Mini-Review Article

Current Research Trends in Cytokine Storm: A Scientometric Study

Author(s): Kun-Tang Wang, Dong Xu, Yi-Lun Wang, Xin-Ran Dong, Jie Tang, Yue Wang, Tao Qiao, Han Zhang, Qiang-Song Wang* and Yuan-Lu Cui*

Volume 23, Issue 12, 2022

Published on: 15 July, 2022

Page: [1136 - 1154] Pages: 19

DOI: 10.2174/1389450123666220414135249

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Coronavirus disease 2019 (COVID-19) is currently rampant worldwide, resulting in unpredictable harm to humans. High blood levels of cytokines and chemokines have been marked in patients with COVID-19 infection, leading to cytokine storm syndrome. Cytokine storms are violent inflammatory immune responses that reveal the devastating effect of immune dysregulation and the critical role of an effective host immune response.

Methods: Scientometric analysis summarizes the literature on cytokine storms in recent decades and provides a valuable and timely approach to tracking the development of new trends. This review summarizes the pathogenesis and treatment of diseases associated with cytokine storms comprehensively based on scientometric analysis.

Results: Field distribution, knowledge structure, and research topic evolution correlated with cytokine storms are revealed, and the occurrence, development, and treatment of disease relevant to cytokine storms are illustrated.

Conclusion: Cytokine storms can be induced by pathogens and iatrogenic causes and can also occur in the context of autoimmune diseases and monogenic diseases as well. These reveal the multidisciplinary nature of cytokine storms and remind the complexity of the pathophysiological features, clinical presentation, and management. Overall, this scientometric study provides a macroscopic presentation and further direction for researchers who focus on cytokine storms.

Keywords: Cytokine storm, scientometrics analysis, visualization, CiteSpace, VOSviewer, COVID-19.

Graphical Abstract
[1]
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92(4): 401-2.
[http://dx.doi.org/10.1002/jmv.25678] [PMID: 31950516]
[2]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[3]
Bordons M, Zulueta MA. Evaluation of the scientific activity through bibliometric indices. Rev Esp Cardiol 1999; 52(10): 790-800.
[http://dx.doi.org/10.1016/S0300-8932(99)75008-6] [PMID: 10563155]
[4]
Chen YB, Tong XF, Ren J, Yu CQ, Cui YL. Current research trends in traditional Chinese medicine formula: A bibliometric review from 2000 to 2016. Evid Based Complement Alternat Med 2019; 20193961395.
[http://dx.doi.org/10.1155/2019/3961395] [PMID: 30941195]
[5]
Lu C, Liu M, Shang W, et al. Knowledge mapping of Angelica sinensis (Oliv.) Diels (Danggui) research: A scientometric study. Front Pharmacol 2020; 11: 294.
[http://dx.doi.org/10.3389/fphar.2020.00294] [PMID: 32231572]
[6]
Dong R, Wang H, Ye J, Wang M, Bi Y. Publication trends for alzheimer’s disease worldwide and in China: A 30-year bibliometric analysis. Front Hum Neurosci 2019; 13: 259.
[http://dx.doi.org/10.3389/fnhum.2019.00259] [PMID: 31447661]
[7]
Liang YD, Li Y, Zhao J, Wang XY, Zhu HZ, Chen XH. Study of acupuncture for low back pain in recent 20 years: A bibliometric analysis via CiteSpace. J Pain Res 2017; 10: 951-64.
[http://dx.doi.org/10.2147/JPR.S132808] [PMID: 28479858]
[8]
van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010; 84(2): 523-38.
[http://dx.doi.org/10.1007/s11192-009-0146-3] [PMID: 20585380]
[9]
Dai SL, Duan X, Zhang W. Knowledge map of environmental crisis management based on keywords network and co-word analysis, 2005-2018. J Clean Prod 2020; 262: 262.
[http://dx.doi.org/10.1016/j.jclepro.2020.121168]
[10]
Saks MJ, Risinger DM, Rosenthal R, Thompson WC. Context effects in forensic science: a review and application of the science of science to crime laboratory practice in the United States. Sci Justice 2003; 43(2): 77-90.
[http://dx.doi.org/10.1016/S1355-0306(03)71747-X] [PMID: 12879569]
[11]
Garfield E. Historiographic mapping of knowledge domains literature. J Inf Sci 2004; 30(2): 119-45.
[http://dx.doi.org/10.1177/0165551504042802]
[12]
Chen C. Science mapping: A systematic review of the literature. J Data Inf Sci 2017; 2(2): 1-40.
[13]
Falagas ME, Charitidou E, Alexiou VG. Article and journal impact factor in various scientific fields. Am J Med Sci 2008; 335(3): 188-91.
[http://dx.doi.org/10.1097/MAJ.0b013e318145abb9] [PMID: 18344691]
[14]
Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA 2005; 102(46): 16569-72.
[http://dx.doi.org/10.1073/pnas.0507655102] [PMID: 16275915]
[15]
Ferrara JL. Cytokine dysregulation as a mechanism of graft versus host disease. Curr Opin Immunol 1993; 5(5): 794-9.
[http://dx.doi.org/10.1016/0952-7915(93)90139-J] [PMID: 8240742]
[16]
Huang KJ, Su IJ, Theron M, et al. An interferon-γ-related cytokine storm in SARS patients. J Med Virol 2005; 75(2): 185-94.
[http://dx.doi.org/10.1002/jmv.20255] [PMID: 15602737]
[17]
Rojas M, Monsalve DM, Pacheco Y, et al. Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2020; 106102375.
[http://dx.doi.org/10.1016/j.jaut.2019.102375] [PMID: 31806422]
[18]
Monsalvo AC, Batalle JP, Lopez MF, et al. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med 2011; 17(2): 195-9.
[http://dx.doi.org/10.1038/nm.2262] [PMID: 21131958]
[19]
Hay KA, Hanafi L-A, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017; 130(21): 2295-306.
[http://dx.doi.org/10.1182/blood-2017-06-793141] [PMID: 28924019]
[20]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[21]
Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 2006; 57(3): 359-77.
[http://dx.doi.org/10.1002/asi.20317]
[22]
Wang Z, Zhang A, Wan Y, et al. Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc Natl Acad Sci USA 2014; 111(2): 769-74.
[http://dx.doi.org/10.1073/pnas.1321748111] [PMID: 24367104]
[23]
Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006; 355(10): 1018-28.
[http://dx.doi.org/10.1056/NEJMoa063842] [PMID: 16908486]
[24]
Halstead SB. Dengue. Lancet 2007; 370(9599): 1644-52.
[http://dx.doi.org/10.1016/S0140-6736(07)61687-0] [PMID: 17993365]
[25]
Teijaro JR, Walsh KB, Cahalan S, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 2011; 146(6): 980-91.
[http://dx.doi.org/10.1016/j.cell.2011.08.015] [PMID: 21925319]
[26]
Walsh KB, Teijaro JR, Wilker PR, et al. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA 2011; 108(29): 12018-23.
[http://dx.doi.org/10.1073/pnas.1107024108] [PMID: 21715659]
[27]
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 2017; 39(5): 517-28.
[http://dx.doi.org/10.1007/s00281-017-0639-8] [PMID: 28555385]
[28]
Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 2018; 24(6): 731-8.
[http://dx.doi.org/10.1038/s41591-018-0041-7] [PMID: 29808005]
[29]
Staedtke V, Bai R-Y, Kim K, et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 2018; 564(7735): 273-7.
[http://dx.doi.org/10.1038/s41586-018-0774-y] [PMID: 30542164]
[30]
Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: A scientometric update (2000 - 2014). Expert Opin Biol Ther 2014; 14(9): 1295-317.
[http://dx.doi.org/10.1517/14712598.2014.920813] [PMID: 25077605]
[31]
Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bouman-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol 2009; 5(5): 499-521.
[http://dx.doi.org/10.1586/eci.09.31] [PMID: 20477639]
[32]
Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med 2020; 383(23): 2255-73.
[http://dx.doi.org/10.1056/NEJMra2026131] [PMID: 33264547]
[33]
Mahmud-Al-Rafat A, Majumder A, Taufiqur Rahman KM, et al. Decoding the enigma of antiviral crisis: Does one target molecule regulate all? Cytokine 2019; 115: 13-23.
[http://dx.doi.org/10.1016/j.cyto.2018.12.008] [PMID: 30616034]
[34]
Dawood FS, Jain S, Finelli L, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009; 360(25): 2605-15.
[http://dx.doi.org/10.1056/NEJMoa0903810] [PMID: 19423869]
[35]
Wu W, Shi D, Fang D, et al. A new perspective on C-reactive protein in H7N9 infections. Int J Infect Dis 2016; 44: 31-6.
[http://dx.doi.org/10.1016/j.ijid.2016.01.009] [PMID: 26809124]
[36]
Paessler S, Walker DH. Pathogenesis of the viral hemorrhagic fevers. Annu Rev Pathol 2013; 8(1): 411-40.
[http://dx.doi.org/10.1146/annurev-pathol-020712-164041] [PMID: 23121052]
[37]
Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The pathogenesis of Ebola virus disease. Annu Rev Pathol 2017; 12(1): 387-418.
[http://dx.doi.org/10.1146/annurev-pathol-052016-100506] [PMID: 27959626]
[38]
Costa VV, Fagundes CT, Souza DG, Teixeira MM. Inflammatory and innate immune responses in dengue infection: protection versus disease induction. Am J Pathol 2013; 182(6): 1950-61.
[http://dx.doi.org/10.1016/j.ajpath.2013.02.027] [PMID: 23567637]
[39]
Younan P, Iampietro M, Nishida A, et al. Ebola virus binding to TIM-1 on T lymphocytes induces a cytokine storm. MBio 2017; 8(5): e00845-17.
[http://dx.doi.org/10.1128/mBio.00845-17] [PMID: 28951472]
[40]
Cao B, Li X-W, Mao Y, et al. Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. N Engl J Med 2009; 361(26): 2507-17.
[http://dx.doi.org/10.1056/NEJMoa0906612] [PMID: 20007555]
[41]
Oldstone MB, Teijaro JR, Walsh KB, Rosen H. Dissecting influenza virus pathogenesis uncovers a novel chemical approach to combat the infection. Virology 2013; 435(1): 92-101.
[http://dx.doi.org/10.1016/j.virol.2012.09.039] [PMID: 23217619]
[42]
Mohty M, Vialle-Castellano A, Nunes JA, Isnardon D, Olive D, Gaugler B. IFN-α skews monocyte differentiation into Toll-like receptor 7-expressing dendritic cells with potent functional activities. J Immunol 2003; 171(7): 3385-93.
[http://dx.doi.org/10.4049/jimmunol.171.7.3385] [PMID: 14500632]
[43]
Wang S, Le TQ, Kurihara N, et al. Influenza virus-cytokine-protease cycle in the pathogenesis of vascular hyperpermeability in severe influenza. J Infect Dis 2010; 202(7): 991-1001.
[http://dx.doi.org/10.1086/656044] [PMID: 20731583]
[44]
Nimmerjahn F, Dudziak D, Dirmeier U, et al. Active NF-kappaB signalling is a prerequisite for influenza virus infection. J Gen Virol 2004; 85(Pt 8): 2347-56.
[http://dx.doi.org/10.1099/vir.0.79958-0] [PMID: 15269376]
[45]
Wisniewska MB, Ameyar-Zazoua M, Bakiri L, Kaminska B, Yaniv M, Weitzman JB. Dimer composition and promoter context contribute to functional cooperation between AP-1 and NFAT. J Mol Biol 2007; 371(3): 569-76.
[http://dx.doi.org/10.1016/j.jmb.2007.05.079] [PMID: 17588603]
[46]
Chen W, Lim CED, Kang H-J, Liu J. Chinese herbal medicines for the treatment of type A H1N1 influenza: A systematic review of randomized controlled trials. PLoS One 2011; 6(12): : e28093..
[http://dx.doi.org/10.1371/journal.pone.0028093] [PMID: 22164232]
[47]
Poon PM, Wong CK, Fung KP, et al. Immunomodulatory effects of a traditional Chinese medicine with potential antiviral activity: A self-control study. Am J Chin Med 2006; 34(1): 13-21.
[http://dx.doi.org/10.1142/S0192415X0600359X] [PMID: 16437735]
[48]
Zhang LD, Lyu J, Xie YM, Sun MH. Systematic evaluation and Meta-analysis on effectiveness and safety of Yupingfeng Granules on recurrent respiratory tract infection. Zhongguo Zhongyao Zazhi 2019; 44(20): 4379-86.
[PMID: 31872622]
[49]
Liu Q, Lu L, Hua M, et al. Jiawei-Yupingfeng-Tang, a Chinese herbal formula, inhibits respiratory viral infections in vitro and in vivo. J Ethnopharmacol 2013; 150(2): 521-8.
[http://dx.doi.org/10.1016/j.jep.2013.08.056] [PMID: 24051026]
[50]
Kim S-W, Kim CE, Kim MH. Flavonoids inhibit high glucose-induced up-regulation of ICAM-1 via the p38 MAPK pathway in human vein endothelial cells. Biochem Biophys Res Commun 2011; 415(4): 602-7.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.115] [PMID: 22074828]
[51]
Mou Z, Lv Z, Li Y, Wang M, Xu Q, Yu X. Clinical effect of shenfu injection in patients with septic shock: A meta-analysis and systematic review. Evid Based Complement Alternat Med 2015; 2015: 863149-9.
[http://dx.doi.org/10.1155/2015/863149] [PMID: 26199638]
[52]
Li MQ, Pan CG, Wang XM, et al. Effect of the shenfu injection combined with early goal-directed therapy on organ functions and outcomes of septic shock patients. Cell Biochem Biophys 2015; 72(3): 807-12.
[http://dx.doi.org/10.1007/s12013-015-0537-4] [PMID: 25680826]
[53]
Li P, Lv B, Jiang X, et al. Identification of NF-κB inhibitors following Shenfu injection and bioactivity-integrated UPLC/Q-TOF-MS and screening for related anti-inflammatory targets in vitro and in silico. J Ethnopharmacol 2016; 194: 658-67.
[http://dx.doi.org/10.1016/j.jep.2016.10.052] [PMID: 27771457]
[54]
Liu X, Ai F, Li H, et al. Anti-inflammatory effects of Shenfu injection against acute lung injury through inhibiting hmgb1-nf-κb pathway in a rat model of endotoxin shock. Evid Based Complement Alternat Med 2019; 2019: : 9857683..
[http://dx.doi.org/10.1155/2019/9857683]
[55]
Birrell MA, Patel HJ, McCluskie K, et al. PPAR-γ agonists as therapy for diseases involving airway neutrophilia. Eur Respir J 2004; 24(1): 18-23.
[http://dx.doi.org/10.1183/09031936.04.00098303] [PMID: 15293600]
[56]
Gopal R, Mendy A, Marinelli MA, et al. Peroxisome proliferator-activated receptor γ (PPARγ) suppresses inflammation and bacterial clearance during influenza-bacterial super-infection. Viruses 2019; 11(6): 505.
[http://dx.doi.org/10.3390/v11060505] [PMID: 31159430]
[57]
Mubareka S, Lowen AC, Steel J, Coates AL, García-Sastre A, Palese P. Transmission of influenza virus via aerosols and fomites in the guinea pig model. J Infect Dis 2009; 199(6): 858-65.
[http://dx.doi.org/10.1086/597073] [PMID: 19434931]
[58]
Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348(20): 1986-94.
[http://dx.doi.org/10.1056/NEJMoa030685] [PMID: 12682352]
[59]
Li Y, Chen M, Cao H, Zhu Y, Zheng J, Zhou H. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response. Microbes Infect 2013; 15(2): 88-95.
[http://dx.doi.org/10.1016/j.micinf.2012.10.008] [PMID: 23123977]
[60]
Srikantiah P, Charles MD, Reagan S, et al. SARS clinical features, United States, 2003. Emerg Infect Dis 2005; 11(1): 135-8.
[http://dx.doi.org/10.3201/eid1101.040585] [PMID: 15705339]
[61]
Zhai S, Liu W, Yan B. Recent patents on treatment of severe acute respiratory syndrome (SARS). Recent Patents Anti-Infect Drug Disc 2007; 2(1): 1-10.
[http://dx.doi.org/10.2174/157489107779561698] [PMID: 18221160]
[62]
Theron M, Huang K-J, Chen Y-W, Liu C-C, Lei H-Y. A probable role for IFN-γ in the development of a lung immunopathology in SARS. Cytokine 2005; 32(1): 30-8.
[http://dx.doi.org/10.1016/j.cyto.2005.07.007] [PMID: 16129616]
[63]
Tsang K, Zhong NS. SARS: Pharmacotherapy. Respirology 2003; 8(s1)(Suppl.): S25-30.
[http://dx.doi.org/10.1046/j.1440-1843.2003.00525.x] [PMID: 15018130]
[64]
ling Ren J, Zhang AH, Wang XJ. Corrigendum to “Traditional Chinese medicine for COVID-19 treatment” (Pharmacol. Res. 155 (2020) 104743) (S1043661820307556)(10.1016/j. phrs. 2020. 104743). Pharmacol Res 2020.
[65]
Zhu H-y, Huang H, Shi X, et al. Qiangzhi Decoction protects mice from influenza A pneumonia through inhibition of inflammatory cytokine storm. Chin J Integr Med 2015; 21(5): 376-83.
[http://dx.doi.org/10.1007/s11655-014-2020-2] [PMID: 25519444]
[66]
Craddock PR, Hammerschmidt D, White JG, Dalmosso AP, Jacob HS. Complement (C5-a)-induced granulocyte aggregation in vitro. A possible mechanism of complement-mediated leukostasis and leukopenia. J Clin Invest 1977; 60(1): 260-4.
[http://dx.doi.org/10.1172/JCI108763] [PMID: 874088]
[67]
Barratt-Due A, Thorgersen EB, Lindstad JK, et al. Ornithodoros moubata complement inhibitor is an equally effective C5 inhibitor in pigs and humans. J Immunol 2011; 187(9): 4913-9.
[http://dx.doi.org/10.4049/jimmunol.1101000] [PMID: 21964028]
[68]
Zhang C, Xu Y, Jia L, et al. A new therapeutic strategy for lung tissue injury induced by influenza with CR2 targeting complement inhibitor. Virol J 2010; 7(1): 30.
[http://dx.doi.org/10.1186/1743-422X-7-30] [PMID: 20144216]
[69]
Chang S-C. Clinical findings, treatment and prognosis in patients with severe acute respiratory syndrome (SARS). J Chin Med Assoc 2005; 68(3): 106-7.
[http://dx.doi.org/10.1016/S1726-4901(09)70229-1] [PMID: 15813242]
[70]
Auyeung TW, Lee JS, Lai WK, et al. The use of corticosteroid as treatment in SARS was associated with adverse outcomes: A retrospective cohort study. J Infect 2005; 51(2): 98-102.
[http://dx.doi.org/10.1016/j.jinf.2004.09.008] [PMID: 16038758]
[71]
Zhou Y-H, Qin Y-Y, Lu Y-Q, et al. Effectiveness of glucocorticoid therapy in patients with severe novel coronavirus pneumonia: Protocol of a randomized controlled trial. Chin Med J (Engl) 2020; 133(9): 1080-86.
[72]
Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-An update on the status. Mil Med Res 2020; 7(1): 1-10.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[73]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[74]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[75]
Luo E, Zhang D, Luo H, et al. Treatment efficacy analysis of traditional Chinese medicine for novel coronavirus pneumonia (COVID-19): an empirical study from Wuhan, Hubei Province, China. Chin Med 2020; 15(1): 34.
[http://dx.doi.org/10.1186/s13020-020-00317-x] [PMID: 32308732]
[76]
Ding Y, Zeng L, Li R, et al. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement Altern Med 2017; 17(1): 130.
[http://dx.doi.org/10.1186/s12906-017-1585-7] [PMID: 28235408]
[77]
Fu B, Xu X, Wei H. Why tocilizumab could be an effective treatment for severe COVID-19? J Transl Med 2020; 18(1): 164.
[http://dx.doi.org/10.1186/s12967-020-02339-3] [PMID: 32290839]
[78]
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 2003; 3(11): 722-7.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[79]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[80]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[81]
Kashour Z, Riaz M, Garbati MA, et al. Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: A systematic review and meta-analysis. J Antimicrob Chemother 2021; 76(1): 30-42.
[http://dx.doi.org/10.1093/jac/dkaa403] [PMID: 33031488]
[82]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): : eaal3653..
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[83]
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[84]
Janka G, Imashuku S, Elinder G, Schneider M, Henter JI. Infection- and malignancy-associated hemophagocytic syndromes. Secondary hemophagocytic lymphohistiocytosis. Hematol Oncol Clin North Am 1998; 12(2): 435-44.
[http://dx.doi.org/10.1016/S0889-8588(05)70521-9] [PMID: 9561911]
[85]
Janka GE. Familial hemophagocytic lymphohistiocytosis. Eur J Pediatr 1983; 140(3): 221-30.
[http://dx.doi.org/10.1007/BF00443367] [PMID: 6354720]
[86]
Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Eur J Pediatr 2007; 166(2): 95-109.
[http://dx.doi.org/10.1007/s00431-006-0258-1] [PMID: 17151879]
[87]
Henter JI, Horne A, Aricó M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 2007; 48(2): 124-31.
[http://dx.doi.org/10.1002/pbc.21039] [PMID: 16937360]
[88]
Hadchouel M, Prieur A-M, Griscelli C. Acute hemorrhagic, hepatic, and neurologic manifestations in juvenile rheumatoid arthritis: Possible relationship to drugs or infection. J Pediatr 1985; 106(4): 561-6.
[http://dx.doi.org/10.1016/S0022-3476(85)80072-X] [PMID: 3981309]
[89]
Grom AA, Passo M. Macrophage activation syndrome in systemic juvenile rheumatoid arthritis. J Pediatr 1996; 129(5): 630-2.
[http://dx.doi.org/10.1016/S0022-3476(96)70140-3] [PMID: 8917224]
[90]
Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol 2016; 12(5): 259-68.
[http://dx.doi.org/10.1038/nrrheum.2015.179] [PMID: 27009539]
[91]
Ravelli A, De Benedetti F, Viola S, Martini A. Macrophage activation syndrome in systemic juvenile rheumatoid arthritis successfully treated with cyclosporine. J Pediatr 1996; 128(2): 275-8.
[http://dx.doi.org/10.1016/S0022-3476(96)70408-0] [PMID: 8636829]
[92]
Kelly A, Ramanan AV. A case of macrophage activation syndrome successfully treated with anakinra. Nat Clin Pract Rheumatol 2008; 4(11): 615-20.
[http://dx.doi.org/10.1038/ncprheum0919] [PMID: 18825135]
[93]
Chatenoud L, Ferran C, Legendre C, et al. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation 1990; 49(4): 697-702.
[http://dx.doi.org/10.1097/00007890-199004000-00009] [PMID: 2109379]
[94]
Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47-62.
[http://dx.doi.org/10.1038/nrclinonc.2017.148] [PMID: 28925994]
[95]
Rotz SJ, Leino D, Szabo S, Mangino JL, Turpin BK, Pressey JG. Severe cytokine release syndrome in a patient receiving PD-1-directed therapy. Pediatr Blood Cancer 2017; 64(12): e26642.
[http://dx.doi.org/10.1002/pbc.26642] [PMID: 28544595]
[96]
Teachey DT, Rheingold SR, Maude SL, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 2013; 121(26): 5154-7.
[http://dx.doi.org/10.1182/blood-2013-02-485623] [PMID: 23678006]
[97]
Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012; 119(26): 6226-33.
[http://dx.doi.org/10.1182/blood-2012-01-400515] [PMID: 22592608]
[98]
Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188-95.
[http://dx.doi.org/10.1182/blood-2014-05-552729] [PMID: 24876563]
[99]
Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016; 6(6): 664-79.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0040] [PMID: 27076371]
[100]
Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016; 8(8): 959-70.
[http://dx.doi.org/10.2217/imt-2016-0020] [PMID: 27381687]
[101]
Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6(224): : 224ra25..
[102]
McGuirk J, Waller EK, Qayed M, et al. Building blocks for institutional preparation of CTL019 delivery. Cytotherapy 2017; 19(9): 1015-24.
[http://dx.doi.org/10.1016/j.jcyt.2017.06.001] [PMID: 28754600]
[103]
Li J, Piskol R, Ybarra R, et al. CD3 bispecific antibody-induced cytokine release is dispensable for cytotoxic T cell activity. Sci Transl Med 2019; 11(508): : eaax8861..
[http://dx.doi.org/10.1126/scitranslmed.aax8861] [PMID: 31484792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy