[2]
Kocienski, P.J. Protecting groups; Georg Thieme: New York, 1994, pp. 28-42.
[13]
(a) Jones, G.B.; Hynd, G.; Wright, J.M.; Sharma, A. On the selective deprotection of trityl ethers. J. Org. Chem., 2000, 65, 263.
(b) Malik, S.; Kartha, K.P.R. A mild, highly efficient, and chemoselective deprotection of trityl ethers of carbohydrates and nucleosides using iodine monobromide. Synlett, 2009, 11, 1809.
[22]
(a) Grindley, T.B. Applications of tin-containing intermediates to carbohydrate chemistryAdv. Carbohydr. Chem. Biochem; , 1998, 53, . (17),
(b) Zhang, Z.; Wong, C.H. Regioselective benzoylation of sugars mediated by excessive Bu2SnO: Observation of temperature promoted migration. Tetrahedron, 2002, 58, 6513.
(c) Calinaud, P.; Gelas, J.; Hanessian, S. Synthesis of isopropylidene, benzylidene, and related acetals; New York, 1997, pp. 3-33.
[24]
(a) Hanessian, S. Total synthesis of natural products: The ‘Chiron’ Approach; Pergamon Press: New York, 1983, p. 3.
(b) Levy, D. E.; Fugedi, P. The organic chemistry of sugars; CRC Press- Taylor & Francis: Boca Ratonk 2006.
(c) Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov., 2009, 8, 661.
[32]
(a) Haines, A.H. The selective removal of protecting groups in carbohydrate chemistry. Adv. Carbohydr. Chem. Biochem., 1981, 39, 13.
(b) Geles, J. The reactivity of cyclic acetals of aldoses and aldosides. Adv. Carbohydr. Chem. Biochem., 1981, 39, 71.
(c) Belder, A.N. de Cyclic acetals of the aldoses and aldosides highlights of the literature since 1964, and a supplement to the tables. Adv. Carbohydr. Chem. Biochem., 1977, 34, 179.
(d) Brady, R.F.J. Cyclic acetals of ketoses. Adv. Carbohydr. Chem. Biochem., 1971, 26, 197.
(e) Narouz, M.R.; Soliman, S.E.; Bassily, R.W.; El-Sokkary, R.I.; Nasr, A.Z.; Nashed, M.A. Regioselective synthesis of novel mono-substituted d-lactose fatty acid ester derivatives. Lett. Org. Chem., 2013, 10, 502.
[53]
Vijayasaradhi, S.; Singh, J.; Aidhena, I.S. An efficient, selective hydrolysis of terminal isopropylidene acetal protection by Zn(NO3)2·6H2O in acetonitrile. Synlett, 2000, 1, 110.
[57]
Barone, G.; Bedini, E.; Iadonisi, A.; Manzo, E.; Parrilli, M. Ceric ammonium nitrate/pyridine: A mild reagent for the selective deprotection of cyclic acetals and ketals in the presence of acid labile protecting groups. Synlett, 2002, 10, 1645.
[63]
Chari, P, M.; Syamasundar, K. Polymer-supported ferric chloride as a heterogeneous catalyst for chemoselective deprotection of acetonides. Synthesis, 2005, 5, 0708.,
[77]
Chang, C, C.; Liao, B, S.; Li, S, T. Deprotection of acetals and ketals in a colloidal suspension generated by sodium tetrakis (3, 5- trifluoromethylphenyl) borate in water. Synlett, 2007, 2, 0283.
[80]
Koyama, M. Hydrocracking of lignin-related model dimers with Fe2O3/montmorillonite catalyst. Mokuzai Gakkaishi, 1995, 41, 1017.
[81]
Pfrengle, F.; Dekaris, V.; Schefzig, L.; Zimmer, R.; Reissig, H.U. Indium trichloride mediated cleavage of acetonides in the presence of acid-labile functional groups - enhancing the synthetic utility of 1,3-dioxolanyl-substituted 1,2-oxazines. Synlett, 2008, 19, 2965.
[85]
Maddani, M.A.R.; Prabhu, K.R. Ketal-free deprotection of terminal acetonides by using tert-butyl hydroperoxide in aqueous medium. Synlett, 2011, 6, 0821.,
[97]
Liu, M.; Li, B.H.; Li, X.B.; Li, B.L. Selective hydrolysis of O-isopropylidene derivatives of sugars and polyhydroxy alcohols catalyzed by sulfonated carbon nanocage. J. Chem. Soc. Pak., 2016, 38, 749.