Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Optimization of the Transdermal Delivery System in Astilbin Microemulsion with Improved Stability and Anti-psoriatic Activity

Author(s): Yutong Ding, Lijuan Liu, Yayun Wu, Yang Wang* and Ruizhi Zhao*

Volume 20, Issue 3, 2023

Published on: 10 June, 2022

Page: [281 - 291] Pages: 11

DOI: 10.2174/1567201819666220425092114

Price: $65

Abstract

Background: Astilbin is a promising candidate drug for psoriasis. However, the poor solubility and stability limited its clinical application.

Purpose: The present work aimed to develop a stable microemulsion of astilbin formulation and evaluate its effect in vitro and in vivo.

Methods: Oil phase, surfactants, and cosurfactants were screened using solubility and stability of astilbin as the index. The central composite experiment design and response surface methodology analysis were adopted to optimize microemulsion parameters. The particle size, zeta potential, polydispersity index, viscosity, drug content, encapsulation, transmission electron microscopy (TEM), and stability of the optimized microemulsion were evaluated. Then, the drug release and anti-psoriasis effects were evaluated in a mouse model induced by imiquimod.

Results: The optimum formulation contained Labrafil M 1944 Cs (10.12%), Polyoxyethylene Castor Oil 35 (37.41%), propylene glycol (12.47%), water (40%), and gallic acid (2.9%), and the average particle size was 14.71 nm. The permeability of astilbin from the optimized astilbin-gallic acid microemulsion in 24 hr was 4.39 times higher compared with the astilbin’s microemulsion. The content of astilbin in astilbin-gallic acid microemulsion remained unchanged after being stored at 25°C for 4 months compared with astilbin aqueous (3 h) and astilbin microemulsion (185 h). Compared with the model group, the optimized formulation decreased the PASI score and Baker score by 49% and 73%, respectively, which showed a favorable anti-psoriasis effect. Moreover, there was no difference in the anti-psoriasis effect between the optimized group and the positive control.

Conclusion: These results indicated that the astilbin-gallic acid microemulsion might be a potential topical drug used for the treatment of psoriasis.

Keywords: Astilbin, microemulsion, gallic acid, psoriasis, stability, TEM.

Graphical Abstract
[1]
Papp, K.A.; Gniadecki, R.; Beecker, J.; Dutz, J.; Gooderhan, M.J.; Hong, C.H.; Kirchhof, M.G.; Lynde, C.W.; Maari, C.; Poulin, Y.; Vender, R.B. Psoriasis prevalence and severity by expert eicitation. Dermatol. Ther. (Heidelb.), 2021, 133(2), 377-385.
[2]
Korman, N.J. Management of psoriasis as a systemic disease: What is the evidence? Br. J. Dermatol., 2020, 182(4), 840-848.
[http://dx.doi.org/10.1111/bjd.18245] [PMID: 31225638]
[3]
Armstrong, A.; Jarvis, S.; Boehncke, W.H.; Rajagopalan, M.; Fernández-Peñas, P.; Romiti, R.; Bewley, A.; Vaid, B.; Huneault, L.; Fox, T.; Sodha, M.; Warren, R.B. Patient perceptions of clear/almost clear skin in moderate-to-severe plaque psoriasis: Results of the Clear About Psoriasis worldwide survey. J. Eur. Acad. Dermatol. Venereol., 2018, 32(12), 2200-2207.
[http://dx.doi.org/10.1111/jdv.15065] [PMID: 29730888]
[4]
Schaarschmidt, M.L.; Herr, R.; Gutknecht, M.; Wroblewska, K.; Gerdes, S.; Sticherling, M.; Augustin, M.; Peitsch, W.K. Patients’ and physicians’ preferences for systemic psoriasis treatments: A nationwide comparative discrete choice experiment (PsoCompare). Acta Derm. Venereol., 2018, 98(2), 200-205.
[http://dx.doi.org/10.2340/00015555-2834] [PMID: 29110022]
[5]
Han, L.; Sun, J.; Lu, C.J.; Zhao, R.Z.; Lu, Y.; Lin, H.J.; Wei, J.A. Formula PSORI-CM01 inhibits the inflammatory cytokine and chemokine release in keratinocytes via NF-κB expression. Int. Immunopharmacol., 2017, 44, 226-233.
[http://dx.doi.org/10.1016/j.intimp.2017.01.023] [PMID: 28129604]
[6]
Lu, C.J.; Xiang, Y.; Xie, X.L.; Xuan, M.L.; He, Z.H. A randomized controlled single-blind clinical trial on 84 outpatients with Psoriasis vulgaris by auricular therapy combined with optimized Yinxieling Formula. Chin. J. Integr. Med., 2012, 18(3), 186-191.
[http://dx.doi.org/10.1007/s11655-012-1020-3] [PMID: 22466942]
[7]
Yi, H.W.; Lu, X.M.; Fang, F.; Wang, J.; Xu, Q. Astilbin inhibits the adhesion of T lymphocytes via decreasing TNF-α and its associated MMP-9 activity and CD44 expression. Int. Immunopharmacol., 2008, 8(10), 1467-1474.
[http://dx.doi.org/10.1016/j.intimp.2008.06.006] [PMID: 18606251]
[8]
Zou, S.; Shen, X.; Tang, Y.; Fu, Z.; Zheng, Q.; Wang, Q. Astilbin suppresses acute heart allograft rejection by inhibiting maturation and function of dendritic cells in mice. Transplant. Pro., 2010, 42(9), 3798-3802.
[http://dx.doi.org/10.1016/j.transproceed.2010.06.031]
[9]
Guo, L.; Liu, W.; Lu, T.; Guo, W.; Gao, J.; Luo, Q.; Wu, X.; Sun, Y.; Wu, X.; Shen, Y.; Xu, Q. Decrease of functional activated T and B cells and treatment of glomerulonephitis in lupus-prone mice using a natural flavonoid astilbin. PLoS One, 2015, 10(4), e0124002.
[http://dx.doi.org/10.1371/journal.pone.0124002] [PMID: 25867237]
[10]
Di, T.T.; Ruan, Z.T.; Zhao, J.X.; Wang, Y.; Liu, X.; Wang, Y.; Li, P. Astilbin inhibits Th17 cell differentiation and ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via Jak3/Stat3 signaling pathway. Int. Immunopharmacol., 2016, 32, 32-38.
[http://dx.doi.org/10.1016/j.intimp.2015.12.035] [PMID: 26784569]
[11]
Zhang, C.; Xu, Q.; Tan, X.; Meng, L.; Wei, G.; Liu, Y.; Zhang, C. Astilbin decreases proliferation and improves differentiation in HaCaT keratinocytes. Biomed. Pharmacother., 2017, 93, 713-720.
[http://dx.doi.org/10.1016/j.biopha.2017.05.127] [PMID: 28700975]
[12]
Yu, J.; Xiao, Z.; Zhao, R.; Lu, C.; Zhang, Y. Astilbin emulsion improves guinea pig lesions in a psoriasis-like model by suppressing IL-6 and IL-22 via p38 MAPK. Mol. Med. Rep., 2018, 17(3), 3789-3796.
[PMID: 29286161]
[13]
Wang, W.; Yuhai; Wang, H.; Chasuna ; Bagenna Astilbin reduces ROS accumulation and VEGF expression through Nrf2 in psoriasis-like skin disease. Biol. Res., 2019, 52(1), 49.
[http://dx.doi.org/10.1186/s40659-019-0255-2] [PMID: 31492195]
[14]
Sharma, A.; Gupta, S.; Chauhan, S.; Nair, A.; Sharma, P. Astilbin: A promising unexplored compound with multidimentional medicinal and health benefits. Pharmacol. Res., 2020, 158, 104894.
[http://dx.doi.org/10.1016/j.phrs.2020.104894] [PMID: 32407960]
[15]
Zhang, Q.F.; Fu, Y.J.; Huang, Z.W.; Shangguang, X.C.; Guo, Y.X. Aqueous stability of astilbin: Effects of pH, temperature, and solvent. J. Agric. Food Chem., 2013, 61(49), 12085-12091.
[http://dx.doi.org/10.1021/jf404420s] [PMID: 24255970]
[16]
Zheng, D.; Ruan, Y.T.; Yin, Z.P.; Zhang, Q.F. A comparasion of solubility, stablity, and bioavailability between astilbin and neoastilbin isolated from Smilax glabra Rhizoma. Molecules, 2020, 25(20), 1-13.
[http://dx.doi.org/10.3390/molecules25204728] [PMID: 33076319]
[17]
Zheng, D.; Zhang, Q.F. Bioavailability enhancement of astilbin in rats through zein-caseinate nanoparticles. J. Agric. Food Chem., 2019, 67(20), 5746-5753.
[http://dx.doi.org/10.1021/acs.jafc.9b00018] [PMID: 31045359]
[18]
Shi, M.; Xu, M.; Yin, L. Pharmacokinetic, bioavailability and tissue distribution study of astilbin in rats. J. Pharm. Pharmacol., 2020, 72(8), 1061-1071.
[http://dx.doi.org/10.1111/jphp.13282] [PMID: 32346882]
[19]
Mohammad Soleymani, S.; Salimi, A.; Salimi, A. Enhancement of dermal delivery of finasteride using microemulsion systems. Adv. Pharm. Bull., 2019, 9(4), 584-592.
[http://dx.doi.org/10.15171/apb.2019.067] [PMID: 31857962]
[20]
Coneac, G.; Vlaia, V.; Olariu, I.; Muţ, A.M.; Anghel, D.F.; Ilie, C.; Popoiu, C.; Lupuleasa, D.; Vlaia, L. Development and evaluation of new microemulsion-based hydrogel formulations for topical delivery of fluconazole. AAPS PharmSciTech, 2015, 16(4), 889-904.
[http://dx.doi.org/10.1208/s12249-014-0275-8] [PMID: 25591952]
[21]
Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci., 2019, 20(6), 1-28.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[22]
Zhang, Q.F.; Nie, H.C.; Shangguang, X.C.; Yin, Z.P.; Zheng, G.D.; Chen, J.G. Aqueous solubility and stability enhancement of astilbin through complexation with cyclodextrins. J. Agric. Food Chem., 2013, 61(1), 151-156.
[http://dx.doi.org/10.1021/jf304398v] [PMID: 23228168]
[23]
Wang, X.H.; Zhong, R.N.; Shen, B.D.; Shen, C.Y.; Liu, X.; Dai, B.; Yuan, H.L. Preparation of astilbin amorphous nanosuspension and its in vitro evaluation. Zhongguo Zhongyao Zazhi, 2018, 43(8), 1626-1632.
[PMID: 29751709]
[24]
Ren, Q.; Deng, C.; Meng, L.; Chen, Y.; Chen, L.; Sha, X.; Fang, X. In vitro, ex vivo, and in vivo evaluation of the effect of saturated fat acid chain length on the transdermal behavior of ibuprofen-loaded microemulsions. J. Pharm. Sci., 2014, 103(6), 1680-1691.
[http://dx.doi.org/10.1002/jps.23958] [PMID: 24700251]
[25]
Zhang, D.; Ye, D.; Jing, P.; Tan, X.; Qiu, L.; Li, T.; Shen, L.; Sun, Y.; Hou, H.; Zhang, Y.; Tian, Q. Design, optimization and evaluation of co-surfactant free microemulsion-based hydrogel with low surfactant for enhanced transdermal delivery of lidocaine. Int. J. Pharm., 2020, 586, 119415.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119415] [PMID: 32599129]
[26]
Bigliardi, P.L. Skin pH in Psoriasis. Curr. Probl. Dermatol., 2018, 54, 108-114.
[http://dx.doi.org/10.1159/000489524] [PMID: 30130779]
[27]
Proksch, E. pH in nature, humans and skin. J. Dermatol., 2018, 45(9), 1044-1052.
[http://dx.doi.org/10.1111/1346-8138.14489] [PMID: 29863755]
[28]
Basu, S.; Jana, S.; Patel, V.B.; Patel, H. Effects of piperine, cinnamic acid and gallic acid on rosuvastatin pharmacokinetics in rats. Phytother. Res., 2013, 27(10), 1548-1556.
[PMID: 23208983]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy