Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

An In silico Study of Imidazo[1,2-a]pyridine Derivatives with Homology Modelled F1F0 ATP Synthase Against Mycobacterium Tuberculosis

Author(s): Surabhi Jain*, Smriti Sharma and Dhrubo Jyoti Sen

Volume 20, Issue 5, 2022

Published on: 31 August, 2022

Article ID: e140422203557 Pages: 20

DOI: 10.2174/2211352520666220414094155

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Field-based 3D-QSAR, homology modelling, molecular docking, and ADMET studies have been carried out to determine the binding mode and drug likeliness profile of imidazo[1,2- a]pyridine derivatives as anti-tubercular agents.

Objective: The objective of this study is to design new anti-tubercular agents using field-based 3D-QSAR and molecular docking approaches and to ascertain the binding manner and drug-likeliness profile of imidazo[1,2-a]pyridine derivatives as antitubercular agents on ATP synthase protein.

Methods: A statistically significant 3D-QSAR model was generated with the dataset of 30 active agonists on ATP synthase whose pIC50 values ranged from 4.0 μM to 8.30 μM. The same dataset was analysed for ADME-T properties and docked to the homology modeled ATP synthase protein. Moreover, information from3D-QSAR contour maps was used in designing new molecules.

Results: The constructed 3D-QSAR model had a high correlation coefficient (R2=0.9688) and crossvalidation coefficient (Q2=0.9045), and F value (176) at the 3 component PLS factor. The homology modeled protein ‘ac9’ was validated with various parameters like Ramachandran plot (92.5 %), ERRAT plot (98.43 %), and ProSA (-1.78 chain ‘C’; -2.74 chain ‘A’). The protein was also examined for physicochemical properties, which showed the acidic and hydrophobic nature of the protein. The docking score of dataset compound no. PF19 (-9.97 Kcal/mol) was found to be almost similar to that of bedaquiline (- 10.08 Kcal/mol). Based on previous results from 3D-QSAR modelling and molecular docking, four new molecules were designed. The newly designed molecules (M1-M4) were docked; amongst them, M3(- 9.82 Kcal/mol) scored the highest. They were further analysed for drug-likeliness, ADME-T, and synthetic assessability. The findings suggested that these compounds had a strong possibility of becoming ATP-synthase inhibitors.

Conclusion: The various in silico approaches used in the present study offer new avenues for designing novel molecules against ATP synthase from M. tuberculosis and can be employed for the drug discovery programme.

Keywords: Tuberculosis, bedaquiline, ATP synthase, homology modelling, docking, imidazo[1, 2-a]pyridine, field-based 3D QSAR modelling.

Graphical Abstract
[1]
Koul, A.; Dendouga, N.; Vergauwen, K.; Molenberghs, B.; Vranckx, L.; Willebrords, R.; Ristic, Z.; Lill, H.; Dorange, I.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol., 2007, 3(6), 323-324.
[http://dx.doi.org/10.1038/nchembio884] [PMID: 17496888]
[2]
Biuković G.; Basak, S.; Manimekalai, M.S.; Rishikesan, S.; Roessle, M.; Dick, T.; Rao, S.P.; Hunke, C.; Grüber, G. Variations of subunit varepsilon of the Mycobacterium tuberculosis F1Fo ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207. Antimicrob. Agents Chemother., 2013, 57(1), 168-176.
[http://dx.doi.org/10.1128/AAC.01039-12] [PMID: 23089752]
[3]
Tran, S.L.; Cook, G.M. The F1Fo-ATP synthase of Mycobacterium smegmatis is essential for growth. J. Bacteriol., 2005, 187(14), 5023-5028.
[http://dx.doi.org/10.1128/JB.187.14.5023-5028.2005] [PMID: 15995221]
[4]
Haagsma, A.C.; Abdillahi-Ibrahim, R.; Wagner, M.J.; Krab, K.; Vergauwen, K.; Guillemont, J.; Andries, K.; Lill, H.; Koul, A.; Bald, D. Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob. Agents Chemother., 2009, 53(3), 1290-1292.
[http://dx.doi.org/10.1128/AAC.01393-08] [PMID: 19075053]
[5]
Kumar, S.; Mehra, R.; Sharma, S.; Bokolia, N.P.; Raina, D.; Nargotra, A.; Singh, P.P.; Khan, I.A. Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2018, 108, 56-63.
[http://dx.doi.org/10.1016/j.tube.2017.10.008] [PMID: 29523328]
[6]
Aksimentiev, A.; Balabin, I.A.; Fillingame, R.H.; Schulten, K. Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. Biophys. J., 2004, 86(3), 1332-1344.
[http://dx.doi.org/10.1016/S0006-3495(04)74205-8] [PMID: 14990464]
[7]
Preiss, L.; Langer, J.D.; Yildiz, Ö.; Eckhardt-Strelau, L.; Guillemont, J.E.; Koul, A.; Meier, T. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv., 2015, 1(4), e1500106.
[http://dx.doi.org/10.1126/sciadv.1500106] [PMID: 26601184]
[8]
de Jonge, M.R.; Koymans, L.H.; Guillemont, J.E.; Koul, A.; Andries, K. A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins, 2007, 67(4), 971-980.
[http://dx.doi.org/10.1002/prot.21376] [PMID: 17387738]
[9]
Tantry, S.J.; Markad, S.D.; Shinde, V.; Bhat, J.; Balakrishnan, G.; Gupta, A.K.; Ambady, A.; Raichurkar, A.; Kedari, C.; Sharma, S.; Mudugal, N.V.; Narayan, A.; Naveen Kumar, C.N.; Nanduri, R.; Bharath, S.; Reddy, J.; Panduga, V.; Prabhakar, K.R.; Kandaswamy, K.; Saralaya, R.; Kaur, P.; Dinesh, N.; Guptha, S.; Rich, K.; Murray, D.; Plant, H.; Preston, M.; Ashton, H.; Plant, D.; Walsh, J.; Alcock, P.; Naylor, K.; Collier, M.; Whiteaker, J.; McLaughlin, R.E.; Mallya, M.; Panda, M.; Rudrapatna, S.; Ramachandran, V.; Shandil, R.; Sambandamurthy, V.K.; Mdluli, K.; Cooper, C.B.; Rubin, H.; Yano, T.; Iyer, P.; Narayanan, S.; Kavanagh, S.; Mukherjee, K.; Balasubramanian, V.; Hosagrahara, V.P.; Solapure, S.; Ravishankar, S.; Hameed, P. S. Discovery of Imidazo[1,2-a]pyridine Ethers and squaramides as selective and potent inhibitors of mycobacterial Adenosine Triphosphate (ATP) synthesis. J. Med. Chem., 2017, 60(4), 1379-1399.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01358] [PMID: 28075132]
[10]
Surase, Y.B.; Samby, K.; Amale, S.R.; Sood, R.; Purnapatre, K.P.; Pareek, P.K.; Das, B.; Nanda, K.; Kumar, S.; Verma, A.K. Identification and synthesis of novel inhibitors of mycobacterium ATP synthase. Bioorg. Med. Chem. Lett., 2017, 27(15), 3454-3459.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.081] [PMID: 28587823]
[11]
O’Malley, T.; Alling, T.; Early, J.V.; Wescott, H.A.; Kumar, A.; Moraski, G.C.; Miller, M.J.; Masquelin, T.; Hipskind, P.A.; Parish, T. Imidazopyridine compounds inhibit Mycobacterial growth by depleting ATP levels. Antimicrob. Agents Chemother., 2018, 62(6), 1-8.
[http://dx.doi.org/10.1128/AAC.02439-17] [PMID: 29632008]
[12]
LigPrep software, version 2.5. New York, NY: LLC, 2020.
[13]
Release, S. Schrödinger Release 2021-1: Field-based QSAR. Schrödinger, LLC: New York, NY, , 2021.
[14]
The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[15]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[16]
Šali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of comparative protein modeling by modeller. Proteins, 1995, 23(3), 318-326.
[http://dx.doi.org/10.1002/prot.340230306] [PMID: 8710825]
[17]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(Pt 6 No 1), 899-907.
[http://dx.doi.org/10.1107/S0907444902003451] [PMID: 12037327]
[18]
Polo-Cuadrado, E. Schrödinger Release 2021-1: Maestro, Schrödinger; Schrödinger, LLC: New York, NY, 2021.
[19]
Laskowski, R.; MacArthur, M.; Moss, D.; Thornton, J. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[20]
Colovos, C.; Yeates, T.O. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[21]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35, W407-W410.
[http://dx.doi.org/10.1093/nar/gkm290]
[22]
Isa, D.; Alhaji, M. Identification of potent inhibitors of ATP synthase subunit C (AtpE) from Mycobacterium Tuberculosis using in silico approach. ChemRxiv, 2020, 2020, 1.
[23]
Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins, 1993, 17(4), 355-362.
[http://dx.doi.org/10.1002/prot.340170404] [PMID: 8108378]
[24]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server.In: The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press, 2005, pp. 571-607.
[25]
Gupta, M.K.; Vadde, R.; Donde, R.; Gouda, G.; Kumar, J.; Nayak, S.; Jena, M.; Behera, L. Insights into the structure-function relationship of brown plant hopper resistance protein, Bph14 of rice plant: A computational structural biology approach. J. Biomol. Struct. Dyn., 2019, 37(7), 1649-1665.
[http://dx.doi.org/10.1080/07391102.2018.1462737] [PMID: 29633905]
[26]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[27]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[28]
Upadhayaya, R.S.; Vandavasi, J.K.; Vasireddy, N.R.; Sharma, V.; Dixit, S.S.; Chattopadhyaya, J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(7), 2830-2841.
[http://dx.doi.org/10.1016/j.bmc.2009.02.026] [PMID: 19285414]
[29]
Dassault Systèmes, B.I.O.V.I.A. Discovery Studio Modeling Environment, Release 2017; Dassault Systèmes: San Diego, 2016.
[30]
Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp., 1999, 41, pp. 95-98.
[31]
Preiss, L.; Yildiz, O.; Meier, T. Crystal structure of a mycobacterial ATP synthase rotor ring in complex with Bedaquiline. Sci. Adv., 2015, 1(4), e1500106.
[32]
Balakrishna, A.M.; Seelert, H.; Marx, S-H.; Dencher, N.A.; Grüber, G. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase. Biosci. Rep., 2014, 34(2), e00102.
[http://dx.doi.org/10.1042/BSR20130114] [PMID: 27919036]
[33]
Vollmar, M.; Schlieper, D.; Winn, M.; Büchner, C.; Groth, G. Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J. Biol. Chem., 2009, 284(27), 18228-18235.
[http://dx.doi.org/10.1074/jbc.M109.006916] [PMID: 19423706]
[34]
Saroussi, S.; Schushan, M.; Ben-Tal, N.; Junge, W.; Nelson, N. Structure and flexibility of the C-ring in the electromotor of rotary F(0)F(1)-ATPase of pea chloroplasts. PLoS One, 2012, 7(9), e43045.
[http://dx.doi.org/10.1371/journal.pone.0043045] [PMID: 23049735]
[35]
Sobti, M.; Smits, C.; Wong, A.S.; Ishmukhametov, R.; Stock, D.; Sandin, S.; Stewart, A.G. Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife, 2016, 5, 1-18.
[http://dx.doi.org/10.7554/eLife.21598] [PMID: 28001127]
[36]
Rastogi, V.K.; Girvin, M.E. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature, 1999, 402(6759), 263-268.
[http://dx.doi.org/10.1038/46224] [PMID: 10580496]
[37]
Hahn, A.; Vonck, J.; Mills, D.J.; Meier, T.; Kühlbrandt, W. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science, 2018, 360(6389), 6389.
[http://dx.doi.org/10.1126/science.aat4318] [PMID: 29748256]
[38]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1), W443-W447.
[http://dx.doi.org/10.1093/nar/gkv315] [PMID: 25873628]
[39]
Haagsma, A.C.; Podasca, I.; Koul, A.; Andries, K.; Guillemont, J.; Lill, H.; Bald, D. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase. PLoS One, 2011, 6(8), e23575.
[http://dx.doi.org/10.1371/journal.pone.0023575] [PMID: 21858172]
[40]
Munnaluri, R.K.; Manga, V. In silico quest guided by physico-chemical descriptors of Bedaquiline for new scaffolds with potential inhibitory capacity against homology model of Mycobacterium F1f 0 ATP Synthase. Asian J. Chem., 2018, 30(4), 904-912.
[http://dx.doi.org/10.14233/ajchem.2018.21145]
[41]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[42]
Lee, S.K. Bioinformatics and molecular design research center; 2017. https://preadmet.bmdrc.kr

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy