Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Coupling of Thiols and Aryl Halides Mediated by Dicyclohexano-18- crown-6 and Potassium Carbonate

Author(s): Zhong-Lin Liu, Jing-Xiu Xu, Ning Deng*, Zheng Dong, Xiao Shen, Jun Xu and Hua-Jian Xu*

Volume 19, Issue 7, 2022

Published on: 15 June, 2022

Page: [824 - 837] Pages: 14

DOI: 10.2174/1570179419666220412084111

Price: $65

Abstract

Aims: A simple, transition-metal-free C-S coupling protocol for the synthesis of aryl thioethers is reported.

Background: Sulfur-containing moieties are ubiquitous in pharmaceutical drugs and materials and therefore methods for their construction are of great importance. One approach entails the catalytic coupling of an aryl halohydrocarbon with a thiol, but the transition metal catalysts usually used are prone to poisoning by participating sulfur species and efficient catalysis is usually only achieved after complex ligand optimization.

Objective: New transition-metal-free approaches to the synthesis of C-S bonds are urgently need.

Methods: We screened the reaction conditions such as alkali, crown ether, solvent, temperature, etc., tested the compatibility of the reaction substrate, and analyzed the mechanism process.

Results: The optimized reaction conditions were determined to be 1.0 equiv of aryl halides and 1.2 equiv of thiols at 110 ℃ in toluene with K2CO3 (1.5 equiv) as a base, promoted by 10 mol% dicyclohexano-18-crown-6. Up to 33 examples of thioethers were synthesized under transitionmetal- free conditions in good to excellent yields.

Conclusion: We have developed a simple and efficient method for the C-S cross-coupling of a wide variety of (hetero)aryl halides and thiols mediated by dicyclohexano-18-crown-6 and without the need for transition-metal catalyst. In addition, the preparation and gram-scale experiments of a variety of drug molecules further verify the practicability of our developed method.

Keywords: Carbon-sulfur coupling, SNAr, aryl halides, thiols, dicyclohexano-18-crown-6, potassium carbonate.

Graphical Abstract
[1]
Winn, M.; Reilly, E.B.; Liu, G.; Huth, J.R.; Jae, H-S.; Freeman, J.; Pei, Z.; Xin, Z.; Lynch, J.; Kester, J.; von Geldern, T.W.; Leitza, S.; DeVries, P.; Dickinson, R.; Mussatto, D.; Okasinski, G.F. Discovery of novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. 4. Structure-activity relationship of substituents on the benzene ring of the cinnamide. J. Med. Chem., 2001, 44(25), 4393-4403.
[http://dx.doi.org/10.1021/jm0103108] [PMID: 11728185]
[2]
Cai, Z.; Zhou, W.; Sun, L. Synthesis and HMG CoA reductase inhibition of 4-thiophenyl quinolines as potential hypocholesterolemic agents. Bioorg. Med. Chem., 2007, 15(24), 7809-7829.
[http://dx.doi.org/10.1016/j.bmc.2007.08.044] [PMID: 17851082]
[3]
Delfín, D.A.; Morgan, R.E.; Zhu, X.; Werbovetz, K.A. Redox-active dinitrodiphenylthioethers against Leishmania: Synthesis, structure-activity relationships and mechanism of action studies. Bioorg. Med. Chem., 2009, 17(2), 820-829.
[http://dx.doi.org/10.1016/j.bmc.2008.11.031] [PMID: 19058972]
[4]
Bagley, M.C.; Davis, T.; Dix, M.C.; Fusillo, V.; Pigeaux, M.; Rokicki, M.J.; Kipling, D. Microwave-assisted Ullmann C-S bond formation: Synthesis of the P38α MAPK clinical candidate VX-745. J. Org. Chem., 2009, 74(21), 8336-8342.
[http://dx.doi.org/10.1021/jo9017155] [PMID: 19778055]
[5]
Eichman, C.C.; Stambuli, J.P. Transition metal catalyzed synthesis of aryl sulfides. Molecules, 2011, 16(1), 590-608.
[http://dx.doi.org/10.3390/molecules16010590] [PMID: 21242940]
[6]
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev., 2011, 111(3), 1596-1636.
[http://dx.doi.org/10.1021/cr100347k] [PMID: 21391564]
[7]
Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem., 2014, 57(7), 2832-2842.
[http://dx.doi.org/10.1021/jm401375q] [PMID: 24102067]
[8]
Boyd, D.A. Sulfur and its role in modern materials science. Angew. Chem. Int. Ed. Engl., 2016, 55(50), 15486-15502.
[http://dx.doi.org/10.1002/anie.201604615] [PMID: 27860133]
[9]
Murata, M.; Buchwald, S.L. A general and efficient method for the palladium-catalyzed cross-coupling of thiols and secondary phosphines. Tetrahedron, 2004, 60(34), 7397-7403.
[http://dx.doi.org/10.1016/j.tet.2004.05.044]
[10]
Alvaro, E.; Hartwig, J.F. Resting state and elementary steps of the coupling of aryl halides with thiols catalyzed by alkylbisphosphine com-plexes of palladium. J. Am. Chem. Soc., 2009, 131(22), 7858-7868.
[http://dx.doi.org/10.1021/ja901793w] [PMID: 19453106]
[11]
Uyeda, C.; Tan, Y.; Fu, G.C.; Peters, J.C. A new family of nucleophiles for photoinduced, copper-catalyzed cross-couplings via single-electron transfer: Reactions of thiols with aryl halides under mild conditions (O °C). J. Am. Chem. Soc., 2013, 135(25), 9548-9552.
[http://dx.doi.org/10.1021/ja404050f] [PMID: 23697882]
[12]
Qiao, Z.; Wei, J.; Jiang, X. Direct cross-coupling access to diverse aromatic sulfide: Palladium-catalyzed double C-S bond construction using Na2S2O3 as a sulfurating reagent. Org. Lett., 2014, 16(4), 1212-1215.
[http://dx.doi.org/10.1021/ol500112y] [PMID: 24555790]
[13]
Gogoi, P.; Hazarika, S.; Sarma, M.J.; Sarma, K.; Barman, P. Nickel-Schiff base complex catalyzed C-S cross-coupling of thiols with organic chlorides. Tetrahedron, 2014, 70(41), 7484-7489.
[http://dx.doi.org/10.1016/j.tet.2014.08.020]
[14]
Johnson, M.W.; Hannoun, K.I.; Tan, Y.; Fu, G.C.; Peters, J.C. A mechanistic investigation of the photoinduced, copper-mediated cross-coupling of an aryl thiol with an aryl halide. Chem. Sci. (Camb.), 2016, 7(7), 4091-4100.
[http://dx.doi.org/10.1039/C5SC04709A] [PMID: 28044096]
[15]
Zhu, Y-Y.; Lan, G.; Fan, Y.; Veroneau, S.S.; Song, Y.; Micheroni, D.; Lin, W. Merging photoredox and organometallic catalysts in a metal-organic framework significantly boosts photocatalytic activities. Angew. Chem. Int. Ed. Engl., 2018, 57(43), 14090-14094.
[http://dx.doi.org/10.1002/anie.201809493] [PMID: 30129281]
[16]
Liu, D.; Ma, H-X.; Fang, P.; Mei, T-S. Nickel-catalyzed thiolation of aryl halides and heteroaryl halides through electrochemistry. Angew. Chem. Int. Ed. Engl., 2019, 58(15), 5033-5037.
[http://dx.doi.org/10.1002/anie.201900956] [PMID: 30735304]
[17]
Sikari, R.; Sinha, S.; Das, S.; Saha, A.; Chakraborty, G.; Mondal, R.; Paul, N.D. Achieving nickel catalyzed C-S cross-coupling under mild conditions using metal-ligand cooperativity. J. Org. Chem., 2019, 84(7), 4072-4085.
[http://dx.doi.org/10.1021/acs.joc.9b00075] [PMID: 30855958]
[18]
Zhao, J-N.; Kayumov, M.; Wang, D-Y.; Zhang, A. Transition-metal-free aryl-heteroatom bond formation via C-S bond cleavage. Org. Lett., 2019, 21(18), 7303-7306.
[http://dx.doi.org/10.1021/acs.orglett.9b02584] [PMID: 31465236]
[19]
Varala, R.; Ramu, E.; Alam, M.M.; Adapa, R.S. CsOH·H2O-Promoted synthesis of aryl sulfides via direct coupling of aryl halides and thi-ols. Chem. Lett., 2004, 33, 1614-1615.
[http://dx.doi.org/10.1246/cl.2004.1614]
[20]
Sreedhar, B.; Reddy, P.S.; Reddy, M.A. Catalyst-free and base-free water-promoted SNAr reaction of heteroaryl halides with thiols. Synthesis, 2009, 2009(10), 1732-1738.
[http://dx.doi.org/10.1055/s-0029-1216644]
[21]
Yuan, Y.; Thomé, I.; Kim, S.H.; Chen, D.T.; Beyer, A.; Bonnamour, J.; Zuidema, E.; Chang, S.; Bolm, C. Dimethyl sulfoxide/potassium hydroxide: A superbase for the transition metal-free preparation of cross-coupling products. Adv. Synth. Catal., 2010, 352(17), 2892-2898.
[http://dx.doi.org/10.1002/adsc.201000575]
[22]
Duan, Z.; Ranjit, S.; Liu, X. One-pot synthesis of amine-substituted aryl sulfides and benzo[b]thiophene derivatives. Org. Lett., 2010, 12(10), 2430-2433.
[http://dx.doi.org/10.1021/ol100816g] [PMID: 20420378]
[23]
Cano, R.; Ramón, D.J.; Yus, M. Transition-metal-free O-, S-, and N-arylation of alcohols, thiols, amides, amines, and related heterocycles. J. Org. Chem., 2011, 76(2), 654-660.
[http://dx.doi.org/10.1021/jo1022052] [PMID: 21175155]
[24]
Ma, X.T.; Liu, Q.; Jia, X.J.; Su, C.L.; Xu, Q. Efficient synthesis of unsymmetrical heteroaryl thioethers and chalcogenides by alkali hydrox-ide-mediated SNAr reactions of heteroaryl halides and dichalcogenides. RSC Advances, 2016, 6(62), 56930-56935.
[http://dx.doi.org/10.1039/C6RA10517C]
[25]
Kwan, E.E.; Zeng, Y.; Besser, H.A.; Jacobsen, E.N. Concerted nucleophilic aromatic substitutions. Nat. Chem., 2018, 10(9), 917-923.
[http://dx.doi.org/10.1038/s41557-018-0079-7] [PMID: 30013193]
[26]
Anderson, R.G.; Jett, B.M.; McNally, A. A unified approach to couple aromatic heteronucleophiles to azines and pharmaceuticals. Angew. Chem. Int. Ed. Engl., 2018, 57(38), 12514-12518.
[http://dx.doi.org/10.1002/anie.201807322] [PMID: 30084203]
[27]
Chen, L.; Liang, J.; Chen, Z-Y.; Chen, J.; Yan, M.; Zhang, X-J. A convenient synthesis of sulfones via light promoted coupling of sodium sulfinates and aryl halides. Adv. Synth. Catal., 2019, 361, 956-960.
[28]
Liu, C.Z.; Zang, X.F.; Yu, B.H.; Yu, X.C.; Xu, Q. Microwave-promoted TBAF-catalyzed SNAr reaction of aryl fluorides and ArSTMS: An efficient synthesis of unsymmetrical diaryl thioethers. Synlett, 2011, 1143-1148.
[29]
Reeves, J.T.; Camara, K.; Han, Z.S.; Xu, Y.; Lee, H.; Busacca, C.A.; Senanayake, C.H. The reaction of Grignard reagents with Bunte salts: A thiol-free synthesis of sulfides. Org. Lett., 2014, 16(4), 1196-1199.
[http://dx.doi.org/10.1021/ol500067f] [PMID: 24512478]
[30]
Jia, X-J.; Yu, L.; Liu, J-P.; Xu, Q.; Sickert, M.; Chen, L-H.; Lautens, M. Sulfur-silicon bond activation catalysed by Cl/Br ions: Waste-free synthesis of unsymmetrical thioethers by replacing fluoride catalysis and fluorinated substrates in SNAr reactions. Green Chem., 2014, 16(7), 3444-3449.
[http://dx.doi.org/10.1039/c4gc00535j]
[31]
Jouffroy, M.; Kelly, C.B.; Molander, G.A. Thioetherification via photoredox/nickel dual catalysis. Org. Lett., 2016, 18(4), 876-879.
[http://dx.doi.org/10.1021/acs.orglett.6b00208] [PMID: 26852821]
[32]
Moser, D.; Duan, Y.; Wang, F.; Ma, Y.; O’Neill, M.J.; Cornella, J. Selective functionalization of aminoheterocycles by a pyrylium salt. Angew. Chem. Int. Ed. Engl., 2018, 57(34), 11035-11039.
[http://dx.doi.org/10.1002/anie.201806271] [PMID: 29969531]
[33]
Liu, B.; Lim, C-H.; Miyake, G.M. Visible-light-promoted C-S cross-coupling via intermolecular charge transfer. J. Am. Chem. Soc., 2017, 139(39), 13616-13619.
[http://dx.doi.org/10.1021/jacs.7b07390] [PMID: 28910097]
[34]
Liotta, C.L.; Harris, H.P.; McDermott, M.; Gonzalez, T.; Smith, K. Chemistry of “naked” anions II. reactions of the 18-crown-6 complex of potassium acetate with organic substrates in aprotic organic solvents. Tetrahedron Lett., 1974, 15(28), 2417-2420.
[http://dx.doi.org/10.1016/S0040-4039(01)92273-7]
[35]
Schmittling, E.A.; Sawyer, J.S. Synthesis of diaryl ethers, diaryl thioethers, and diarylamines mediated by potassium fluoride-alumina and 18-crown-6. J. Org. Chem., 1993, 58(12), 3229-3230.
[http://dx.doi.org/10.1021/jo00064a004]
[36]
Wadamoto, M.; Ozasa, N.; Yanagisawa, A.; Yamamoto, H. BINAP/AgOTf/KF/18-crown-6 as new bifunctional catalysts for asymmetric Sa-kurai-Hosomi allylation and Mukaiyama aldol reaction. J. Org. Chem., 2003, 68(14), 5593-5601.
[http://dx.doi.org/10.1021/jo020691c] [PMID: 12839451]
[37]
Jadhav, V.H.; Choi, W.; Lee, S-S.; Lee, S.; Kim, D.W. Bis-tert-alcohol-functionalized crown-6-calix[4]arene: An organic promoter for nucle-ophilic fluorination. Chemistry, 2016, 22(13), 4515-4520.
[http://dx.doi.org/10.1002/chem.201504602] [PMID: 26880350]
[38]
Carvalho, N.F.; Pliego, J.R., Jr Theoretical design and calculation of a crown ether phase-transfer-catalyst scaffold for nucleophilic fluorina-tion merging two catalytic concepts. J. Org. Chem., 2016, 81(18), 8455-8463.
[http://dx.doi.org/10.1021/acs.joc.6b01624] [PMID: 27525472]
[39]
Kang, S.M.; Kim, C.H.; Lee, K.C.; Kim, D.W. Bis-triethylene glycolic crown-5-calix[4]arene: A promoter of nucleophilic fluorination using potassium fluoride. Org. Lett., 2019, 21(9), 3062-3066.
[http://dx.doi.org/10.1021/acs.orglett.9b00649] [PMID: 30990693]
[40]
Lee, W.C.; Kang, S.M.; Lee, B.C.; Kim, S.E.; Kim, D.W. Multifunctional crown-5-calix[4]arene-based phase-transfer catalysts for aromatic 18f-fluorination. Org. Lett., 2020, 22(24), 9551-9555.
[http://dx.doi.org/10.1021/acs.orglett.0c03604] [PMID: 33270463]
[41]
Dalessandro, E.V.; Pliego, J.R. Theoretical design of new macrocycles for nucleophilic fluorination with KF: Thiourea-crown-ether is pre-dicted to overcome [2.2.2]-cryptand. Mol. Syst. Des. Eng., 2020, 5(9), 1513-1523.
[http://dx.doi.org/10.1039/D0ME00112K]
[42]
Zhou, Y.; Wang, Y.; Lou, Y.; Song, Q. Facile synthesis of 1,2-thiobenzonitriles via Cu-catalyzed denitrogenative radical coupling reaction. Chem. Commun. (Camb.), 2019, 55(69), 10265-10268.
[http://dx.doi.org/10.1039/C9CC05099J] [PMID: 31393484]
[43]
Singh, N.; Singh, R.; Raghuvanshi, D.S.; Singh, K.N. Convenient MW-assisted synthesis of unsymmetrical sulfides using sulfonyl hydra-zides as aryl thiol surrogate. Org. Lett., 2013, 15(22), 5874-5877.
[http://dx.doi.org/10.1021/ol402948k] [PMID: 24171443]
[44]
Ku, X.; Huang, H.; Jiang, H.; Liu, H. Efficient iron/copper cocatalyzed S-arylations of thiols with aryl halides. J. Comb. Chem., 2009, 11(3), 338-340.
[http://dx.doi.org/10.1021/cc800182q] [PMID: 19260652]
[45]
Park, N.; Park, K.; Jang, M.; Lee, S. One-pot synthesis of symmetrical and unsymmetrical aryl sulfides by Pd-catalyzed couplings of aryl halides and thioacetates. J. Org. Chem., 2011, 76(11), 4371-4378.
[http://dx.doi.org/10.1021/jo2007253] [PMID: 21545186]
[46]
Garnier, T.; Danel, M.; Magné, V.; Pujol, A.; Bénéteau, V.; Pale, P.; Chassaing, S. Copper(I)-USY as a ligand-free and recyclable catalyst for ullmann-type O-, N-, S-, and C-arylation reactions: Scope and application to total synthesis. J. Org. Chem., 2018, 83(12), 6408-6422.
[http://dx.doi.org/10.1021/acs.joc.8b00620] [PMID: 29790337]
[47]
Khakyzadeh, V.; Rostami, A.; Veisi, H.; Shirmardi Shaghasemi, B.; Reimhult, E.; Luque, R.; Xia, Y.; Darvishi, S. Direct C-S bond formation via C-O bond activation of phenols in a crossover Pd/Cu dual-metal catalysis system. Org. Biomol. Chem., 2019, 17(18), 4491-4497.
[http://dx.doi.org/10.1039/C9OB00313D] [PMID: 30990509]
[48]
Thankachan, A.P.; Sindhu, K.S.; Krishnan, K.K.; Anilkumar, G. A novel and efficient zinc-catalyzed thioetherification of aryl halides. RSC Advances, 2015, 5(41), 32675-32678.
[http://dx.doi.org/10.1039/C5RA03869C]
[49]
Mukherjee, N.; Chatterjee, T.; Ranu, B.C. Reaction under ball-milling: Solvent-, ligand-, and metal-free synthesis of unsymmetrical diaryl chalcogenides. J. Org. Chem., 2013, 78(21), 11110-11114.
[http://dx.doi.org/10.1021/jo402071b] [PMID: 24116379]
[50]
Sam, D.J.; Simmons, H.E. Crown ether chemistry. Substitution reactions of potassium halide and potassium hydroxide complexes of dicy-clohexyl-18-crown-6. J. Am. Chem. Soc., 1974, 96(7), 2252-2253.
[http://dx.doi.org/10.1021/ja00814a045]
[51]
Raevsky, O.A.; Solov’ev, V.P.; Solotnov, A.F.; Schneider, H-J.; Rüdiger, V. Conformation of 18-crown-5 and its influence on complexation with alkali and ammonium cations: Why 18-crown-5 binds more than 1000 times weaker than 18C6. J. Org. Chem., 1996, 61(23), 8113-8116.
[http://dx.doi.org/10.1021/jo961083y] [PMID: 11667798]
[52]
Xu, Z.; Yang, Z.; Liu, Y.; Lu, Y.; Chen, K.; Zhu, W. Halogen bond: Its role beyond drug-target binding affinity for drug discovery and de-velopment. J. Chem. Inf. Model., 2014, 54(1), 69-78.
[http://dx.doi.org/10.1021/ci400539q] [PMID: 24372485]
[53]
Silva, S.L.; Valle, M.S.; Pliego, J.R. Jr Nucleophilic fluorination with KF Catalyzed by 18-crown-6 and bulky diols: A theoretical and exper-imental study. J. Org. Chem., 2020, 85(23), 15457-15465.
[http://dx.doi.org/10.1021/acs.joc.0c02229] [PMID: 33227195]
[54]
Silva, S.L.; Valle, M.S.; Pliego, J.R., Jr Micro-solvation and counter ion effects on ionic reactions: Activation of potassium fluoride with 18-crown-6 and tert-butanol in aprotic solvents. J. Mol. Liq., 2020, 319, 114211.
[http://dx.doi.org/10.1016/j.molliq.2020.114211]
[55]
Pliego, J.R. The role of intermolecular forces in ionic reactions: The solvent effect, ion-pairing, aggregates and structured environment. Org. Biomol. Chem., 2021, 19(9), 1900-1914.
[http://dx.doi.org/10.1039/D0OB02413A] [PMID: 33554992]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy