Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Comparative Study on Synthesis and Biological, Pharmaceutical Applications of Aromatic Substituted Chalcones

Author(s): Vikas V. Borge* and Raju M. Patil

Volume 20, Issue 3, 2023

Published on: 05 August, 2022

Page: [260 - 269] Pages: 10

DOI: 10.2174/1570193X19666220420110928

Price: $65

Open Access Journals Promotions 2
Abstract

Chalcones(1, 3, diaryl-2-propen-1-ones) are prominent compounds and therefore, various procedures have been worked out for their synthesis. This review highlights the synthesis and pharmacological properties of chalcone derivatives. Chalcones are flavonoids that have been studied extensively for their medicinal and biological properties. These chalcone derivatives have shown important antimalarial, anticancer, antimicrobial, anti-inflammatory, antioxidant, antituberculosis, anticonvulsant, antileishmanial, and anti-HIV properties. The new structural classes of compounds may prove to be lead molecules and good candidates for future investigations.

Keywords: Chalcones, synthesis, pharmaceutical activities, biological activities, aromatic substituted, chalcones.

Graphical Abstract
[1]
Gupta, K.R.; Badole, S.; Gupta, J.K.; Singh, S.V. Synthesis and screening for biological potential of some substituted chalcones. Int. J. Pharm. Chem. Anal., 2018, 5(2), 84-88.http://oaji.net/articles/2017/1780-1533620951.pdf
[2]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019 ] [PMID: 17112640]
[3]
Miranda, C.L.; Stevens, J.F.; Ivanov, V.; McCall, M.; Frei, B.; Deinzer, M.L.; Buhler, D.R. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J. Agric. Food Chem., 2000, 48(9), 3876-3884.
[http://dx.doi.org/10.1021/jf0002995 ] [PMID: 10995285]
[4]
Dinoiu, V.; Gorghiu, L.M.; Jipa, S.; Zaharescu, T.; Setnescu, R.; Dumitrescu, C. Kinetic study on thermal degradation of low-density polyethylene stabilized with chalcone derivatives. Polym. Degrad. Stabil., 2004, 85(1), 615-622.
[http://dx.doi.org/10.1016/j.polymdegradstab.2003.12.002]
[5]
Won, S.J.; Liu, C.T.; Tsao, L.T.; Weng, J.R.; Ko, H.H.; Wang, J.P.; Lin, C.N. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur. J. Med. Chem., 2005, 40(1), 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.006 ] [PMID: 15642415]
[6]
Climent, M.J.; Corma, A.; Iborra, S.; Velty, A. Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. J. Catal., 2004, 221(2), 474-482.
[http://dx.doi.org/10.1016/j.jcat.2003.09.012]
[7]
Sebti, S.; Solhy, A.; Smahi, A.; Kossir, A.; Oumimoun, H. Dramatic activity enhancement of natural phosphate catalyst by lithium nitrate. An efficient synthesis of chalcones. Catal. Commun., 2002, 3(8), 335-339.
[http://dx.doi.org/10.1016/S1566-7367(02)00137-1]
[8]
Micheli, F.; Degiorgis, F.; Feriani, A.; Paio, A.; Pozzan, A.; Zarantonello, P.; Seneci, P. A combinatorial approach to [1,5]benzothiazepine derivates as potential antibacterial agents. J. Comb. Chem., 2001, 3(2), 224-228.
[http://dx.doi.org/10.1021/cc0000949 ] [PMID: 11300864]
[9]
Bu, X.; Zhao, L.; Li, Y. Li., Y. A facile synthesis of 6-C-prenylflavanones. Synthesis, 1997, 11(11), 1246-1248.
[http://dx.doi.org/10.1055/s-1997-1348]
[10]
Alcantara, A.R.; Marinas, J.M.; Sinisterra, J.V. Synthesis of 2′-hydroxychalcones and related compounds in interfacial solid-liquid conditions. Tetrahedron Lett., 1987, 28(14), 1515-1518.
[http://dx.doi.org/10.1016/S0040-4039(01)81030-3]
[11]
Daskiewicz, J.B.; Comte, G.; Barron, D.; Pietro, A.D.; Thomasson, F. Organolithium mediated synthesis of prenylchalcones as potential inhibitors of chemoresistance. Tetrahedron Lett., 1999, 40(39), 7095-7098.
[http://dx.doi.org/10.1016/S0040-4039(99)01461-6]
[12]
Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety. Bioorg. Med. Chem., 2005, 13(2), 433-441.
[http://dx.doi.org/10.1016/j.bmc.2004.10.010 ] [PMID: 15598564]
[13]
Banoth, R.K.; Thatikonda, A. A review on natural chalcones an update. Int. J. Pharm. Sci. Res., 2020, 11(2), 546-555.
[14]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5(47), e47.
[http://dx.doi.org/10.1017/jns.2016.41 ] [PMID: 28620474]
[15]
Cushman, M.; Nagarathnam, D. Cytotoxicities of some flavonoid analogues. J. Nat. Prod., 1991, 54(6), 1656-1660.
[http://dx.doi.org/10.1021/np50078a027 ] [PMID: 1812215]
[16]
Bhat, B.A.; Dhar, K.L.; Puri, S.C.; Saxena, A.K.; Shanmugavel, M.; Qazi, G.N. Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2005, 15(12), 3177-3180.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.121 ] [PMID: 15893928]
[17]
Levai, A. Synthesis of chlorinated 3,5-diaryl-2-pyrazolines by the reaction of chlorochalcones with hydrazines. ARKIVOC, 2005, 9(9), 344-352.
[http://dx.doi.org/10.3998/ark.5550190.0006.929]
[18]
Azarifar, D.; Ghasemnejad, H. Microwave-assisted synthesis of some 3,5-arylated 2-pyrazolines. Molecules, 2003, 8(8), 642-648.
[http://dx.doi.org/10.3390/80800642]
[19]
Varga, L.; Nagy, T.; K¨ovesdi, I.; Benet-Buchholz, J.; Dorm’an, G.; Urge, L.; Darvas, F. Solution-phase parallel synthesis of 4,6-diaryl-pyrimidine-2-ylamines and 2-amino-5,5-disubstituted-3,5-dihydro-imidazol-4-ones via a rearrangement. Tetrahedron, 2003, 59(5), 655-662.
[http://dx.doi.org/10.1016/S0040-4020(02)01560-0]
[20]
Lin, Y-M.; Zhou, Y.; Flavin, M.T.; Zhou, L-M.; Nie, W.; Chen, F-C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem., 2002, 10(8), 2795-2802.
[http://dx.doi.org/10.1016/S0968-0896(02)00094-9 ] [PMID: 12057669]
[21]
Ballesteros, J.F.; Sanz, M.J.; Ubeda, A.; Miranda, M.A.; Iborra, S.; Payá, M.; Alcaraz, M.J. Synthesis and pharmacological evaluation of 2′-hydroxychalcones and flavones as inhibitors of inflammatory mediators generation. J. Med. Chem., 1995, 38(14), 2794-2797.
[http://dx.doi.org/10.1021/jm00014a032 ] [PMID: 7629818]
[22]
Lee, S.H.; Sohn, D.H.; Jin, X.Y.; Kim, S.W.; Choi, S.C.; Seo, G.S. 2′4′6′-tris(methoxymethoxy) chalcone protects against trinitrobenzene sulfonic acid-induced colitis and blocks tumor necrosis factor-α-induced intestinal epithelial inflammation via heme oxygenase 1-dependent and independent pathways. Biochem. Pharmacol., 2007, 74(6), 870-880.
[http://dx.doi.org/10.1016/j.bcp.2007.06.034 ] [PMID: 17678632]
[23]
Hsieh, H-K.; Lee, T-H.; Wang, J-P.; Wang, J-J.; Lin, C-N. Synthesis and anti-inflammatory effect of chalcones and related compounds. Pharm. Res., 1998, 15(1), 39-46.
[http://dx.doi.org/10.1023/A:1011940401754 ] [PMID: 9487544]
[24]
Viana, G.S.; Bandeira, M.A.; Matos, F.J. Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva allemão. Phytomedicine, 2003, 10(2-3), 189-195.
[http://dx.doi.org/10.1078/094471103321659924 ] [PMID: 12725575]
[25]
Anto, R.J.; Sukumaran, K.; Kuttan, G.; Rao, M.N.; Subbaraju, V.; Kuttan, R. Anticancer and antioxidant activity of synthetic chalcones and related compounds. Cancer Lett., 1995, 97(1), 33-37.
[http://dx.doi.org/10.1016/0304-3835(95)03945-S ] [PMID: 7585475]
[26]
Arty, I.S.; Timmerman, H.; Samhoedi, M. Sastrohamidjojo; Sugiyanto; van der Goot, H. Synthesis of benzylideneaceto-phenones and their inhibition of lipid peroxidation. Eur. J. Med. Chem., 2000, 35(4), 449-457.
[http://dx.doi.org/10.1016/S0223-5234(00)00137-9 ] [PMID: 10858605]
[27]
Mukherjee, S.; Kumar, V.; Prasad, A.K.; Raj, H.G.; Bracke, M.E.; Olsen, C.E.; Jain, S.C.; Parmar, V.S. Synthetic and biological activity evaluation studies on novel 1,3-diarylpropenones. Bioorg. Med. Chem., 2001, 9(2), 337-345.
[http://dx.doi.org/10.1016/S0968-0896(00)00249-2 ] [PMID: 11249126]
[28]
Vaya, J.; Belinky, P.A.; Aviram, M. Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic. Biol. Med., 1997, 23(2), 302-313.
[http://dx.doi.org/10.1016/S0891-5849(97)00089-0 ] [PMID: 9199893]
[29]
Mieaad, M.; Aljamali, N.M.; Shubber, W.A.; Abdalrahman, S.A. New Azomethine-azo heterocyclic ligands via cyclization of ester. Res. J. Pharm. Tech., 2018, 11, 6.
[30]
Suwito, H.; Kristanti, A.N.; Tri Puspaningsih, N.N. Chalcone: Synthesis, structure, diversity and pharmacological aspects. J. Chem. Pharm. Res., 2014, 6(5), 1076-1088.
[31]
ElSohly, H.N.; Joshi, A.S.; Nimrod, A.C.; Walker, L.A.; Clark, A.M. Antifungal chalcones from Maclura tinctoria. Planta Med., 2001, 67(1), 87-89.
[http://dx.doi.org/10.1055/s-2001-10621 ] [PMID: 11270732]
[32]
Gupta, D.; Jain, D.K. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res., 2015, 6(3), 114-117.
[http://dx.doi.org/10.4103/2231-4040.161507 ] [PMID: 26317075]
[33]
Bhakuni, D.S.; Chaturvedi, R. Chemical constituents of Crotalaria madurensis. J. Nat. Prod., 1984, 47(4), 585-591.
[http://dx.doi.org/10.1021/np50034a003 ] [PMID: 6491677]
[34]
Sivakumar, P.M.; Geetha Babu, S.K.; Mukesh, D. QSAR studies on chalcones and flavonoids as anti-tuberculosis agents using genetic function approximation (GFA) method. Chem. Pharm. Bull. (Tokyo), 2007, 55(1), 44-49.
[http://dx.doi.org/10.1248/cpb.55.44 ] [PMID: 17202700]
[35]
Aljamali, N.M. Synthesis and chemical identification of macro compounds of (Thiazol and Imidazol). Res. J. Pharm. Tech., 2015, 8(1), 78-84.
[http://dx.doi.org/10.5958/0974-360X.2015.00016.5]
[36]
Ram, V.J.; Saxena, A.S.; Srivastava, S.; Chandra, S. Oxygenated chalcones and bischalcones as potential antimalarial agents. Bioorg. Med. Chem. Lett., 2000, 10(19), 2159-2161.
[http://dx.doi.org/10.1016/S0960-894X(00)00409-1 ] [PMID: 11012019]
[37]
Wu, X.; Wilairat, P.; Go, M-L. Antimalarial activity of ferrocenyl chalcones. Bioorg. Med. Chem. Lett., 2002, 12(17), 2299-2302.
[http://dx.doi.org/10.1016/S0960-894X(02)00430-4 ] [PMID: 12161120]
[38]
Narender, T. Shweta; Tanvir, K.; Rao, M.S.; Srivastava, K.; Puri, S.K. Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2005, 15(10), 2453-2455.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.081 ] [PMID: 15929201]
[39]
Trivedi, J.C.; Bariwal, J.B.; Upadhyay, K.D.; Naliapara, Y.T.; Joshi, S.K.; Pannecouque, C.C.; De Clercq, E.; Shah, A.K. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett., 2007, 48(48), 8472-8474.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.175]
[40]
Li, R.; Chen, X.; Gong, B.; Selzer, P.M.; Li, Z.; Davidson, E.; Kurzban, G.; Miller, R.E.; Nuzum, E.O.; McKerrow, J.H.; Fletterick, R.J.; Gillmor, S.A.; Craik, C.S.; Kuntz, I.D.; Cohen, F.E.; Kenyon, G.L. Structure-based design of parasitic protease inhibitors. Bioorg. Med. Chem., 1996, 4(9), 1421-1427.
[http://dx.doi.org/10.1016/0968-0896(96)00136-8 ] [PMID: 8894100]
[41]
Tiwari, N.; Dwivedi, B. Nizamuddin, Synthesis of some pyrazoline and isoxazolin derivatives as possible fungicides. Boll. Chim. Farm., 1989, 128(11), 332-335.
[PMID: 2637751]
[42]
Leovezijn, A.V.; Iwema, W.I.; Stoit, A. Arylsulfonyl pyrazoline carboxamide derivatives as 5-HT6 antagonists. US Patent, 0011775A1, 2014.
[43]
Abou-Zied, H.A.; Youssif, B.G.M.; Mohamed, M.F.A.; Hayallah, A.M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem., 2019, 89, 102997.
[http://dx.doi.org/10.1016/j.bioorg.2019.102997 ] [PMID: 31136902]
[44]
Page, P.; Gaggini, F.; Laleu, B. Pyrazoline dione derivatives as NADPH oxidase inhibitors. US Patent, 0172352 A1, 2012.
[45]
Loa, J.; Chow, P.; Zhang, K. Studies of structure-activity relationship on plant polyphenol-induced suppression of human liver cancer cells. Cancer Chemother. Pharmacol., 2009, 63(6), 1007-1016.
[http://dx.doi.org/10.1007/s00280-008-0802-y ] [PMID: 18766342]
[46]
Epifano, F.; Genovese, S.; Menghini, L.; Curini, M. Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry, 2007, 68(7), 939-953.
[http://dx.doi.org/10.1016/j.phytochem.2007.01.019 ] [PMID: 17343885]
[47]
De Vincenzo, R.; Scambia, G.; Benedetti Panici, P.; Ranelletti, F.O.; Bonanno, G.; Ercoli, A.; Delle Monache, F.; Ferrari, F.; Piantelli, M.; Mancuso, S. Effect of synthetic and naturally occurring chalcones on ovarian cancer cell growth: Structure-activity relationships. Anticancer Drug Des., 1995, 10(6), 481-490.
[PMID: 7575989]
[48]
Mohamed, M.F.A.; Shaykoon, M.S.A.; Abdelrahman, M.H.; Elsadek, B.E.M.; Aboraia, A.S.; Abuo-Rahma, G.E.A.A. Design, synthesis, docking studies and biological evaluation of novel chalcone derivatives as potential histone deacetylase inhibitors. Bioorg. Chem., 2017, 72, 32-41.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.005 ] [PMID: 28346873]
[49]
Jarvill-Taylor, K.J.; Anderson, R.A.; Graves, D.J. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. J. Am. Coll. Nutr., 2001, 20(4), 327-336.
[http://dx.doi.org/10.1080/07315724.2001.10719053 ] [PMID: 11506060]
[50]
Romagnoli, R.; Baraldi, P.G.; Sarkar, T.; Carrion, M.D.; Cara, C.L.; Cruz-Lopez, O.; Preti, D.; Tabrizi, M.A.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Zonta, N.; Balzarini, J.; Brancale, A.; Hsieh, H.P.; Hamel, E. Synthesis and biological evaluation of 1-methyl-2-(3′4′5′-trimethoxybenzoyl)-3-aminoindoles as a new class of antimitotic agents and tubulin inhibitors. J. Med. Chem., 2008, 51(5), 1464-1468.
[http://dx.doi.org/10.1021/jm7011547 ] [PMID: 18260616]
[51]
Lawrence, N.J.; Rennison, D.; McGown, A.T.; Hadfield, J.A. The total synthesis of an aurone isolated from Uvaria hamiltonii: Aurones and flavones as anticancer agents. Bioorg. Med. Chem. Lett., 2003, 13(21), 3759-3763.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.003 ] [PMID: 14552774]
[52]
Mirzaei, H.; Emami, S. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity. Eur. J. Med. Chem., 2016, 121, 610-639.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.067 ] [PMID: 27318983]
[53]
Li, W.; Sun, H.; Xu, S.; Zhu, Z.; Xu, J. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med. Chem., 2017, 9(15), 1765-1794.
[http://dx.doi.org/10.4155/fmc-2017-0100 ] [PMID: 28929799]
[54]
Ducki, S.; Rennison, D.; Woo, M.; Kendall, A.; Chabert, J.F.D.; McGown, A.T.; Lawrence, N.J. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem., 2009, 17(22), 7698-7710.
[http://dx.doi.org/10.1016/j.bmc.2009.09.039 ] [PMID: 19837593]
[55]
Bueno, O.; Tobajas, G.; Quesada, E.; Estévez-Gallego, J.; Noppen, S.; Camarasa, M-J.; Díaz, J-F.; Liekens, S.; Priego, E-M.; Pérez-Pérez, M-J. Conformational mimetics of the α-methyl chalcone TUB091 binding tubulin: Design, synthesis and antiproliferative activity. Eur. J. Med. Chem., 2018, 148, 337-348.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.019 ] [PMID: 29471122]
[56]
Dyrager, C.; Wickström, M.; Fridén-Saxin, M.; Friberg, A.; Dahlén, K.; Wallén, E.A.; Gullbo, J.; Grøtli, M.; Luthman, K. Inhibitors and promoters of tubulin polymerization: Synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorg. Med. Chem., 2011, 19(8), 2659-2665.
[http://dx.doi.org/10.1016/j.bmc.2011.03.005 ] [PMID: 21459004]
[57]
Huang, X.; Huang, R.; Li, L.; Gou, S.; Wang, H. Synthesis and biological evaluation of novel chalcone derivatives as a new class of microtubule destabilizing agents. Eur. J. Med. Chem., 2017, 132, 11-25.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.031 ] [PMID: 28340411]
[58]
Huang, X.; Huang, R.; Wang, Z.; Li, L.; Gou, S.; Liao, Z.; Wang, H. Pt(IV) complexes conjugating with chalcone analogue as inhibitors of microtubule polymerization exhibited selective inhibition in human cancer cells. Eur. J. Med. Chem., 2018, 146, 435-450.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.075 ] [PMID: 29407969]
[59]
Konieczny, M.T. Buɬakowska, A.; Pirska, D.; Konieczny, W.; Skladanowski, A.; Sabisz, M.; Wojciechowski, M.; Lemke, K.; Pieczykolan, A.; Strożek, W. Structural factors affecting affinity of cytotoxic oxathiole-fused chalcones toward tubulin. Eur. J. Med. Chem., 2015, 89, 733-742.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.075 ] [PMID: 25462279]
[60]
Li, L.; Jiang, S.; Li, X.; Liu, Y.; Su, J.; Chen, J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem., 2018, 151, 482-494.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.011 ] [PMID: 29649743]
[61]
Shankaraiah, N.; Nekkanti, S.; Brahma, U.R.; Praveen Kumar, N.; Deshpande, N.; Prasanna, D.; Senwar, K.R.; Jaya Lakshmi, U. Synthesis of different heterocycles-linked chalcone conjugates as cytotoxic agents and tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25(17), 4805-4816.
[http://dx.doi.org/10.1016/j.bmc.2017.07.031 ] [PMID: 28774575]
[62]
Wang, G.; Peng, Z.; Zhang, J.; Qiu, J.; Xie, Z.; Gong, Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg. Chem., 2018, 78, 332-340.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.028 ] [PMID: 29627654]
[63]
Zhang, Y.L.; Li, B.Y.; Yang, R.; Xia, L.Y.; Fan, A-L.; Chu, Y-C.; Wang, L-J.; Wang, Z-C.; Jiang, A-Q.; Zhu, H-L. A class of novel tubulin polymerization inhibitors exert effective anti-tumor activity via mitotic catastrophe. Eur. J. Med. Chem., 2019, 163, 896-910.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.030 ] [PMID: 30580241]
[64]
Edwards, M.L.; Stemerick, D.M.; Sunkara, P.S. Chalcones: a new class of antimitotic agents. J. Med. Chem., 1990, 33(7), 1948-1954.
[http://dx.doi.org/10.1021/jm00169a021 ] [PMID: 2362275]
[65]
Borge, V.V.; Patil, R.M. Synthesis and characterisation of some substituted chalcones. Paripex - Ind. J. Res., 2018, 7(1)
[66]
Christine, D. Design and Synthesis of Chalcone and Chromone Derivatives as Novel Anticancer Agents. Ph.D. Thesis, Department of Chemistry University of Gothenburg, Gothenburg, 2012, 30-33.
[67]
Bianco, A.; Cavarischia, C.; Farina, A.; Guiso, M.; Marra, C.A. A new synthesis of flavonoids via Heck reaction. Tetrahedron Lett., 2003, 44(51), 9107-9109.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.060]
[68]
Onoda; Sasaki, T. Advances in carbohydrate chemistry and biochemistry. Chem. Abstr., 1975, 25, 7.
[69]
Onoda; Sasaki, T. Advances in carbohydrate chemistry and biochemistry. Chem. Abstr., 1976, 85, 5450.
[70]
Jawad, A.M. Review on Chalcone (Preparation, reactions, medical and bio applications). Int. J. Chem. Synth. Chem. React., 2019, 5(1), 16-27.
[71]
David, I.; Ugwu, E.; Benjamin, C.; Uchechukwu, U. florrene, C.; Ogechi, C.; melford, and Daniel, I. syntheses and pharmacological applications of chalcones: A review. Int. J. Chem. Sci., 2015, 13(1), 459-500.
[72]
Boumendjel, A.; Di Pietro, A.; Dumontet, C.; Barron, D. Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Med. Res. Rev., 2002, 22(5), 512-529.
[http://dx.doi.org/10.1002/med.10015 ] [PMID: 12210557]
[73]
Sridhar, S.; Rajendraprasad, Y. Synthesis and analgesic studies of some new 2-pyrazolines. J. Chem., 2012, 9(4), 1810-1815.
[74]
Ahmed, M.R.; Sastry, V.G.; Bano, N.; Ravichandra, S.; Raghavendra, M. Rasayan, Synthesis and cytotoxic, anti-oxidant activites of new chalcone derivatives. J. Chem., 2011, 4(2), 289-294.
[75]
Renan, R. Identification of traditional Chinese material medica; Shanghai Scientific and Technical Publishing House, Shanghai People's Republic of China, 1986, 109-113.
[76]
Chen, M.; Brøgger Christensen, S.; Zhai, L.; Rasmussen, M.H.; Theander, T.G.; Frøkjaer, S.; Steffansen, B.; Davidsen, J.; Kharazmi, A. The novel oxygenated chalcone, 2,4-dimethoxy-4′-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo. J. Infect. Dis., 1997, 176(5), 1327-1333.
[http://dx.doi.org/10.1086/514129 ] [PMID: 9359735]
[77]
Jyoti; Gaur, R.; Kumar, Y.; Cheema, H.S.; Kapkoti, D.S.; Darokar, M.P.; Khan, F.; Bhakuni, R.S. Synthesis, molecular modelling studies of indolyl chalcone derivatives and their antimalarial activity evaluation. Nat. Prod. Res., 2021, 35(19), 3261-3268.
[http://dx.doi.org/10.1080/14786419.2019.1696788 ] [PMID: 31795747]
[78]
George, R.F.; Samir, E.M.; Abdelhamed, M.N.; Abdel-Aziz, H.A.; Abbas, S.E. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem., 2019, 83, 186-197.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.038 ] [PMID: 30380447]
[79]
Ibrahim, D.A.; Abou El Ella, D.A.; El-Motwally, A.M.; Aly, R.M. Molecular design and synthesis of certain new quinoline derivatives having potential anticancer activity. Eur. J. Med. Chem., 2015, 102, 115-131.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.030 ] [PMID: 26256032]
[80]
Ferrer, R.; Lobo, G.; Gamboa, N.; Rodrigues, J.; Abramjuk, C.; Jung, K.; Lein, M.; Charris, J.E. Synthesis of [(7-Chloroquinolin-4-yl)amino]chalcones: Potential antimalarial and anticancer agents. Sci. Pharm., 2009, 77, 725-741.
[81]
Singhal, M.; Paul, A. Synthesis and antimicrobial evaluation of chalconesemicarbazone derivatives. Int. J Pharm. Res. Dev., 2011, 3, 87-90.
[82]
Zangade, S.B.; Jadhav, J.D.; Vibhute, Y.B.; Dawane, B.S. Synthesis and antimicrobial activity of some new chalcones and flavone containing substituted naphthalene moiety. J. Chem. Pharm. Res., 2010, 2, 310-314.
[83]
Sadgir, N.V.; Dhonnar, S.L.; Jagdale, B.S.; Sawant, A.B. And Sawant, A. B. Synthesis, spectroscopic characterization, XRD crystal structure, DFT and antimicrobial study of (2E)-3-(2,6-dichlorophenyl)-1-(4-methoxyphenyl)-prop-2-en-1-one. SN Appl. Sci., 2020, 2(8), 1376.
[http://dx.doi.org/10.1007/s42452-020-2923-9]
[84]
Visagaperumal, D.; Revathi, R. RatnaSree, C.; Jayakumar R. and Anbalagan, N. Microwave assisted synthesis and biological activity of certain 4-hydroxy chalcones. Pharmacophore, 2013, 4(2), 59-69.
[85]
Goyal, K.; Kaur, R.; Goyal, A.; Awasthi, R. Chalcones: A review on synthesis and pharmacological activities. J. Appl. Pharm. Sci., 2021, 11, 1-14.
[86]
Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol., 1971, 231(25), 232-235.
[http://dx.doi.org/10.1038/newbio231232a0 ] [PMID: 5284360]
[87]
Bhosale, R.B.; Jadhav, S.Y.; Shirame, S.P.; Sonawane, V.D.; Hublikar, M.G.; Sonawane, K.D.; Shaikh, R.U. Synthesis and physical parameter study of Chloromethyl chalcone. Int. J. Pharm. Bio. Sci., 2013, 4(2), 390-397.
[88]
Ahmed, M.R.; Sastry, V.G.; Bano, N. Synthesis and cytotoxic, anti-oxidant activity of 1, 3-diphenyl-2-propene-1-one derivatives. Int. J. Chemtech Res., 2011, 3(3), 1462-1469.
[89]
Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G. Lukáč P.; Vimberg, V.; Balíková-Novtoná, G.; Vannucci, L.; Janata, J.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur. J. Med. Chem., 2019, 176, 50-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.013 ] [PMID: 31096118]
[90]
Pandeya, A.K. Synthesis and screening for biological potential of some substituted chalcones. Int. J. Pharm. Chem. Analysis, 2018, 5(2), 84-88.
[91]
Verma, S.; Srivastava, A.K.; Pandey, O.P. A review on chalcones synthesis and their biological activity. PharmaTutor, 2018, 6(2), 22-39.
[92]
Sashidhara, K.V.; Dodda, R.P.; Sonkar, R.; Palnati, G.R.; Bhatia, G. Design and synthesis of novel indole-chalcone fibrates as lipid lowering agents. Eur. J. Med. Chem., 2014, 81, 499-509.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.085 ] [PMID: 24871900]
[93]
Bello, M.L.; Chiaradia, L.D.; Dias, L.R.S.; Pacheco, L.K.; Stump, T.R.; Mascarello, A.; Steindel, M.; Yunes, R.A.; Castro, H.C.; Nunes, R.J.; Rodrigues, C.R. Design and synthesis of novel indole-chalcone fibrates as lipid lowering agents. Bioorg. Med. Chem. Lett., 2011, 19, 5046.
[http://dx.doi.org/10.1016/j.bmc.2011.06.023]
[94]
Nazarian, Z.; Emami, S.; Heydari, S.; Ardestani, S.K.; Nakhjiri, M.; Poorrajab, F.; Shafiee, A.; Foroumadi, A. Novel antileishmanial chalconoids: Synthesis and biological activity of 1- or 3-(6-chloro-2H-chromen-3-yl)propen-1-ones. Eur. J. Med. Chem., 2010, 45(4), 1424-1429.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.046 ] [PMID: 20074836]
[95]
Uenaka, M.; Kawata, K.; Nagai, M.; Endoh, T. Studies on novel heterocyclic compounds and their microbicidal efficacy. Chem. Abstr., 2001, 134, 29421.
[96]
Nakagawa, G.; Lee, K. The first total synthesis of a unique potent anti-HIV chalcone from genus Desmos. Tetrahedron Lett., 2006, 47(47), 8263-8266.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.110]
[97]
Sharma, H.; Patil, S.; Sanchez, T.W.; Neamati, N.; Schinazi, R.F.; Buolamwini, J.K. Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. Bioorg. Med. Chem., 2011, 19(6), 2030-2045.
[http://dx.doi.org/10.1016/j.bmc.2011.01.047 ] [PMID: 21371895]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy