Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

A Mini-review on Functionalized Ionic Liquid Immobilized Magnetic Nanoparticles Promoted One-Pot Domino Synthesis of Diverse Heterocyclic Systems

Author(s): Anand Kumar Arya*, Kritika Arya and Sudesh Kumar

Volume 20, Issue 1, 2023

Published on: 09 June, 2022

Page: [35 - 44] Pages: 10

DOI: 10.2174/1570193X19666220413104920

Price: $65

Open Access Journals Promotions 2
Abstract

Ionic liquid-promoted one-pot synthetic methodologies have emerged as a frontier for the facile access of diverse heterocycles. Owing to the high adaptability of ionic liquids (ILs), the design of functionalized ILs with desired specific and attuned properties, ideally satisfying the one-pot syntheses, are of great importance and endeavor. In particular, with the addressed drawbacks related to the use of ionic liquids as a homogeneous catalyst, the concept of using ionic liquid supported magnetic nanoparticles has drawn much attention as viable alternatives. This review focuses on the potential of functionalized ionic liquid immobilized magnetic Fe3O4 nanoparticles for the domino synthesis of diverse heterocyclic systems.

Keywords: Supported ionic liquid catalysis, ionic liquid, heterogeneous catalysis, Fe3O4 nanoparticles, domino synthesis.

Graphical Abstract
[1]
a) Flick, A.C.; Leverett, C.A.; Ding, H.X.; McInturff, E.; Fink, S.J.; Helal, C.J.; O’Donnell, C.J. Synthetic approaches to the new drugs approved during 2017. J. Med. Chem., 2019, 62(16), 7340-7382.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00196] [PMID: 30939001];
b) Hall, D.G.; Rybak, T.; Verdelet, T. Multicomponent hetero-[4 + 2] cycloaddition/allylboration reaction: From natural product synthesis to drug discovery. Acc. Chem. Res., 2016, 49(11), 2489-2500.
[http://dx.doi.org/10.1021/acs.accounts.6b00403] [PMID: 27753496];
c) Eze, C.C.; Ezeokonkwo, M.A.; Ezema, B.E.; Onoabedje, O.E.; Ibeanu, F.N.; Ugwu, D.I.; Onyeyilim, L.E.; Ezugwu, J.A. One-pot multicomponent synthesis of imidazole rings in acidic ionic liquids: A review. Mini Rev. Org. Chem., 2020, 17(8), 975-990.
[http://dx.doi.org/10.2174/1570193X17666200226110645];
d) Bhagat, S.; Shah, P.; Garg, S.K.; Mishra, S.; Kaur, P.K.; Singh, S.; Chakraborti, A.K. α-Aminophosphonates as novel antileishmanial chemotypes: Synthesis, biological evaluation, and CoMFA studies. MedChemComm, 2014, 5, 665-670.
[http://dx.doi.org/10.1039/C3MD00388D]]
[2]
a) Zhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem., 2019, 17(33), 7632-7650.
[http://dx.doi.org/10.1039/C9OB00772E] [PMID: 31339143];
b) Bhagat, S.; Chakraborti, A.K. An extremely efficient threecomponent reaction of aldehydes/ketones, amines, and phosphites (Kabachnik-Fields reaction) for the synthesis of α- aminophosphonates catalyzed by magnesium perchlorate. J. Org. Chem., 2007, 72(4), 1263-1270.
[http://dx.doi.org/10.1021/jo062140i] [PMID: 17253748];
c) Bhagat, S.; Chakraborti, A.K. Zirconium(IV) compounds as efficient catalysts for synthesis of α-aminophosphonates. J. Org. Chem., 2008, 73(15), 6029-6032.
[http://dx.doi.org/10.1021/jo8009006] [PMID: 18576690];
d) Bindal, S.; Kumar, D.; Kommi, D.N.; Bhatiya, S.; Chakraborti, A.K. Efficient organocatalytic dual activation strategy for preparing the versatile synthons (2E)-1-(Het)Aryl/styryl-3-(dimethylamino)prop-2-en-1-ones and α-(E)-[(Dimethylamino)methylene]cycloalkanones. Synthesis, 2011, 12, 1930-1935.;
e) Sarkar, A.; Raha Roy, S.; Kumar, D.; Madaan, C.; Rudrawar, S.; Chakraborti, A.K. Lack of correlation between catalytic efficiency and basicity of amines during the reaction of aryl methyl ketones with DMF-DMA: An unprecedented supramolecular domino catalysis. Org. Biomol. Chem., 2012, 10(2), 281-286.
[http://dx.doi.org/10.1039/C1OB06043K] [PMID: 22057389];
f) Kumar, D.; Kommi, D.N.; Chopra, P.; Ansari, M.I.; Chakraborti, A.K. L-proline-catalyzed activation of methyl ketones or active methylene compounds and DMF-DMA for Syntheses of (2E)-3-dimethylamino-2- propen-1-ones. Eur. J. Org. Chem., 2012, 6407-6413.
[http://dx.doi.org/10.1002/ejoc.201200778];
g) Bhagat, S.; Supriya, M.; Pathak, S.; Sriram, D.; Chakraborti, A.K. α-Sulfonamidophosphonates as new anti-mycobacterial chemotypes: Design, development of synthetic methodology, and biological evaluation. Bioorg. Chem., 2019, 82, 246-252.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.023] [PMID: 30391855];
h) Parikh, N.; Roy, S.R.; Seth, K.; Kumar, A.; Chakraborti, A.K. 'On-Water' multicomponent reaction for the diastereoselective synthesis of functionalized tetrahydropyridines and mechanistic insight. Synthesis, 2016, 04, 547-556.;
i) Roy, S.R.; Jadhavar, P.S.; Seth, K.; Sharma, K.K.; Chakraborti, A.K. Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and -thiones. Synthesis, 2011, 14, 2261-2267.;
j) Kumar, D.; Kommi, D.N.; Bollineni, N.; Patela, A.R.; Chakraborti, A.K. Catalytic procedures for multicomponent synthesis of imidazoles: Selectivity control during the competitive formation of tri- and tetrasubstituted imidazoles. Green Chem., 2012, 14, 2038-2049.
[http://dx.doi.org/10.1039/c2gc35277j];
k) Kumar, D.; Sonawane, M.; Pujala, B.; Jain, V.K.; Bhagata, S.; Chakraborti, A.K. Supported protic acid-catalyzed synthesis of 2,3- disubstituted thiazolidin-4-ones: Enhancement of the catalytic potential of protic acid by adsorption on solid supports. Green Chem., 2013, 15, 2872-2884.
[http://dx.doi.org/10.1039/c3gc41218k];
l) Kumar, D.; Jadhavar, P.S.; Nautiyal, M.; Sharma, H.; Meena, P.K.; Adane, L.; Pancholia, S.; Chakraborti, A.K. Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl- 3-substituted quinazolin-4(3H)-ones: Applications towards the synthesis of drugs. RSC Advances, 2015, 5, 30819-30825.
[http://dx.doi.org/10.1039/C5RA03888J];
m) Jadhavar, P.S.; Dhameliya, T.M.; Vaja, M.D.; Kumar, D.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Synthesis, biological evaluation and structure-activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(11), 2663-2669.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.012] [PMID: 27095514]
[3]
a) Senapak, W.; Saeeng, R.; Jaratjaroonphong, J.; Kasemsuk, T.; Sirion, U. Green synthesis of dipyrromethanes in aqueous media catalyzed by SO3H-functionalized ionic liquid. Org. Biomol. Chem., 2016, 14(4), 1302-1310.
[http://dx.doi.org/10.1039/C5OB01953B] [PMID: 26658884];
b) Sela, T.; Vigalok, A. Organic synthesis “on water” vs “on liquids”: A comparative analysis. Org. Lett., 2014, 16(7), 1964-1967.
[http://dx.doi.org/10.1021/ol500518n] [PMID: 24660988]
[4]
a) Siodmiak, T.; Marszall, M.P.; Proszowska, A. Ionic liquids: A new strategy in pharmaceutical synthesis. Mini Rev. Org. Chem., 2012, 9(2), 203-208.
[http://dx.doi.org/10.2174/157019312800604698];
b) McNeice, P.; Marr, P.C.; Marr, A.C. Basic ionic liquids for catalysis: The road to greater stability. Catal. Sci. Technol., 2021, 11, 726-741.
[http://dx.doi.org/10.1039/D0CY02274H];
c) Wang, L-J.; Lin, C-H. Synthesis and application of metal ion containing ionic liquids: A brief review. Mini Rev. Org. Chem., 2012, 9(2), 223-226.
[http://dx.doi.org/10.2174/157019312800604742];
d) Sarkar, A.; Roy, S.R.; Parikh, N.; Chakraborti, A.K. Nonsolvent application of ionic liquids: Organo-catalysis by 1-alkyl-3- methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency. J. Org. Chem., 2011, 76(17), 7132-7140.
[http://dx.doi.org/10.1021/jo201102q] [PMID: 21774556]
[5]
a) Kathiresan, M.; Velayutham, D. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chem. Commun. (Camb.), 2015, 51(99), 17499-17516.
[http://dx.doi.org/10.1039/C5CC06961K] [PMID: 26442436];
b) Kulkarni, P.S.; Branco, L.C.; Crespo, J.G.; Nunes, M.C.; Raymundo, A.; Afonso, C.A.M. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chemistry, 2007, 13(30), 8478-8488.
[http://dx.doi.org/10.1002/chem.200700965] [PMID: 17665379];
c) Chakraborti, A.K.; Roy, S.R.; Kumar, D.; Chopra, P. Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ionfishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis. Green Chem., 2008, 10, 1111-1118.
[http://dx.doi.org/10.1039/b807572g];
d) Chakraborti, A.K.; Roy, S.R. On catalysis by ionic liquids. J. Am. Chem. Soc., 2009, 131(20), 6902-6903.
[http://dx.doi.org/10.1021/ja900076a] [PMID: 19413313];
e) Sarkar, A.; Roy, S.R.; Chakraborti, A.K. Ionic liquid catalysed reaction of thiols with α,β-unsaturated carbonyl compounds-- remarkable influence of the C-2 hydrogen and the anion. Chem. Commun. (Camb.), 2011, 47(15), 4538-4540.
[http://dx.doi.org/10.1039/c1cc10151j] [PMID: 21387055]
[6]
Bodaghifard, M.A.; Hamidinasab, M.; Ahadi, N. Recent advances in the preparation and application of organic– inorganic hybrid magnetic nanocatalysts on multicomponent reactions. Curr. Org. Chem., 2018, 22(3), 234-267.
[http://dx.doi.org/10.2174/1385272821666170705144854]
[7]
a) Prakash, J.; Khan, S.; Chauhan, S.; Biradar, A.M. Metal oxidenanoparticles and liquid crystal composites: A review of recent progress. J. Mol. Liq., 2020, 297, 112052.
[http://dx.doi.org/10.1016/j.molliq.2019.112052];
b) Pourjavadi, A.; Hosseini, S.H.; Doulabi, M.; Fakoorpoor, S.M.; Seidi, F. Multi-layer functionalized poly(ionic liquid) coated magnetic nanoparticles: Highly recoverable and magnetically separable brønsted acid catalyst. ACS Catal., 2012, 2, 1259-1266.
[http://dx.doi.org/10.1021/cs300140j];
c) Scholten, J.D.; Leal, B.C.; Dupont, J. Transition metal nanoparticle catalysis in ionic liquids. ACS Catal., 2012, 2, 184-200.
[http://dx.doi.org/10.1021/cs200525e]
[8]
He, Z.; Alexandridis, P. Nanoparticles in ionic liquids: Interactions and organization. Phys. Chem. Chem. Phys., 2015, 17(28), 18238-18261.
[http://dx.doi.org/10.1039/C5CP01620G] [PMID: 26120610]
[9]
a) Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev., 2013, 113(3), 1904-2074.
[http://dx.doi.org/10.1021/cr300143v] [PMID: 23432378];
b) Purohit, P.; Sethi, S.; Kumar, A.; Chakraborti, A.K. C–O Bond activation by nickel–palladium hetero-bimetallic nanoparticles for suzuki–miyaura reaction of bioactive heterocycle-tethered sterically hindered aryl carbonates. ACS Catal., 2017, 4, 2452-2457.
[http://dx.doi.org/10.1021/acscatal.6b02912];
c) Seth, K.; Purohit, P.; Chakraborti, A.K. Cooperative catalysis by palladium-nickel binary nanocluster for Suzuki-Miyaura reaction of ortho-heterocycle-tethered sterically hindered aryl bromides. Org. Lett., 2014, 16(9), 2334-2337.
[http://dx.doi.org/10.1021/ol500587m] [PMID: 24720556];
d) Seth, K.; Roy, S.R.; Pipaliya, B.V.; Chakraborti, A.K. Synergistic dual activation catalysis by palladium nanoparticles for epoxide ring opening with phenols. Chem. Commun. (Camb.), 2013, 49(52), 5886-5888.
[http://dx.doi.org/10.1039/c3cc42507j] [PMID: 23703672];
e) Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662];
f) Seth, K.; Roy, S.R.; Kommi, D.N.; Pipaliya, B.V.; Chakraborti, A.K. Silver nanoparticle-catalysed phenolysis of epoxides under neutral conditions: Scope and limitations of metal nanoparticles and applications towards drug synthesis. J. Mol. Catal. Chem., 2014, 392C, 164-172.
[http://dx.doi.org/10.1016/j.molcata.2014.05.011];
g) Seth, K.; Raha Roy, S.; Chakraborti, A.K. Synchronous double C-N bond formation via C-H activation for a novel synthetic route to phenazine. Chem. Commun. (Camb.), 2016, 52(5), 922-925.
[http://dx.doi.org/10.1039/C5CC08640J] [PMID: 26581451];
h) Seth, K.; Roy, S.R.; Kumar, A.; Chakraborti, A.K. The palladium and copper contrast: A twist to products of different chemotypes and altered mechanistic pathways. Catal. Sci. Technol., 2016, 6, 2892-2896.
[http://dx.doi.org/10.1039/C6CY00415F]
[10]
Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Yadav, P.; Sharma, R.K. Magnetically supported ionic liquids: A sustainable catalytic route for organic transformations. Mater. Horiz., 2020, 7, 3097-3130.
[11]
a) Arya, A.K.; Kumar, S.; Arya, A.K.; Kumar, M. Ionic liquid [PyN(CH2)4SO3H][CH3PhSO3] mediated & promoted eco-friendly one-pot domino synthesis of benzothiazolopyrano/chromenopyrimidine derivatives. Curr. Organocatal., 2018, 5, 1.;
b) Kumar, M.; Arya, A.K.; George, J.; Arya, K.; Pardasani, R.T. DFT studied hetero-diels–alder cycloaddition for the domino synthesis of spiroheterocycles fused to benzothiazole and chromene/pyrimidine rings in aqueous media. J. Het. Chem, 2017, 54, 3418.
[http://dx.doi.org/10.1002/jhet.2964];
c) Sharma, K.; Sharma, D.K.; Arya, A.K.; Kumar, M. An efficient and ecocompatible synthesis of annulated benzothiazoloquinazolines in SO3H-functionalized ionic liquid. Res. Chem. Intermed., 2015, 41, 4133.
[http://dx.doi.org/10.1007/s11164-013-1517-1];
d) Gupta, S.K.; Arya, A.K.; Khandelwal, S.; Kumar, M. A tandem and domino protocol for synthesis of chromeno-, pyrano- and quinolino fused spiro[pyrazolo[3,4-b]pyridine-indolines]. Curr. Org. Chem., 2014, 18, 2555.
[http://dx.doi.org/10.2174/138527281819141028114753];
e) Arya, A.K.; Rana, K.; Kumar, M. A facile synthesis and anticancer activity evaluation of spiro analogues of benzothiazolylchromeno/pyrano derivatives. Lett. Drug Des. Discov., 2014, 11, 594.
[http://dx.doi.org/10.2174/1570180811666131210000903]
[12]
a) Kumar, M.; Sharma, K.; Sharma, D.K.; Arya, A.K. An efficient, ionic liquid mediated one-pot, three component sequential synthesis of 3-benzothiazolyl-2-styrylquinazolin-4(3H)-ones. Tetrahedron Lett., 2013, 54, 878.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.104];
b) Kumar, M.; Sharma, K.; Arya, A.K. Use of SO3Hfunctionalized halogenfree ionic liquid ([MIM(CH2)4SO3H] [HSO4]) as efficient promoter for the synthesis of structurally diverse spiroheterocycles. Tetrahedron Lett., 2012, 53, 4604.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.085];
c) Arya, A.K.; Gupta, S.; Kumar, M. domino protocol for the efficient synthesis of structurally diverse benzothiazolylquinoline- 2,5-diones and their spiro analogues. Tetrahedron Lett., 2012, 53, 6035.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.099];
d) Arya, A.K.; Kumar, M. An efficient green chemical approach for the synthesis of structurally diverse spiroheterocycles with fused heterosystems. Green Chem., 2011, 13, 1332.
[http://dx.doi.org/10.1039/c1gc00008j];
e) Arya, A.K.; Kumar, M. Base catalyzed multicomponent synthesis of spiroheterocycles with fused heterosystems. Mol. Divers., 2011, 15(3), 781-789.
[http://dx.doi.org/10.1007/s11030-011-9309-2] [PMID: 21424596];
f) Pal, N.; Arya, A.K. An efficient and facile synthesis of Zn(II) complexes with 2-substituted benzothiazoles and glycine- and alanine-based ligands having antifungal and antibacterial activities. Res. Chem. Intermed., 2013, 39, 553.
[http://dx.doi.org/10.1007/s11164-012-0578-x]
[13]
Shojaei, R.; Zahedifar, M.; Mohammadi, P.; Sheibani, K.H. Novel magnetic nanoparticle supported ionic liquid as an efficient catalyst for the synthesis of spiro[pyrazole-pyrazolo[3,4-b]pyridine]-dione derivatives under solvent free conditions. J. Mol. Struct., 2019, 1178, 401.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.052]
[14]
Vaysipour, S. Nasr-Esfahani, M.; Rafiee, Z. Synthesis and characterization of polyvinylpyrrolidone immobilized on magnetic nanoparticles modified by ionic liquid as a novel and recyclable catalyst for the three-component synthesis of amidoalkyl naphthols. Appl. Organomet. Chem., 2019, 33, e5090.
[http://dx.doi.org/10.1002/aoc.5090]
[15]
Mohammadi, R.; Esmati, S.; Gholamhosseini-Nazari, M.; Teimuri-Mofrad, R. Novel ferrocene substituted benzimidazolium based ionic liquid immobilized on magnetite as an efficient nano-catalyst for the synthesis of pyran derivatives. J. Mol. Liq., 2019, 275, 523-534.
[http://dx.doi.org/10.1016/j.molliq.2018.11.042]
[16]
Gholamhosseini-Nazari, M.; Esmati, S.; Safa, K.D.; Khataee, A.; Teimuri Mofrad, R. Fe3O4@SiO2-BenzIm-Fc[Cl]/ZnCl2: A novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation. Res. Chem. Intermed., 2019, 45, 1841.
[http://dx.doi.org/10.1007/s11164-018-3704-6]
[17]
Mohammadi, R.; Esmati, S.; Gholamhosseini-Nazari, M.; Teimuri-Mofrad, R. Synthesis and characterization of a novel Fe3O4@SiO2–BenzIm-Fc[Cl]/BiOCl nanocomposite and its efficient catalytic activity in the ultrasound-assisted synthesis of diverse chromene analogs. New J. Chem., 2019, 43, 135-145.
[http://dx.doi.org/10.1039/C8NJ04938F]
[18]
Azizi, S.; Shadjou, N. Iron oxide (Fe3O4) magnetic nanoparticles supported on wrinkled fibrous nanosilica (WFNS) functionalized by biimidazole ionic liquid as an effective and reusable heterogeneous magnetic nanocatalyst for the efficient synthesis of N-sulfonylamidines. Heliyon, 2021, 7(1), e05915.
[http://dx.doi.org/10.1016/j.heliyon.2021.e05915] [PMID: 33553722]
[19]
Fatehi, A.; Ghorbani-Vaghei, R.; Alavinia, S.; Mahmoodi, J. Synthesis of quinazoline derivatives catalyzed by a new efficient reusable nanomagnetic catalyst supported with functionalized piperidinium benzene‐1,3‐disulfonate ionic liquid. ChemistrySelect, 2020, 5, 944-951.
[http://dx.doi.org/10.1002/slct.201904679]
[20]
Nguyen, H.T.; Thi Le, N-P.; Chau, D-K.N.; Tran, P.H. New nano-Fe3O4-supported Lewis acidic ionic liquid as a highly effective and recyclable catalyst for the preparation of benzoxanthenes and pyrroles under solvent-free sonication. RSC Advances, 2018, 8, 35681-35688.
[http://dx.doi.org/10.1039/C8RA04893B]
[21]
Garkoti, C.; Shabir, J.; Mozumdar, S. An imidazolium based ionic liquid supported on Fe3O4@SiO2 nanoparticles as an efficient heterogeneous catalyst for N-formylation of amines. New J. Chem., 2017, 41, 9291.
[http://dx.doi.org/10.1039/C6NJ03985E]
[22]
Zhang, Q.; Su, H.; Luo, J.; Wei, Y. A magnetic nanoparticle supported dual acidic ionic liquid: A “quasi-homogeneous” catalyst for the one-pot synthesis of benzoxanthenes. Green Chem., 2012, 14, 201-208.
[http://dx.doi.org/10.1039/C1GC16031A]
[23]
Safari, J.; Zarnegar, Z. Immobilized ionic liquid on superparamagnetic nanoparticles as an effective catalyst for the synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. C. R. Chim., 2013, 16(10), 920-928.
[http://dx.doi.org/10.1016/j.crci.2013.01.019]
[24]
Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. Chem., 2015, 398, 58-64.
[http://dx.doi.org/10.1016/j.molcata.2014.11.018]
[25]
Safaei Ghomi, J.; Zahedi, S. Novel ionic liquid supported on Fe3O4 nanoparticles and its application as a catalyst in Mannich reaction under ultrasonic irradiation. Ultrason. Sonochem., 2017, 34, 916-923.
[http://dx.doi.org/10.1016/j.ultsonch.2016.08.003] [PMID: 27773321]
[26]
Zhang, Q.; Ma, X-M.; Wei, H-X.; Zhao, X.; Luo, J. Covalently anchored tertiary amine functionalized ionic liquid on silica coated nano-Fe3O4 as a novel, efficient and magnetically recoverable catalyst for the unsymmetrical Hantzsch reaction and Knoevenagel condensation. RSC Advances, 2017, 7, 53861-53870.
[http://dx.doi.org/10.1039/C7RA10692K]
[27]
Li, D.; Wang, J.; Chen, F.; Jing, H. Fe3O4@SiO2 supported aza-crown ether complex cation ionic liquids: Preparation and applications in organic reactions. RSC Advances, 2017, 7, 4237-4242.
[http://dx.doi.org/10.1039/C6RA25291E]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy