel, I.A. Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action. Colloids Surf. B Biointerfaces, 2013, 102, 300-306.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.039] [PMID: 23006569]
[116]
Al-Bahrani, R.M.; Radif, H.M.; Albaayit, S.F.A. Evaluation of potent silver nanoparticles production from Agaricus bisporus against Helicobacter pylori. Pak. J. Agric. Sci., 2020, 57(4), 1197-1201.
[117]
Liu, L.; Yang, J.; Xie, J.; Luo, Z.; Jiang, J.; Yang, Y.Y.; Liu, S. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. Nanoscale, 2013, 5(9), 3834-3840.
[http://dx.doi.org/10.1039/c3nr34254a] [PMID: 23525222]
[118]
Olivi, M.; Zanni, E.; De Bellis, G.; Talora, C.; Sarto, M.S.; Palleschi, C.; Flahaut, E.; Monthioux, M.; Rapino, S.; Uccelletti, D.; Fiorito, S. Inhibition of microbial growth by carbon nanotube networks. Nanoscale, 2013, 5(19), 9023-9029.
[http://dx.doi.org/10.1039/c3nr02091f] [PMID: 23934344]
[119]
F. W. w. Guidelines for the evaluation of probiotics in food; FAO/WHO Working Group 2002, 1-11.
[120]
Shamekhi, S.; Abdolalizadeh, J.; Ostadrahimi, A.; Mohammadi, S.A.; Barzegari, A.; Lotfi, H.; Bonabi, E.; Zarghami, N. Apoptotic effect of Saccharomyces cerevisiae on human colon cancer SW480 cells by regulation of Akt/NF-ĸB signaling pathway. Probiotics Antimicrob. Proteins, 2020, 12(1), 311-319.
[http://dx.doi.org/10.1007/s12602-019-09528-7] [PMID: 30788662]
[121]
Nami, Y.; Haghshenas, B.; Vaseghi Bakhshayesh, R.; Mohammadzadeh Jalaly, H.; Lotfi, H.; Eslami, S.; Hejazi, M.A. Novel Autochthonous lactobacilli with probiotic aptitudes as a main starter culture for probiotic fermented milk. Lebensm. Wiss. Technol., 2018, 98, 85-93.
[http://dx.doi.org/10.1016/j.lwt.2018.08.035]
[122]
Mathur, H.; Beresford, T.P.; Cotter, P.D. Health benefits of Lactic Acid Bacteria (LAB) fermentates. Nutrients, 2020, 12(6), 1679.
[http://dx.doi.org/10.3390/nu12061679] [PMID: 32512787]
[123]
Ohri, M.; Prabha, V. Isolation of a sperm-agglutinating factor from Staphylococcus aureus isolated from a woman with unexplained infertility. Fertil. Steril., 2005, 84(5), 1539-1541.
[http://dx.doi.org/10.1016/j.fertnstert.2005.05.030] [PMID: 16275266]
[124]
Rose, W.A., II; McGowin, C.L.; Spagnuolo, R.A.; Eaves-Pyles, T.D.; Popov, V.L.; Pyles, R.B. Commensal bacteria modulate innate immune responses of vaginal epithelial cell multilayer cultures. PLoS One, 2012, 7(3), e32728.
[http://dx.doi.org/10.1371/journal.pone.0032728] [PMID: 22412914]
[125]
Chen, X.L.; Gong, L.Z.; Xu, J.X. Antioxidative activity and protective effect of probiotics against high-fat diet-induced sperm damage in rats. Animal, 2013, 7(2), 287-292.
[http://dx.doi.org/10.1017/S1751731112001528] [PMID: 23031185]
[126]
Ibrahim, H.A.; Zhu, Y.; Wu, C.; Lu, C.; Ezekwe, M.O.; Liao, S.F.; Huang, K. Selenium-enriched probiotics improves murine male fertility compromised by high fat diet. Biol. Trace Elem. Res., 2012, 147(1-3), 251-260.
[http://dx.doi.org/10.1007/s12011-011-9308-2] [PMID: 22207218]
[127]
Dardmeh, F.; Alipour, H.; Gazerani, P.; van der Horst, G.; Brandsborg, E.; Nielsen, H.I. Lactobacillus rhamnosus PB01 (DSM 14870) supplementation affects markers of sperm kinematic parameters in a diet-induced obesity mice model. PLoS One, 2017, 12(10), e0185964.
[http://dx.doi.org/10.1371/journal.pone.0185964] [PMID: 29016685]
[128]
Valcarce, D.G.; Genovés, S.; Riesco, M.F.; Martorell, P.; Herráez, M.P.; Ramón, D.; Robles, V. Probiotic administration improves sperm quality in asthenozoospermic human donors. Benef. Microbes, 2017, 8(2), 193-206.
[http://dx.doi.org/10.3920/BM2016.0122] [PMID: 28343402]
[129]
Zeitoun, M.; Farahna, M.; Al-Sobayil, K.; Abdel-Salam, A. Impact of the aqueous extract of dandelion, probiotic and their synbiotic on male lamb’s testicular histopathology relative to semen characteristics. Open J. Anim. Sci., 2014, 2014, 41004.
[http://dx.doi.org/10.4236/ojas.2014.41004]
[130]
Poutahidis, T.; Springer, A.; Levkovich, T.; Qi, P.; Varian, B.J.; Lakritz, J.R.; Ibrahim, Y.M.; Chatzigiagkos, A.; Alm, E.J.; Erdman, S.E. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One, 2014, 9(1), e84877.
[http://dx.doi.org/10.1371/journal.pone.0084877] [PMID: 24392159]
[131]
Tirandaz, H.; Ebrahim-Habibi, M-B.; Moradveisi, B.; Raoofi, S.; Salehi-Najafabadi, A.; Mohammadi, E. Microbiota potential for the treatment of sexual dysfunction. Med. Hypotheses, 2018, 115, 46-49.
[http://dx.doi.org/10.1016/j.mehy.2018.03.021] [PMID: 29685195]
[132]
Verhelst, R.; Verstraelen, H.; Claeys, G.; Verschraegen, G.; Van Simaey, L.; De Ganck, C.; De Backer, E.; Temmerman, M.; Vaneechoutte, M. Comparison between Gram stain and culture for the characterization of vaginal microflora: Definition of a distinct grade that resembles grade I microflora and revised categorization of grade I microflora. BMC Microbiol., 2005, 5(1), 61.
[http://dx.doi.org/10.1186/1471-2180-5-61] [PMID: 16225680]
[133]
Fettweis, J.; Alves, J.; Borzelleca, J.; Brooks, J.; Friedline, C.; Gao, Y.; Gao, X.; Girerd, P.; Harwich, M.; Hendricks, S. The vaginal microbiome: Disease, genetics and the environment; Nat. Prece, 2010, pp. 1-1.
[134]
Atassi, F.; Brassart, D.; Grob, P.; Graf, F.; Servin, A.L. Lactobacillus strains isolated from the vaginal microbiota of healthy women inhibit Prevotella bivia and Gardnerella vaginalis in coculture and cell culture. FEMS Immunol. Med. Microbiol., 2006, 48(3), 424-432.
[http://dx.doi.org/10.1111/j.1574-695X.2006.00162.x] [PMID: 17059467]
[135]
Zhang, R.; Daroczy, K.; Xiao, B.; Yu, L.; Chen, R.; Liao, Q. Qualitative and semiquantitative analysis of Lactobacillus species in the vaginas of healthy fertile and postmenopausal Chinese women. J. Med. Microbiol., 2012, 61(Pt 5), 729-739.
[http://dx.doi.org/10.1099/jmm.0.038687-0] [PMID: 22301614]
[136]
Ling, Z.; Liu, X.; Chen, W.; Luo, Y.; Yuan, L.; Xia, Y.; Nelson, K.E.; Huang, S.; Zhang, S.; Wang, Y.; Yuan, J.; Li, L.; Xiang, C. The restoration of the vaginal microbiota after treatment for bacterial vaginosis with metronidazole or probiotics. Microb. Ecol., 2013, 65(3), 773-780.
[http://dx.doi.org/10.1007/s00248-012-0154-3] [PMID: 23250116]
[137]
Ya, W.; Reifer, C.; Miller, L.E. Efficacy of vaginal probiotic capsules for recurrent bacterial vaginosis: A double-blind, randomized, placebo-controlled study. Am. J. Obstet. Gynecol., 2010, 203(2), 120.
[http://dx.doi.org/10.1016/j.ajog.2010.05.023]
[138]
Bhandari, P.; Rishi, P.; Prabha, V. Potential of probiotic Lactobacillus plantarum 2621 for the management of Infertility. Microbiology, 2014, 1585-1596.
[139]
Bhandari, P.; Rishi, P.; Prabha, V. Positive effect of probiotic Lactobacillus plantarum in reversing LPS-induced infertility in a mouse model. J. Med. Microbiol., 2016, 65(5), 345-350.
[http://dx.doi.org/10.1099/jmm.0.000230] [PMID: 26872701]
[140]
Sirota, I.; Zarek, S.M.; Segars, J.H. Potential influence of the microbiome on infertility and assisted reproductive technology. Semin. Reprod. Med., 2014, 32(1), 35-42.
[http://dx.doi.org/10.1055/s-0033-1361821] [PMID: 24390919]
[141]
Ghanei, N.; Rezaei, N.; Amiri, G.A.; Zayeri, F.; Makki, G.; Nasseri, E. The probiotic supplementation reduced inflammation in polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. J. Funct. Foods, 2018, 42, 306-311.
[http://dx.doi.org/10.1016/j.jff.2017.12.047]
[142]
Haahr, T.; Jensen, J.S.; Thomsen, L.; Duus, L.; Rygaard, K.; Humaidan, P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: A prospective study in IVF patients. Hum. Reprod., 2016, 31(4), 795-803.
[http://dx.doi.org/10.1093/humrep/dew026] [PMID: 26911864]
[143]
Hillier, S.L.; Nugent, R.P.; Eschenbach, D.A.; Krohn, M.A.; Gibbs, R.S.; Martin, D.H.; Cotch, M.F.; Edelman, R.; Pastorek, J.G., II; Rao, A.V.; McNellis, D.; Regan, J.A.; Carey, J.C.; Klebanoff, M.A. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N. Engl. J. Med., 1995, 333(26), 1737-1742.
[http://dx.doi.org/10.1056/NEJM199512283332604] [PMID: 7491137]
[144]
Witkin, S.S. The vaginal microbiome, vaginal anti-microbial defence mechanisms and the clinical challenge of reducing infection-related preterm birth. BJOG, 2015, 122(2), 213-218.
[http://dx.doi.org/10.1111/1471-0528.13115] [PMID: 25316066]
[145]
Vitali, B.; Cruciani, F.; Baldassarre, M.E.; Capursi, T.; Spisni, E.; Valerii, M.C.; Candela, M.; Turroni, S.; Brigidi, P. Dietary supplementation with probiotics during late pregnancy: Outcome on vaginal microbiota and cytokine secretion. BMC Microbiol., 2012, 12(1), 236.
[http://dx.doi.org/10.1186/1471-2180-12-236] [PMID: 23078375]
[146]
Brantsaeter, A.L.; Myhre, R.; Haugen, M.; Myking, S.; Sengpiel, V.; Magnus, P.; Jacobsson, B.; Meltzer, H.M. Intake of probiotic food and risk of preeclampsia in primiparous women: The Norwegian mother and child cohort study. Am. J. Epidemiol., 2011, 174(7), 807-815.
[http://dx.doi.org/10.1093/aje/kwr168] [PMID: 21821542]
[147]
Plottel, C.S.; Blaser, M.J. Microbiome and malignancy. Cell Host Microbe, 2011, 10(4), 324-335.
[http://dx.doi.org/10.1016/j.chom.2011.10.003] [PMID: 22018233]
[148]
Taylor-Robinson, D.; McCaffrey, M.; Pitkin, J.; Lamont, R.F. Bacterial vaginosis in climacteric and menopausal women. Int. J. STD AIDS, 2002, 13(7), 449-452.
[http://dx.doi.org/10.1258/09564620260079581] [PMID: 12171662]
[149]
Kim, J-M.; Park, Y.J. Probiotics in the prevention and treatment of postmenopausal vaginal infections. J. Menopausal Med., 2017, 23(3), 139-145.
[http://dx.doi.org/10.6118/jmm.2017.23.3.139] [PMID: 29354612]
[150]
Akour, A.; Kasabri, V.; Afifi, F.U.; Bulatova, N. The use of medicinal herbs in gynecological and pregnancy-related disorders by Jordanian women: A review of folkloric practice vs. evidence-based pharmacology. Pharm. Biol., 2016, 54(9), 1901-1918.
[http://dx.doi.org/10.3109/13880209.2015.1113994] [PMID: 26911517]
[151]
Kashani, L.; Eslatmanesh, S.; Saedi, N.; Niroomand, N.; Ebrahimi, M.; Hosseinian, M.; Foroughifar, T.; Salimi, S.; Akhondzadeh, S. Comparison of saffron versus fluoxetine in treatment of mild to moderate postpartum depression: A double-blind, randomized clinical trial. Pharmacopsychiatry, 2017, 50(2), 64-68.
[PMID: 27595298]
[152]
Ray, S.; Chatterjee, K.; De, D.; Ghosh, D. Bioefficacy of hydromethanolic extract of tuber of Chlorophytum borivilianum (Safed Musli) for the management of male infertility in cyproterone acetate-treated albino rats. Andrologia, 2014, 46(6), 659-671.
[http://dx.doi.org/10.1111/and.12133] [PMID: 23957231]
[153]
Rath, S.K.; Panja, A.K. Clinical evaluation of root tubers of Shweta Musali (Chlorophytum borivilianum L.) and its effect on semen and testosterone. Ayu, 2013, 34(3), 273-275.
[http://dx.doi.org/10.4103/0974-8520.123118] [PMID: 24501522]
[154]
Asadi, M.H.; Zafari, F.; Sarveazad, A.; Abbasi, M.; Safa, M.; Koruji, M.; Yari, A.; Alizadeh Miran, R. Saffron improves epididymal sperm parameters in rats exposed to cadmium. Nephrourol. Mon., 2013, 6(1), e12125.
[http://dx.doi.org/10.5812/numonthly.12125] [PMID: 24719804]
[155]
Sakr, S.A.; Zowail, M.E.; Marzouk, A.M. Effect of saffron (Crocus sativus L.) on sodium valporate induced cytogenetic and testicular alterations in albino rats. Anat. Cell Biol., 2014, 47(3), 171-179.
[http://dx.doi.org/10.5115/acb.2014.47.3.171] [PMID: 25276476]
[156]
Kolahdooz, M.; Nasri, S.; Modarres, S.Z.; Kianbakht, S.; Huseini, H.F. Effects of Nigella sativa L. seed oil on abnormal semen quality in infertile men: A randomized, double-blind, placebo-controlled clinical trial. Phytomedicine, 2014, 21(6), 901-905.
[http://dx.doi.org/10.1016/j.phymed.2014.02.006] [PMID: 24680621]
[157]
Elshama, S.S.; Shehab, G.M.; El-Kenawy, A.E.; Osman, H-E.H.; Farag, M.M. Role of Nigella Sativa Seeds on modulation testicular toxicity of colchicine repeated use in adult albino rats. Life Sci. J., 2013, 10(4), 59572862.
[158]
Türk, G.; Sönmez, M.; Aydin, M.; Yüce, A.; Gür, S.; Yüksel, M.; Aksu, E.H.; Aksoy, H. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats. Clin. Nutr., 2008, 27(2), 289-296.
[http://dx.doi.org/10.1016/j.clnu.2007.12.006] [PMID: 18222572]
[159]
Mathur, A.; Sharma, J. Radioprotective role of Punica granatum fruit rind extract: A biochemical study on mouse testis. Int. J. Radiat. Res, 2013, 11(2), 99.
[160]
Bansode, F.W.; Rajendran, S.M.; Singh, R.K. Dose-dependent effects of ethanol extract of Salvia haematodes wall roots on reproductive function and copulatory behaviour in male rats. Andrologia, 2015, 47(3), 266-275.
[http://dx.doi.org/10.1111/and.12255] [PMID: 24621398]
[161]
Sharma, P.; Huq, A.U.; Singh, R. Cypermethrin induced reproductive toxicity in male Wistar rats: Protective role of Tribulus terrestris. J. Environ. Biol., 2013, 34(5), 857-862.
[PMID: 24558798]
[162]
Hemalatha, S.; Hari, R. Fertility enhancing effect of saponin rich butanol extracts of Tribulus terrestris fruits in male albino rats. Int J. Pharm. Clin. Res., 2015, 7, 36-43.
[163]
Suresh, S.; Prithiviraj, E.; Lakshmi, N.V.; Ganesh, M.K.; Ganesh, L.; Prakash, S. Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat. J. Ethnopharmacol., 2013, 145(1), 32-41.
[http://dx.doi.org/10.1016/j.jep.2012.10.030] [PMID: 23103904]
[164]
Ahmad, M.K.; Mahdi, A.A.; Shukla, K.K.; Islam, N.; Jaiswar, S.P.; Ahmad, S. Effect of Mucuna pruriens on semen profile and biochemical parameters in seminal plasma of infertile men. Fertil. Steril., 2008, 90(3), 627-635.
[http://dx.doi.org/10.1016/j.fertnstert.2007.07.1314] [PMID: 18001713]
[165]
Ahmad, M.K.; Mahdi, A.A.; Shukla, K.K.; Islam, N.; Rajender, S.; Madhukar, D.; Shankhwar, S.N.; Ahmad, S. Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males. Fertil. Steril., 2010, 94(3), 989-996.
[http://dx.doi.org/10.1016/j.fertnstert.2009.04.046] [PMID: 19501822]
[166]
Ambiye, V.R.; Langade, D.; Dongre, S.; Aptikar, P.; Kulkarni, M.; Dongre, A. Clinical evaluation of the spermatogenic activity of the root extract of Ashwagandha (Withania somnifera) in oligospermic males: A pilot study. Evid. Based Complement. Alternat. Med., 2013, 2013, 571420.
[167]
Khaki, A.; Nouri, M.; Fathi, A.F.; Khaki, A.A. Evaluation of Zingiber officinalis and allium cepa on spermatogenesis in rat. Med. J. Tabriz Univ. Med. Sci., 2008, 30(2), 53-58.
[168]
Moselhy, W.A.; Helmy, N.A.; Abdel-Halim, B.R.; Nabil, T.M.; Abdel-Hamid, M.I. Role of ginger against the reproductive toxicity of aluminium chloride in albino male rats. Reprod. Domest. Anim., 2012, 47(2), 335-343.
[http://dx.doi.org/10.1111/j.1439-0531.2011.01878.x] [PMID: 21790801]
[169]
Yüce, A.; Türk, G.; Çeribaşi, S.; Sönmez, M.; Çiftçi, M.; Güvenç, M. Effects of cinnamon (Cinnamomum zeylanicum) bark oil on testicular antioxidant values, apoptotic germ cell and sperm quality. Andrologia, 2013, 45(4), 248-255.
[http://dx.doi.org/10.1111/and.12000] [PMID: 22862806]
[170]
Hafez, D.A. Effect of extracts of ginger goots and cinnamon bark on fertility of male diabetic rats. J. Am. Sci., 2010, 6(10), 940-947.
[171]
Nasimi Doost Azgomi, R.; Zomorrodi, A.; Nazemyieh, H.; Fazljou, S.M.B.; Sadeghi Bazargani, H.; Nejatbakhsh, F.; Moini Jazani, A. Ahmadi AsrBadr, Y. Effects of Withania somnifera on reproductive system: A systematic review of the available evidence. BioMed Res. Int., 2018, 2018, 4076430-4076430.
[http://dx.doi.org/10.1155/2018/4076430] [PMID: 29670898]
[172]
Nikseresht, M.; Fallahzadeh, A.R.; Toori, M.A.; Mahmoudi, R. Effects of pomegranate seed oil on the fertilization potency of rat’s sperm. J. Clin. Diagn. Res., 2015, 9(12), FF01-FF04.
[http://dx.doi.org/10.7860/JCDR/2015/12576.6853] [PMID: 26816914]
[173]
Hashemzadeh, A.; Avan, A.; Ferns, G.A.; Khazaei, M. Vaccines based on virus-like nano-particles for use against Middle East Respiratory Syndrome (MERS) coronavirus. Vaccine, 2020, 38(36), 5742-5746.
[http://dx.doi.org/10.1016/j.vaccine.2020.07.003] [PMID: 32684497]
[174]
Keelan, J.A.; Leong, J.W.; Ho, D.; Iyer, K.S. Therapeutic and safety considerations of nanoparticle-mediated drug delivery in pregnancy. Nanomedicine, 2015, 10(14), 2229-2247.
[http://dx.doi.org/10.2217/nnm.15.48] [PMID: 26214358]
[175]
Menezes, V.; Malek, A.; Keelan, J.A. Nanoparticulate drug delivery in pregnancy: Placental passage and fetal exposure. Curr. Pharm. Biotechnol., 2011, 12(5), 731-742.
[http://dx.doi.org/10.2174/138920111795471010] [PMID: 21342124]
[176]
Bardaweel, S.K.; Shehadeh, M.; Suaifan, G.A.R.Y.; Kilani, M-V.Z. Complementary and alternative medicine utilization by a sample of infertile couples in Jordan for infertility treatment: Clinics-based survey. BMC Complement. Altern. Med., 2013, 13(1), 35.
[http://dx.doi.org/10.1186/1472-6882-13-35] [PMID: 23414246]
[177]
Ghazeeri, G.S.; Awwad, J.T.; Alameddine, M.; Younes, Z.M.H.; Naja, F. Prevalence and determinants of complementary and alternative medicine use among infertile patients in Lebanon: A cross sectional study. BMC Complement. Altern. Med., 2012, 12(1), 129.
[http://dx.doi.org/10.1186/1472-6882-12-129] [PMID: 22901284]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy