Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis of New Thiazole Clubbed Imidazo[2,1-b]thiazole Hybrid as Antimycobacterial Agents

Author(s): Huda K. Mahmoud, Abdelwahed R. Sayed, Marwa M. Abdel-Aziz and Sobhi M. Gomha*

Volume 18, Issue 10, 2022

Published on: 08 June, 2022

Page: [1100 - 1108] Pages: 9

DOI: 10.2174/1573406418666220413095854

Price: $65

conference banner
Abstract

Aims: The study aims to synthesize bioactive hybrid pharmacophores (thiazole ring and imidazo[2,1-b]thiazole system) by incorporating them into one biological assessment molecular system.

Background: A literature survey revealed that various imidazo[2,1-b]thiazoles, thiazoles, and hydrazones have powerful antimycobacterial activity.

Objective: This study demonstrates the effectiveness of molecular hybridization and the scope for imidazo[2,1-b]thiazole-hydrazone-thiazoles to develop as promising antimycobacterial agents.

Methods: Several imidazo[2,1-b]thiazole–hydrazine-thiazoles 5a-g, 7a,b, 9a,b, 11a,b, 13, and 15a,b were generated using a molecular hybridization strategy and assessed against Mycobacterium tuberculosis (ATCC 25618) for their in vitro antituberculous activity.

Results: Derivative 7b (MIC = 0.98 μg/mL) has shown the most promising antimycobacterial activity among the series tested. Brief structure-activity relationship studies found that the thiazole of chlorophenyl or pyridine, or coumarin had a significant relation with the antimycobacterial activity.

Conclusion: The promising antimycobacterial activity of compound 7b compared with the reference drug suggests that this compound may contribute as a lead compound in the search for new potential antimycobacterial agents.

Keywords: Thiosemicarbazones, imidazothiazole, thiazole, hydrazones, bis-heterocycles, tuberculosis.

Graphical Abstract
[1]
Tuberculosis; World Health Organization: Geneva. 2014. Available from: http://www.who.int/tb/research/en/
[2]
Singh, M.M. XDR-TB-danger ahead. Indian J. Tuberc., 2007, 54(1), 1-2.
[http://dx.doi.org/10.1016/j.ijtb.2021.06.008] [PMID: 17455416]
[3]
Remers, W.A. Antineoplastic Agents. In: Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry; 10th ed; Delgado, J.N.; Remers, W.A., Eds.; Lippincott-Raven: Philadelphia, 1998; p. 391.
[4]
Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M. Synthesis and antitubercular activity of imidazo[2,1-b]thiazoles. Eur. J. Med. Chem., 2001, 36(9), 743-746.
[http://dx.doi.org/10.1016/S0223-5234(01)01266-1] [PMID: 11672884]
[5]
Cesur, Z.; Güner, H.; Ötük, G. Synthesis and antimycobacterial activity of new imidazo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 1994, 29(12), 981-983.
[http://dx.doi.org/10.1016/0223-5234(94)90199-6]
[6]
Ulusoy Güzeldemirci, N.; Karaman, B.; Küçükbasmaci, Ö. Antibacterial, antitubercular and antiviral activity evaluations of some aryli-denehydrazide derivatives bearing imidazo[2,1-b]thiazole moiety. Turk. J. Pharm. Sci., 2017, 14(2), 157-163.
[http://dx.doi.org/10.4274/tjps.25743] [PMID: 32454607]
[7]
Park, J.H.; El-Gamal, M.I.; Lee, Y.S.; Oh, C.H. New imidazo[2,1-b]thiazole derivatives: Synthesis, in vitro anticancer evaluation, and in silico studies. Eur. J. Med. Chem., 2011, 46(12), 5769-5777.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.024] [PMID: 22033063]
[8]
Budriesi, R.; Ioan, P.; Locatelli, A.; Cosconati, S.; Leoni, A.; Ugenti, M.P.; Andreani, A.; Di Toro, R.; Bedini, A.; Spampinato, S.; Marinelli, L.; Novellino, E.; Chiarini, A. Imidazo[2,1-b]thiazole system: A scaffold endowing dihydropyridines with selective cardiodepressant ac-tivity. J. Med. Chem., 2008, 51(6), 1592-1600.
[http://dx.doi.org/10.1021/jm070681+] [PMID: 18303827]
[9]
Shetty, N.S.; Khazi, I.A.M.; Ahn, C. Synthesis, anthelmintic and anti-inflammator y activities of some novel imidazothiazole sulfides and sulfones. Bull. Korean Chem. Soc., 2010, 31(8), 2337-2340.
[http://dx.doi.org/10.5012/bkcs.2010.31.8.2337]
[10]
Villemagne, B.; Flipo, M.; Blondiaux, N.; Crauste, C.; Malaquin, S.; Leroux, F.; Piveteau, C.; Villeret, V.; Brodin, P.; Villoutreix, B.O.; Sperandio, O.; Soror, S.H.; Wohlkönig, A.; Wintjens, R.; Deprez, B.; Baulard, A.R.; Willand, N. Ligand efficiency driven design of new in-hibitors of Mycobacterium tuberculosis transcriptional repressor EthR using fragment growing, merging, and linking approaches. J. Med. Chem., 2014, 57(11), 4876-4888.
[http://dx.doi.org/10.1021/jm500422b] [PMID: 24818704]
[11]
Meissner, A.; Boshoff, H.I.; Vasan, M.; Duckworth, B.P.; Barry, C.E., III; Aldrich, C.C. Structure-activity relationships of 2-aminothiazoles effective against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2013, 21(21), 6385-6397.
[http://dx.doi.org/10.1016/j.bmc.2013.08.048] [PMID: 24075144]
[12]
Shaikh, M.S.; Palkar, M.B.; Patel, H.M.; Rane, R.A.; Alwan, W.S.; Shaikh, M.M.; Shaikh, I.M.; Hampannavar, G.A.; Karpoormath, R. De-sign and synthesis of novel carbazolo–thiazoles as potential anti-mycobacterial agents using a molecular hybridization approach. RSC Advances, 2014, 4(107), 410762308-6232010.
[http://dx.doi.org/10.1039/C4RA11752B]
[13]
Rangaraju, A.; Pannerselvam, P.; Murali, K. Synthesis of novel 1H-indole-2,3-dione derivatives as potent antimycobacterial agents. Int. J. Adv. Pharm. Biol.Chem., 2013, 2, 616-622.
[14]
Mundhe, D.; Chandewar, A.V.; Shiradkar, M.R. Design and synthesis of substituted clubbed triazolyl thiazole as XDR & MDR antituber-culosis agents Part-II. Pharma Chem., 2011, 3, 89-102.
[15]
Nagesh, H.N.; Suresh, A.; Sairam, S.D.; Sriram, D.; Yogeeswari, P.; Chandra Sekhar, K.V. Design, synthesis and antimycobacterial evalua-tion of 1-(4-(2-substitutedthiazol-4-yl)phenethyl)-4-(3-(4-substitutedpiperazin-1-yl)alkyl)piperazine hybrid analogues. Eur. J. Med. Chem., 2014, 84, 605-613.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.067] [PMID: 25062011]
[16]
Mamolo, M.G.; Falagiani, V.; Zampieri, D.; Vio, L.; Banfi, E.; Scialino, G. Synthesis and antimycobacterial activity of (3,4-diaryl-3H-thiazol-2-ylidene)-hydrazide derivatives. Farmaco, 2003, 58(9), 631-637.
[http://dx.doi.org/10.1016/S0014-827X(03)00103-4] [PMID: 13679155]
[17]
Aridoss, G.; Amirthaganesan, S.; Kim, M.S.; Kim, J.T.; Jeong, Y.T. Synthesis, spectral and biological evaluation of some new thiazoli-dinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones. Eur. J. Med. Chem., 2009, 44(10), 4199-4210.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.015] [PMID: 19535178]
[18]
Makam, P.; Kankanala, R.; Prakash, A.; Kannan, T. 2-(2-Hydrazinyl)thiazole derivatives: Design, synthesis and in vitro antimycobacterial studies. Eur. J. Med. Chem., 2013, 69, 564-576.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.054] [PMID: 24095750]
[19]
Sah, P.P.T.; Peoples, S.A. Isonicotinyl hydrazones as antitubercular agents and derivatives for identification of aldehydes and ketones. J. Am. Pharm. Assoc. (Sci. Ed), 1954, 43(9), 513-524.
[http://dx.doi.org/10.1002/jps.3030430902] [PMID: 13201471]
[20]
Mathew, B.; Suresh, J.; Ahsan, M.J.; Mathew, G.E.; Usman, D.; Subramanyan, P.N.S.; Safna, K.F.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: A review. Infect. Disord. Drug Targets, 2015, 15(2), 76-88.
[http://dx.doi.org/10.2174/1871526515666150724104411] [PMID: 26205803]
[21]
Bijev, A. New heterocyclic hydrazones in the search for antitubercular agents: Synthesis and in vitro evaluations. Lett. Drug Des. Discov., 2006, 3(7), 506-512.
[http://dx.doi.org/10.2174/157018006778194790]
[22]
Thomas, K.D.; Adhikari, A.V.; Telkar, S.; Chowdhury, I.H.; Mahmood, R.; Pal, N.K.; Row, G.; Sumesh, E. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Eur. J. Med. Chem., 2011, 46(11), 5283-5292.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.033] [PMID: 21907466]
[23]
Küçükgüzel, Ş.G.; Rollas, S.; Küçükgüzel, İ.; Kiraz, M. Synthesis and antimycobacterial activity of some coupling products from 4-aminobenzoic acid antimycobacterial activity of some coupling products from 4-aminobenzoic acid hydrazones. Eur. J. Med. Chem., 1999, 34, 1093-1100.
[http://dx.doi.org/10.1016/S0223-5234(99)00129-4]
[24]
Abu-Melha, S.; Gomha, S.M.; Abouzied, A.S.; Edrees, M.M.; Abo Dena, A.S.; Muhammad, Z.A. Microwave-assisted one pot three-component synthesis of novel bioactive thiazolyl-pyridazinediones as potential antimicrobial agents against antibiotic-resistant bacteria. Molecules, 2021, 26(14), 4260.
[http://dx.doi.org/10.3390/molecules26144260] [PMID: 34299535]
[25]
Abu-Melha, S.; Muhammad, Z.A.; Abouzid, A.S.; Edrees, M.M.; Abo Dena, A.S.; Nabil, S.; Gomha, S.M. Multicomponent synthesis, DFT calculations and molecular docking studies of novel thiazolyl-pyridazinones as potential antimicrobial agents against antibiotic-resistant bacteria. J. Mol. Struct., 2021, 1234, 130180.
[http://dx.doi.org/10.1016/j.molstruc.2021.130180]
[26]
Alshabanah, L.A.; Gomha, S.M.; Al-Mutabagani, L.A.; Abolibda, T.Z.; Abd El-Ghany, N.A.; El-Enany, W.A.M.A.; El-Ziaty, A.K.; Ali, R.S.; Mohamed, N.A. Cross-linked chitosan/multi-walled carbon nanotubes composite as ecofriendly biocatalyst for synthesis of some composite as ecofriendly biocatalyst for synthesis of some novel benzil bis-thiazoles. Polymers (Basel), 2021, 13, 1728.
[http://dx.doi.org/10.3390/polym13111728] [PMID: 34070526]
[27]
Sayed, A.R.; Gomha, S.M. Abd El-lateef, H.M.; Abolibda, T.Z. L-Proline catalyzed green synthesis and anticancer evaluation of novel bioactive benzil bis-hydrazones under grinding technique. Green Chem. Lett. Rev., 2021, 14(2), 179-188.
[http://dx.doi.org/10.1080/17518253.2021.1893392]
[28]
Abdelwahed, R.S.; Gomha, S.M.; Shalabi, K.; Abd El-Lateef, H. Synthesis and study of poly[(hydrazinylazo)]thiazoles as potent corro-sion inhibitors for cast iron-carbon alloy in molar HCl: A collective computational and experiential methods. J. Mol. Liq., 2021, 337, 116555.
[http://dx.doi.org/10.1016/j.molliq.2021.116555]
[29]
Gomha, S.M.; Edrees, M.M.; Altalbawy, F.M.A. synthesis and characterization of some new bis-pyrazolyl-thiazoles incorporating the thiophene moiety as potent anti-tumor agents. Int. J. Mol. Sci., 2016, 17(9), 1499.
[http://dx.doi.org/10.3390/ijms17091499] [PMID: 27618013]
[30]
Gomha, S.M.; Riyadh, S.M.; Abdalla, M.M. Solvent-drop grinding method: Efficient synthesis, DPPH radical scavenging and anti-diabetic activities of chalcones, bis-chalcones, azolines, and bis-azolines. Curr. Org. Synth., 2015, 12(2), 220-228.
[http://dx.doi.org/10.2174/1570179412666150122230447]
[31]
Gomha, S.M.; Badrey, M.G.; Edrees, M.M. Heterocyclization of a bis-thiosemicarbazone of 2,5-diacetyl-3,4-disubstituted-thieno[2,3-b]thiophene bis-thiosemicarbazones leading to bis-thiazoles and bis-1,3,4-thiadiazoles as anti-breast cancer agents. J. Chem. Res., 2016, 40, 120-125.
[http://dx.doi.org/10.3184/174751916X14537182696214]
[32]
Gomha, S.M.; Muhammad, Z.A.; El-Reedy, A.A.M. Intramolecular ring transformation of bis-oxadiazoles to bis-thiadiazoles and investi-gation of their anticancer activities. J. Heterocycl. Chem., 2018, 55(10), 2360-2367.
[http://dx.doi.org/10.1002/jhet.3300]
[33]
Abdallah, M.A.; Riyadh, S.M.; Abbas, I.M.; Gomha, S.M. Synthesis and biological activities of 7-arylazo-7H-pyrazolo[5,1-c][1,2,4]triazolo-6(5H)-ones and 7-arylhydrazono-7H-[1,2,4] triazolo [3,4-b][1,3,4]thiadiazines. J. Chin. Chem. Soc. (Taipei), 2005, 52(5), 987-994.
[http://dx.doi.org/10.1002/jccs.200500137]
[34]
Abbas, I.M.; Riyadh, S.M.; Abdallah, M.A.; Gomha, S.M. A novel route to tetracyclic fused tetrazines and thiadiazines. J. Heterocycl. Chem., 2006, 43(4), 935-942.
[http://dx.doi.org/10.1002/jhet.5570430419]
[35]
Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activities of thiazoles, 1,3-thiazines, and thiazol-idine using chitosan-grafted-poly (vinylpyridine) as basic catalyst. Heterocycles, 2015, 91, 1227.
[http://dx.doi.org/10.3987/COM-15-13210]
[36]
Gomha, S.M.; Edrees, M.M.; El-Arab, E.E. Synthesis and preliminary in-vitro cytotoxic evaluation of some novel bis-heterocycles incor-porating thienothiophene. J. Heterocycl. Chem., 2017, 54(1), 641-647.
[http://dx.doi.org/10.1002/jhet.2636]
[37]
Gomha, S.M.; El-Hashash, M.A.; Edrees, M.M.; El-Arab, E.E. Synthesis, characterization and molecular docking of novel bis-thiazolyl thienothiophene derivatives as promising cytotoxic antitumor drug. J. Heterocycl. Chem., 2017, 54(5), 2686-2695.
[http://dx.doi.org/10.1002/jhet.2869]
[38]
Abdelrazek, F.M.; Gomha, S.M.; Metz, P.; Abdalla, M.M. Synthesis of some novel 1,4-phenylene-bis-thiazolyl derivatives and their anti-hypertensive α-blocking activity screening. J. Heterocycl. Chem., 2017, 54(1), 618-623.
[http://dx.doi.org/10.1002/jhet.2633]
[39]
Gomha, S.M.; Abbas, I.M.; Elaasser, M.M.; Mabrouk, B.K.A. Synthesis, molecular docking and pharmacological study of pyrimido-thiadiazinones and its bis-derivatives. Lett. Drug Des. Discov., 2017, 14(4), 434-443.
[http://dx.doi.org/10.2174/1570180813666160815125409]
[40]
Gomha, S.M. A facile one-pot synthesis of 6,7,8,9-tetrahydrobenzo[4,5]thieno[2,3-d]- 1,2,4-triazolo[4,5-a]pyrimidin-5-ones. Monatsh. Chem., 2009, 140(2), 213-220.
[http://dx.doi.org/10.1007/s00706-008-0060-z]
[41]
Vekariya, R.H.; Patel, K.D.; Vekariya, M.K.; Prajapati, N.P.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. Microwave-assisted green synthesis of new imidazo[2,1-b]thiazole derivatives and their antimicrobial, antimalarial, and antitubercular activities. Res. Chem. Intermed., 2017, 43(11), 1-25.
[http://dx.doi.org/10.1007/s11164-017-2985-5]
[42]
Franzblau, S.G.; Witzig, R.S.; McLaughlin, J.C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M.T.; Cook, M.B.; Quenzer, V.K.; Fergu-son, R.M.; Gilman, R.H. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the micro-plate Alamar Blue assay. J. Clin. Microbiol., 1998, 36(2), 362-366.
[http://dx.doi.org/10.1128/JCM.36.2.362-366.1998] [PMID: 9466742]
[43]
Collins, L.; Franzblau, S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother., 1997, 41(5), 1004-1009.
[http://dx.doi.org/10.1128/AAC.41.5.1004] [PMID: 9145860]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy