Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Review Article

Safety and Monitoring of the Treatment with Disease-Modifying Therapies (DMTs) for Multiple Sclerosis (MS)

Author(s): Vasileios-Periklis Stamatellos and Georgios Papazisis*

Volume 18, Issue 1, 2023

Published on: 23 May, 2022

Page: [39 - 50] Pages: 12

DOI: 10.2174/2772432817666220412110720

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Disease-Modifying Therapies (DMTs) for Multiple Sclerosis (MS) are widely used given their proven efficacy in the relapsing form of the disease, while recently, Siponimod and Ocrelizumab have been approved for the progressive forms of the disease. Currently, 22 diseasemodifying drugs are approved by the FDA, while in 2012, only nine were present in the market. From March 2019 until August 2020, six new drugs were approved. This rapid development of new DMTs highlighted the need to update our knowledge about their short and long-term safety.

Objective: This review summarizes the available safety data for all the Disease-Modifying Therapies for Multiple Sclerosis and presents the monitoring plan before and during the treatment.

Methods: A literature search was conducted using PUBMED and COCHRANE databases. Key journals and abstracts from major annual meetings of Neurology, references of relevant reviews, and relative articles were also manually searched. We prioritized systematic reviews, large randomized controlled trials (RCTs), prospective cohort studies, and other observational studies. Special attention was paid to guidelines and papers focusing on the safety and monitoring of DMTs.

Conclusion: Data for oral (Sphingosine 1-phosphate (S1P) receptor modulators, Fumarates, Teriflunomide, Cladribine), injectables (Interferons, Glatiramer acetate, Ofatumumab), and infusion therapies (Natalizumab, Ocrelizumab, Alemtuzumab) are presented.

Keywords: Disease-modifying treatments, multiple sclerosis, adverse events, safety, monitoring, DMT, DMAMS.

Graphical Abstract
[2]
Sadovnick AD, Armstrong H, Rice GPA, et al. A population-based study of multiple sclerosis in twins: Update. Ann Neurol 1993; 33(3): 281-5.
[http://dx.doi.org/10.1002/ana.410330309] [PMID: 8498811]
[3]
Ascherio A, Munger K. Epidemiology of multiple sclerosis: From risk factors to prevention. Semin Neurol 2008; 28(1): 17-28.
[http://dx.doi.org/10.1055/s-2007-1019126] [PMID: 18256984]
[4]
Kerlero de Rosbo N, Milo R, Lees MB, Burger D, Bernard CCA, Ben-Nun A. Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 1993; 92(6): 2602-8.
[http://dx.doi.org/10.1172/JCI116875] [PMID: 7504688]
[5]
Legroux L, Arbour N. Multiple sclerosis and T lymphocytes: An entangled story. J Neuroimmune Pharmacol 2015; 10: 528-46.
[6]
Lucchetta RC, Leonart LP, Becker J, Pontarolo R, Fernandez-Llimós F, Wiens A. Safety outcomes of disease-modifying therapies for relapsing-remitting multiple sclerosis: A network meta-analysis. Mult Scler Relat Disord 2019; 35: 7-15.
[http://dx.doi.org/10.1016/j.msard.2019.06.036] [PMID: 31276913]
[7]
Powers A, Cook GE. Potential safety signals and their significance. Arch Intern Med 2012; 172(1): 72-3.
[http://dx.doi.org/10.1001/archinternmed.2011.525] [PMID: 22082712]
[8]
Fiore D. Multiple sclerosis and Natalizumab. Am J Ther 2007; 14(6): 555-60.
[http://dx.doi.org/10.1097/MJT.0b013e31804bfa6a] [PMID: 18090880]
[9]
End of the road for daclizumab in multiple sclerosis. Lancet 2018; vol. 391: 1000.
[10]
Rae-Grant A, Day GS, Marrie RA, et al. Practice guideline recommendations summary: Disease-modifying therapies for adults with multiple sclerosis. Neurology Lippincott Williams and Wilkins 2018; 90: 777-88.
[11]
Derfuss T, Mehling M, Papadopoulou A, Bar-Or A, Cohen JA, Kappos L. Advances in oral immunomodulating therapies in relapsing multiple sclerosis. Lancet Neurol 2020; 19: 336-47.
[12]
Olsson T, Boster A, Fernández Ó, et al. Oral ponesimod in relapsing-remitting multiple sclerosis: A randomised phase II trial. J Neurol Neurosurg Psychiatry 2014; 85(11): 1198-208.
[http://dx.doi.org/10.1136/jnnp-2013-307282] [PMID: 24659797]
[13]
Kappos L, Arnold DL, Bar-Or A, et al. Safety and efficacy of amiselimod in relapsing multiple sclerosis (MOMENTUM): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2016; 15(11): 1148-59.
[http://dx.doi.org/10.1016/S1474-4422(16)30192-2] [PMID: 27543447]
[14]
Sørensen PS, Sellebjerg F, Lycke J, et al. Minocycline added to subcutaneous interferon β-1a in multiple sclerosis: Randomized RECYCLINE study. Eur J Neurol 2016; 23(5): 861-70.
[http://dx.doi.org/10.1111/ene.12953] [PMID: 26848561]
[15]
Montalban X, Arnold DL, Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med 2019; 380(25): 2406-17.
[http://dx.doi.org/10.1056/NEJMoa1901981] [PMID: 31075187]
[16]
Kappos L, Fox RJ, Burcklen M, et al. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 optimum study: A randomized clinical trial. JAMA Neurol 2021; 78(5): 558-67.
[http://dx.doi.org/10.1001/jamaneurol.2021.0405] [PMID: 33779698]
[17]
Litjens NHR, Burggraaf J, van Strijen E, et al. Pharmacokinetics of oral fumarates in healthy subjects. Br J Clin Pharmacol 2004; 58(4): 429-32.
[http://dx.doi.org/10.1111/j.1365-2125.2004.02145.x] [PMID: 15373936]
[18]
Diebold M, Sievers C, Bantug G, et al. Dimethyl fumarate influences innate and adaptive immunity in multiple sclerosis. J Autoimmun 2018; 86: 39-50.
[http://dx.doi.org/10.1016/j.jaut.2017.09.009] [PMID: 28958667]
[19]
Traub J, Traffehn S, Ochs J, et al. Dimethyl fumarate impairs differentiated B cells and fosters central nervous system integrity in treatment of multiple sclerosis. Brain Pathol 2019; 29(5): 640-57.
[http://dx.doi.org/10.1111/bpa.12711] [PMID: 30706542]
[20]
Xu Z, Zhang F, Sun F, Gu K, Dong S, He D. Dimethyl fumarate for multiple sclerosis Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd 2015; 2015.
[http://dx.doi.org/10.1002/14651858.CD011076.pub2]
[21]
Muñoz MA, Kulick CG, Kortepeter CM, Levin RL, Avigan MI. Liver injury associated with dimethyl fumarate in multiple sclerosis patients. Mult Scler 2017; 23(14): 1947-9.
[http://dx.doi.org/10.1177/1352458516688351] [PMID: 28086032]
[22]
Nieuwkamp DJ, Murk JL, van Oosten BW, et al. PML in a patient without severe lymphocytopenia receiving dimethyl fumarate. N Engl J Med 2015; 372(15): 1474-6.
[http://dx.doi.org/10.1056/NEJMc1413724] [PMID: 25853764]
[23]
Rosenkranz T, Novas M, Terborg C. PML in a patient with lymphocytopenia treated with dimethyl fumarate. N Engl J Med 2015; 372(15): 1476-8.
[http://dx.doi.org/10.1056/NEJMc1415408] [PMID: 25853765]
[24]
Lehmann-Horn K, Penkert H, Grein P, et al. PML during dimethyl fumarate treatment of multiple sclerosis: How does lymphopenia matter? Neurology Lippincott Williams and Wilkins 2016; 87: 440-1.
[25]
Naismith RT, Wundes A, Ziemssen T, et al. Diroximel fumarate demonstrates an improved gastrointestinal tolerability profile compared with dimethyl fumarate in patients with relapsing-remitting multiple sclerosis: Results from the randomized, double-blind, phase iii evolve-ms-2 study. CNS Drugs 2020; 34(2): 185-96.
[http://dx.doi.org/10.1007/s40263-020-00700-0] [PMID: 31953790]
[26]
Wang Y, Bhargava P. Diroximel fumarate to treat multiple sclerosis. Drugs Today 2020; 56(7): 431-7.
[http://dx.doi.org/10.1358/dot.2020.56.7.3151521] [PMID: 32648853]
[27]
Wynn D, Lategan TW, Sprague TN, Rousseau FS, Fox EJ. Monomethyl fumarate has better gastrointestinal tolerability profile compared with dimethyl fumarate. Mult Scler Relat Disord 2020; 45: 102335.
[http://dx.doi.org/10.1016/j.msard.2020.102335] [PMID: 32629403]
[28]
Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 2010; 33: 91-101.
[29]
La Mantia L, Tramacere I, Firwana B, Pacchetti I, Palumbo R, Filippini G. Fingolimod for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev 2016; 4: CD009371.
[http://dx.doi.org/10.1002/14651858.CD009371.pub2]
[30]
Lublin F, Miller DH, Freedman MS, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2016; 387(10023): 1075-84.
[http://dx.doi.org/10.1016/S0140-6736(15)01314-8] [PMID: 26827074]
[31]
DiMarco JP, O’Connor P, Cohen JA, et al. First-dose effects of fingolimod: Pooled safety data from three phase 3 studies. Mult Scler Relat Disord 2014; 3(5): 629-38.
[http://dx.doi.org/10.1016/j.msard.2014.05.005] [PMID: 26265275]
[32]
Gergely P, Nuesslein-Hildesheim B, Guerini D, et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharmacol 2012; 167(5): 1035-47.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02061.x] [PMID: 22646698]
[33]
Kappos L, Radue E-W, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010; 362(5): 387-401.
[http://dx.doi.org/10.1056/NEJMoa0909494] [PMID: 20089952]
[34]
Karlsson G, Francis G, Koren G, et al. Pregnancy outcomes in the clinical development program of fingolimod in multiple sclerosis. Neurology 2014; 82(8): 674-80.
[http://dx.doi.org/10.1212/WNL.0000000000000137] [PMID: 24463630]
[35]
Kappos L, Bar-Or A, Cree BAC, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet 2018; 391(10127): 1263-73.
[http://dx.doi.org/10.1016/S0140-6736(18)30475-6] [PMID: 29576505]
[36]
Kappos L, Li DKB, Stüve O, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis dose-blinded, randomized extension of the phase 2 BOLD Study. JAMA Neurol 2016; 73(9): 1089-98.
[http://dx.doi.org/10.1001/jamaneurol.2016.1451] [PMID: 27380540]
[37]
Mayzent (siponimod) tablets prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209884s000lbl.pdf [Accessed on 15 Apr 2022].
[38]
Sandborn WJ, Feagan BG, Wolf DC, et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N Engl J Med 2016; 374(18): 1754-62.
[http://dx.doi.org/10.1056/NEJMoa1513248] [PMID: 27144850]
[39]
Cohen JA, Comi G, Selmaj KW, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): A multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol 2019; 18(11): 1021-33.
[http://dx.doi.org/10.1016/S1474-4422(19)30238-8] [PMID: 31492652]
[40]
Comi G, Kappos L, Selmaj KW, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): A multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol 2019; 18(11): 1009-20.
[http://dx.doi.org/10.1016/S1474-4422(19)30239-X] [PMID: 31492651]
[41]
Tran JQ, Hartung JP, Olson AD, et al. Cardiac safety of ozanimod, a novel sphingosine-1-phosphate receptor modulator: Results of a thorough QT/QTc study. Clin Pharmacol Drug Dev 2018; 7(3): 263-76.
[http://dx.doi.org/10.1002/cpdd.383] [PMID: 28783871]
[42]
Alfaro-Lara R, Espinosa-Ortega HF, Arce-Salinas CA. Systematic review and meta-analysis of the efficacy and safety of leflunomide and methotrexate in the treatment of rheumatoid arthritis. Reumatol Clin 2019; 15(3): 133-9.
[http://dx.doi.org/10.1016/j.reumae.2017.07.011] [PMID: 28867467]
[43]
Zeyda M, Poglitsch M, Geyeregger R, et al. Disruption of the interaction of T cells with antigen-presenting cells by the active leflunomide metabolite teriflunomide: Involvement of impaired integrin activation and immunologic synapse formation. Arthritis Rheum 2005; 52(9): 2730-9.
[http://dx.doi.org/10.1002/art.21255] [PMID: 16142756]
[44]
O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 2011; 365(14): 1293-303.
[http://dx.doi.org/10.1056/NEJMoa1014656] [PMID: 21991951]
[45]
Confavreux C, O’Connor P, Comi G, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2014; 13(3): 247-56.
[http://dx.doi.org/10.1016/S1474-4422(13)70308-9] [PMID: 24461574]
[46]
Vermersch P, Czlonkowska A, Grimaldi LM, et al. Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: A randomised, controlled phase 3 trial. Mult Scler 2014; 20(6): 705-16.
[http://dx.doi.org/10.1177/1352458513507821] [PMID: 24126064]
[47]
He D, Zhang C, Zhao X, et al. Teriflunomide for multiple sclerosis. Cochrane Database of Systematic Reviews 2016; 2016
[http://dx.doi.org/10.1002/14651858.CD009882.pub3]
[48]
Baker D, Pryce G, Herrod SS, Schmierer K. Potential mechanisms of action related to the efficacy and safety of cladribine. Mult Scler Relat Disord 2019; 30: 176-86.
[49]
Qasrawi A, Bahaj W, Qasrawi L, Abughanimeh O, Foxworth J, Gaur R. Cladribine in the remission induction of adult acute myeloid leukemia: Where do we stand? Ann Hematol 2019; Vol. 98: 561-79.
[50]
Grever MR, Abdel-Wahab O, Andritsos LA, et al. Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. Blood Am Soc Hematol 2017; 129: 553-60.
[http://dx.doi.org/10.1182/blood-2016-01-689422]
[51]
Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 2010; 362(5): 416-26.
[http://dx.doi.org/10.1056/NEJMoa0902533] [PMID: 20089960]
[52]
De Stefano N, Giorgio A, Battaglini M, et al. Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Mult Scler 2018; 24(2): 222-6.
[http://dx.doi.org/10.1177/1352458517690269] [PMID: 28140753]
[53]
Berardi A, Siddiqui MK, Treharne C, Harty G, Wong SL. Estimating the comparative efficacy of cladribine tablets versus alternative disease modifying treatments in active relapsing-remitting multiple sclerosis: Adjusting for patient characteristics using meta-regression and matching-adjusted indirect treatment comparison approaches. Curr Med Res Opin 2019; 35(8): 1371-8.
[http://dx.doi.org/10.1080/03007995.2019.1585779] [PMID: 30786783]
[54]
Siddiqui MK, Khurana IS, Budhia S, Hettle R, Harty G, Wong SL. Systematic literature review and network meta-analysis of cladribine tablets versus alternative disease-modifying treatments for relapsing-remitting multiple sclerosis. Curr Med Res Opin 2018; 34(8): 1361-71.
[http://dx.doi.org/10.1080/03007995.2017.1407303] [PMID: 29149804]
[55]
Hermann R, Litwin JS, Friberg LE, Dangond F, Munafo A. Effects of cladribine tablets on heart rate, atrio-ventricular conduction and cardiac repolarization in patients with relapsing multiple sclerosis. Br J Clin Pharmacol 2019; 85(7): 1484-94.
[http://dx.doi.org/10.1111/bcp.13919] [PMID: 30883839]
[56]
Goldschmidt CH, Hua LH. Re-evaluating the use of IFN-β and relapsing multiple sclerosis: Safety, efficacy and place in therapy. Degener Neurol Neuromuscul Dis 2020; 10: 29-38.
[http://dx.doi.org/10.2147/DNND.S224912] [PMID: 32617031]
[57]
Search of: Interferon beta 1b | COVID-19 - List Results. Available from: https://clinicaltrials.gov/ct2/results?cond=Covid-19&term=interferon+beta+1b&cntry=&state=&city=&dist=&Search=Search [Accessed on 15 Apr 2022].
[58]
Shalhoub S. Interferon beta-1b for COVID-19. Lancet 2020; 395: 1670-1.
[59]
Paty DW, Li DKB. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43(4): 662-7.
[http://dx.doi.org/10.1212/WNL.43.4.662] [PMID: 8469319]
[60]
Duquette P, Despault L, Knobler L, et al. Interferon beta-1b in the treatment of multiple sclerosis: Final outcome of the randomized controlled trial. Neurology 1995; 45(7): 1277-85.
[http://dx.doi.org/10.1212/WNL.45.7.1277] [PMID: 7617182]
[61]
Goodin DS, Reder AT, Ebers GC, et al. Survival in MS: A randomized cohort study 21 years after the start of the pivotal IFNβ-1b trial. Neurology 2012; 78(17): 1315-22.
[http://dx.doi.org/10.1212/WNL.0b013e3182535cf6] [PMID: 22496198]
[62]
Saida T, Tashiro K, Itoyama Y, Sato T, Ohashi Y, Zhao Z. Interferon beta-1b is effective in Japanese RRMS patients: A randomized, multicenter study. Neurology 2005; 64(4): 621-30.
[http://dx.doi.org/10.1212/01.WNL.0000151856.10387.E2] [PMID: 15728282]
[63]
Jacobs LD, Cookfair DL, Rudick RA, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol 1996; 39(3): 285-94.
[http://dx.doi.org/10.1002/ana.410390304] [PMID: 8602746]
[64]
Clanet M, Radue EW, Kappos L, et al. A randomized, double-blind, dose-comparison study of weekly interferon β-1a in relapsing MS. Neurology 2002; 59: 1507-17.
[http://dx.doi.org/10.1212/01.WNL.0000032256.35561.D6]
[65]
Liu C, Blumhardt LD. Randomised, double blind, placebo controlled study of interferon β-1a in relapsing-remitting multiple sclerosis analysed by area under disability/time curves. J Neurol Neurosurg Psychiatry 1999; 67(4): 451-6.
[http://dx.doi.org/10.1136/jnnp.67.4.451] [PMID: 10486390]
[66]
Li DKB, Paty DW. Magnetic resonance imaging results of the PRISMS trial: A randomized, double-blind, placebo-controlled study of interferon-β1a in relapsing-remitting multiple sclerosis. Prevention of relapses and disability by interferon-β1a subcutaneously in multiple sclerosis. Ann Neurol 1999; 46(2): 197-206.
[http://dx.doi.org/10.1002/1531-8249(199908)46:2<197::AID-ANA9>3.0.CO;2-P] [PMID: 10443885]
[67]
Lublin FD. When marketing and science intersect: Do patients with MS benefit? Neurology 2002; 59: 1480-1.
[68]
Kieseier BC, Calabresi PA. PEGylation of interferon-β-1a: A promising strategy in multiple sclerosis. CNS Drugs 2012; 26(3): 205-14.
[http://dx.doi.org/10.2165/11596970-000000000-00000] [PMID: 22201341]
[69]
Cocco E, Marrosu MG. Profile of PEGylated interferon beta in the treatment of relapsing-remitting multiple sclerosis. Ther Clin Risk Manag 2015; 11: 759-66.
[http://dx.doi.org/10.2147/TCRM.S69123] [PMID: 26056458]
[70]
Calabresi PA, Kieseier BC, Arnold DL, et al. Pegylated interferon β-1a for relapsing-remitting multiple sclerosis (ADVANCE): A randomised, phase 3, double-blind study. Lancet Neurol 2014; 13(7): 657-65.
[http://dx.doi.org/10.1016/S1474-4422(14)70068-7] [PMID: 24794721]
[71]
Nikfar S, Rahimi R, Abdollahi M. A meta-analysis of the efficacy and tolerability of interferon-β in multiple sclerosis, overall and by drug and disease type. Clin Ther 2010; Vol. 32: 1871-88.
[http://dx.doi.org/10.1016/j.clinthera.2010.10.006]
[72]
Frisullo G, Calabrese M, Tortorella C, et al. Thyroid autoimmunity and dysfunction in multiple sclerosis patients during long-term treatment with interferon beta or glatiramer acetate: An Italian multicenter study. Mult Scler 2014; 20(9): 1265-8.
[http://dx.doi.org/10.1177/1352458514521311] [PMID: 24515732]
[73]
Ekstein D, Linetsky E, Abramsky O, Karussis D. Polyneuropathy associated with interferon beta treatment in patients with multiple sclerosis. Neurology 2005; 65(3): 456-8.
[http://dx.doi.org/10.1212/01.wnl.0000171858.82527.4c] [PMID: 16087915]
[74]
Hunt D, Kavanagh D, Drummond I, et al. Thrombotic microangiopathy associated with interferon beta. N Engl J Med 2014; 370(13): 1270-1.
[http://dx.doi.org/10.1056/NEJMc1316118] [PMID: 24670186]
[75]
Newsome SD, Scott TF, Arnold DL, et al. Long-term outcomes of peginterferon beta-1a in multiple sclerosis: Results from the ADVANCE extension study, ATTAIN. Ther Adv Neurol Disord 2018; 11: 1756286418791143.
[http://dx.doi.org/10.1177/1756286418791143] [PMID: 30181778]
[76]
Govindappa K, Sathish J, Park K, Kirkham J, Pirmohamed M. Development of interferon beta-neutralising antibodies in multiple sclerosis - A systematic review and meta-analysis. Eur J Clin Pharmacol 2015; 71: 1287-98.
[77]
Bertolotto A, Gilli F, Sala A, et al. Persistent neutralizing antibodies abolish the interferon β bioavailability in MS patients. Neurology 2003; 60(4): 634-9.
[http://dx.doi.org/10.1212/01.WNL.0000046662.03894.C5] [PMID: 12601105]
[78]
Sorensen PS, Koch-Henriksen N, Ross C, Clemmesen KM, Bendtzen K. Appearance and disappearance of neutralizing antibodies during interferon-beta therapy. Neurology 2005; 65(1): 33-9.
[http://dx.doi.org/10.1212/01.WNL.0000166049.51502.6A] [PMID: 15888603]
[79]
Prod’homme T, Zamvil SS. The evolving mechanisms of action of glatiramer acetate. Cold Spring Harb Perspect Med 2019; 9(2): a029249.
[http://dx.doi.org/10.1101/cshperspect.a029249] [PMID: 29440323]
[80]
Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci 2004; 101 (Suppl. 2): 14593-8.
[http://dx.doi.org/10.1073/pnas.0404887101] [PMID: 15371592]
[81]
La Mantia L, Munari LM, Lovati R. Glatiramer acetate for multiple sclerosis. Cochrane Database Syst Rev 2010; 5.
[http://dx.doi.org/10.1002/14651858.CD004678.pub2]
[82]
Tremlett H. Effects of seasons on magnetic resonance imaging-measured disease activity in patients with multiple sclerosis. Annals of Neurology 2001; 49(3): 415-6.
[83]
Comi G, Martinelli V, Rodegher M, et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): A randomised, double-blind, placebo-controlled trial. Lancet 2009; 374(9700): 1503-11.
[http://dx.doi.org/10.1016/S0140-6736(09)61259-9] [PMID: 19815268]
[84]
Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol 2013; 73(6): 705-13.
[http://dx.doi.org/10.1002/ana.23938] [PMID: 23686821]
[85]
Cohen J, Belova A, Selmaj K, et al. Equivalence of generic glatiramer acetate in multiple sclerosis: A randomized clinical trial. JAMA Neurol 2015; 72(12): 1433-41.
[http://dx.doi.org/10.1001/jamaneurol.2015.2154] [PMID: 26458034]
[86]
Bittner S, Ruck T, Wiendl H, Grauer OM, Meuth SG. Targeting B cells in relapsing-remitting multiple sclerosis: From pathophysiology to optimal clinical management. Ther Adv Neurol Disord 2017; 10(1): 51-66.
[87]
Hauser SL, Bar-Or A, Cohen JA, et al. Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med 2020; 383(6): 546-57.
[http://dx.doi.org/10.1056/NEJMoa1917246] [PMID: 32757523]
[88]
Stüve O, Bennett JL. Pharmacological properties, toxicology and scientific rationale for the use of natalizumab (Tysabri) in inflammatory diseases. CNS Drug Rev 2007; 13(1): 79-95.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00003.x] [PMID: 17461891]
[89]
Pucci E, Giuliani G, Solari A, et al. Natalizumab for relapsing remitting multiple sclerosis. Cochrane Database Syst Rev 2011; (10): CD007621.
[http://dx.doi.org/10.1002/14651858.CD007621.pub2]
[90]
Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 2006; 354(9): 911-23.
[http://dx.doi.org/10.1056/NEJMoa044396] [PMID: 16510745]
[91]
Polman CH, O’Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006; 354(9): 899-910.
[http://dx.doi.org/10.1056/NEJMoa044397] [PMID: 16510744]
[92]
Butzkueven H, Kappos L, Wiendl H, et al. Long-term safety and effectiveness of natalizumab treatment in clinical practice: 10 years of real-world data from the Tysabri Observational Program (TOP). J Neurol Neurosurg Psychiatry 2020; 91(6): 660-8.
[http://dx.doi.org/10.1136/jnnp-2019-322326] [PMID: 32234967]
[93]
Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 2005; 353(4): 369-74.
[http://dx.doi.org/10.1056/NEJMoa051782] [PMID: 15947079]
[94]
Ho PR, Koendgen H, Campbell N, Haddock B, Richman S, Chang I. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: A retrospective analysis of data from four clinical studies. Lancet Neurol 2017; 16(11): 925-33.
[http://dx.doi.org/10.1016/S1474-4422(17)30282-X] [PMID: 28969984]
[95]
Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 2012; 366(20): 1870-80.
[http://dx.doi.org/10.1056/NEJMoa1107829] [PMID: 22591293]
[96]
Calabresi PA, Giovannoni G, Confavreux C, et al. The incidence and significance of anti-natalizumab antibodies: Results from AFFIRM and SENTINEL. Neurology 2007; 69(14): 1391-403.
[http://dx.doi.org/10.1212/01.wnl.0000277457.17420.b5] [PMID: 17761550]
[97]
Hersh CM, Cohen JA. Alemtuzumab for the treatment of relapsing-remitting multiple sclerosis. Immunotherapy 2014; 6(3): 249-59.
[http://dx.doi.org/10.2217/imt.14.7] [PMID: 24762071]
[98]
Riera R, Porfírio GJM, Torloni MR. Alemtuzumab for multiple sclerosis. CDSRM 2016; 2016: CD011203.
[http://dx.doi.org/10.1002/14651858.CD011203.pub2]
[99]
Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet 2012; 380(9856): 1819-28.
[http://dx.doi.org/10.1016/S0140-6736(12)61769-3] [PMID: 23122652]
[100]
Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet 2012; 380(9856): 1829-39.
[http://dx.doi.org/10.1016/S0140-6736(12)61768-1] [PMID: 23122650]
[101]
Havrdova E, Arnold DL, Cohen JA, et al. Alemtuzumab CAREMS I 5-year follow-up: Durable efficacy in the absence of continuous MS therapy. Neurology 2017; 89(11): 1107-16.
[http://dx.doi.org/10.1212/WNL.0000000000004313] [PMID: 28835401]
[102]
Coles AJ, Cohen JA, Fox EJ, et al. Alemtuzumab CARE-MS II 5-year follow-up: Efficacy and safety findings. Neurology 2017; 89(11): 1117-26.
[http://dx.doi.org/10.1212/WNL.0000000000004354] [PMID: 28835403]
[103]
Stamatellos VP, Siafis S, Papazisis G. Disease-modifying agents for multiple sclerosis and the risk for reporting cancer: A disproportionality analysis using the US food and drug administration adverse event reporting system database. Br J Clin Pharmacol 2021; 87(12): 4769-79.
[http://dx.doi.org/10.1111/bcp.14916] [PMID: 33998034]
[104]
Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 2017; 376(3): 209-20.
[http://dx.doi.org/10.1056/NEJMoa1606468] [PMID: 28002688]
[105]
Whittam DH, Tallantyre EC, Jolles S, et al. Rituximab in neurological disease: Principles, evidence and practice. Ann Neurol 2019; 79(6): 950-8.
[106]
Alping P, Frisell T, Novakova L, et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol 2016; 79(6): 950-8.
[http://dx.doi.org/10.1002/ana.24651] [PMID: 27038238]
[107]
Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 2017; 376(3): 221-34.
[http://dx.doi.org/10.1056/NEJMoa1601277] [PMID: 28002679]
[108]
Ng HS, Rosenbult CL, Tremlett H. Safety profile of ocrelizumab for the treatment of multiple sclerosis: A systematic review. Expert Opin Drug Saf 2020; 1069-94.
[109]
Derfuss T. Personalized medicine in multiple sclerosis: Hope or reality? BMC Med 2012; 10: 116.
[110]
Kalincik T, Manouchehrinia A, Sobisek L, et al. Towards personalized therapy for multiple sclerosis: Prediction of individual treatment response. Brain 2017; 140(9): 2426-43.
[http://dx.doi.org/10.1093/brain/awx185] [PMID: 29050389]
[111]
Sapko K, Jamroz-Wišniewska A, Marciniec M, Kulczyñski M, Szczepañska-Szerej A, Rejdak K. Biomarkers in multiple sclerosis: A review of diagnostic and prognostic factors. Neurol Neurochir Pol 2020; 54(3): 252-8.
[112]
Freedman MS, Devonshire V, Duquette P, et al. Treatment optimization in multiple sclerosis: Canadian MS working group recommendations. CJNS 2020; 47(4): 437-55.
[113]
Montalban X, Gold R, Thompson AJ, et al. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler 2018; 24(2): 96-120.
[http://dx.doi.org/10.1177/1352458517751049] [PMID: 29353550]
[114]
Landfeldt E, Castelo-Branco A, Svedbom A, Löfroth E, Kavaliunas A, Hillert J. The long-term impact of early treatment of multiple sclerosis on the risk of disability pension. J Neurol 2018; 265(3): 701-7.
[http://dx.doi.org/10.1007/s00415-018-8764-4] [PMID: 29392457]
[115]
Brown JWL, Coles A, Horakova D, et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 2019; 321(2): 175-87.
[http://dx.doi.org/10.1001/jama.2018.20588] [PMID: 30644981]
[116]
Beiki O, Frumento P, Bottai M, Manouchehrinia A, Hillert J. Changes in the risk of reaching multiple sclerosis disability milestones in recent decades: A nationwide population-based cohort study in Sweden. JAMA Neurol 2019; 76(6): 665-71.
[http://dx.doi.org/10.1001/jamaneurol.2019.0330] [PMID: 30882868]
[117]
Chalmer TA, Baggesen LM, Nørgaard M, Koch-Henriksen N, Magyari M, Sorensen PS. Early versus later treatment start in multiple sclerosis: A register-based cohort study. Eur J Neurol 2018; 25(10): 1262-e110.
[http://dx.doi.org/10.1111/ene.13692] [PMID: 29847005]
[118]
Li H, Hu F, Zhang Y, Li K. Comparative efficacy and acceptability of disease-modifying therapies in patients with relapsing–remitting multiple sclerosis: A systematic review and network meta-analysis. J Neurol 2020; 267(12): 3489-98.
[119]
Comi G, Radaelli M, Soelberg Sørensen P. Evolving concepts in the treatment of relapsing multiple sclerosis. The Lancet 2017; 389(10076): 1347-56.
[120]
Sintzel MB, Rametta M, Reder AT. Vitamin D and multiple sclerosis: A comprehensive review. Neurol Ther 2018; 7(1): 59-85.
[121]
Comi G. Induction vs. escalating therapy in multiple sclerosis: Practical implications. Neurol Sci 2008; 29 (Suppl_ 2): S253-5.
[122]
Scalfari A, Neuhaus A, Degenhardt A, et al. The natural history of multiple sclerosis: A geographically based study 10: Relapses and long-term disability. Brain 2010; 133(Pt 7): 1914-29.
[http://dx.doi.org/10.1093/brain/awq118] [PMID: 20534650]
[123]
Gross RH, Corboy JR. Monitoring, switching, and stopping multiple sclerosis disease-modifying therapies. CONTINUUM lifelong learning in neurology Lippincott Williams and Wilkins 2019; 25: 715-35.
[http://dx.doi.org/10.1212/CON.0000000000000738]
[124]
Wingerchuk DM, Weinshenker BG. Disease modifying therapies for relapsing multiple sclerosis. BMJ 2016; 354: i3518.
[http://dx.doi.org/10.1136/bmj.i3518]
[125]
Freedman MS, Selchen D, Prat A, Giacomini PS. Managing multiple sclerosis: Treatment initiation, modification, and sequencing. CJNS 2018; 45: 489-503.
[126]
O’Connor PW, Goodman A, Kappos L, et al. Disease activity return during natalizumab treatment interruption in patients with multiple sclerosis. Neurology 2011; 76(22): 1858-65.
[http://dx.doi.org/10.1212/WNL.0b013e31821e7c8a] [PMID: 21543733]
[127]
Hatcher SE, Waubant E, Nourbakhsh B, Crabtree-Hartman E, Graves JS. Rebound syndrome in patients with multiple sclerosis after cessation of fingolimod treatment. JAMA Neurol 2016; 73(7): 790-4.
[http://dx.doi.org/10.1001/jamaneurol.2016.0826] [PMID: 27135594]
[128]
Traboulsee A, Simon JH, Stone L, et al. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR 2016; 37: 394-401.
[http://dx.doi.org/10.3174/ajnr.A4539]
[129]
Zeposia (ozanimod) capsules prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209899s000lbl.pdf
[130]
Gilenya (fingolimod) capsules prescribing information. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022527s027lbl.pdf
[131]
Lu E, Wang BW, Guimond C, Synnes A, Sadovnick D, Tremlett H. Disease-modifying drugs for multiple sclerosis in pregnancy: A systematic review. Neurology 2012; 79(11): 1130-5.
[http://dx.doi.org/10.1212/WNL.0b013e3182698c64] [PMID: 22933738]
[132]
Andersen JB, Moberg JY, Spelman T, Magyari M. Pregnancy outcomes in men and women treated with teriflunomide. A population-based nationwide Danish register study. Front Immunol 2018; 9(NOV): 2706.
[http://dx.doi.org/10.3389/fimmu.2018.02706] [PMID: 30532753]
[133]
Coyle PK. Multiple sclerosis and pregnancy prescriptions. Expert Opin Drug Saf 2014; 13(12): 1565-8.
[http://dx.doi.org/10.1517/14740338.2014.973848] [PMID: 25406727]
[134]
Kaplan TB. Management of demyelinating disorders in pregnancy. Neurologic Clinics. W.B. Saunders 2019; 37: pp. 17-30.
[http://dx.doi.org/10.1016/j.ncl.2018.09.007]
[135]
Langer-Gould A, Smith JB, Albers KB, et al. Pregnancy-related relapses and breastfeeding in a contemporary multiple sclerosis cohort. Neurology 2020; 94(18): e1939-49.
[http://dx.doi.org/10.1212/WNL.0000000000009374] [PMID: 32284359]
[136]
Hamdy SM, Abdel-Naseer M, Shehata HS, et al. Managing disease-modifying therapies and breakthrough activity in multiple sclerosis patients during the COVID-19 pandemic: Toward an optimized approach. Ther Clin Risk Manag 2020; 16: 651-62.
[137]
Giovannoni G, Hawkes C, Lechner-Scott J, Levy M, Waubant E, Gold J. The COVID-19 pandemic and the use of MS disease-modifying therapies. Multiple sclerosis and related disorders. Elsevier BV 2020; 39: 102073.
[138]
Louapre C, Collongues N, Stankoff B, et al. Clinical characteristics and outcomes in patients with coronavirus disease 2019 and multiple sclerosis. JAMA Neurol 2020; 77(9): 1079-88.
[http://dx.doi.org/10.1001/jamaneurol.2020.2581] [PMID: 32589189]
[139]
Berger JR, Brandstadter R, Bar-Or A. COVID-19 and MS diseasemodifying therapies. Neurol Neuroimmunol neuroinflammation 2020; 7(4): 761.
[140]
Sormani MP, De Rossi N, Schiavetti I, et al. Disease modifying therapies and COVID-19 severity in multiple sclerosis. Ann Neurol 2021; 89(4): 780-9.
[http://dx.doi.org/10.2139/ssrn.3631244]
[141]
Safavi F, Nourbakhsh B, Azimi AR. B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with multiple sclerosis during the early COVID-19 epidemic in Iran. Mult Scler Relat Disord 2020; 43: 102195.
[http://dx.doi.org/10.1016/j.msard.2020.102195] [PMID: 32460086]
[142]
Montero-Escribano P, Matías-Guiu J, Gómez-Iglesias P, PortaEtessam J, Pytel V, Matias-Guiu JA. Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Multi Scler Relat Disord. Elsevier B.V. 2020; 42: p. 102185.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy