Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Managing Type 1 Diabetes from Gynecological Waste: Trash to Treasure

Author(s): Rohit G. Kumbhar, Shivani Desai* and Ramesh R. Bhonde

Volume 19, Issue 5, 2023

Published on: 28 June, 2022

Article ID: e110422203402 Pages: 4

DOI: 10.2174/1573399818666220411122832

Price: $65

Abstract

Type 1 diabetes mellitus (T1DM), an autoimmune disease, involves the destruction of pancreatic β cells. β cells maintain glucose homeostasis by identifying blood glucose and accordingly releasing insulin to maintain normal physiologic glucose levels. Human umbilical cord blood (hUCB) cells pose a lesser risk of viral contamination due to low placental transmission during prenatal life. Additionally, they have advantages such as non-invasive harvest procedure gynecological waste, low immunogenicity, easy expansion in-vitro, and easy ethical access compared to deriving stem cells from other sources. According to the published preclinical data, the infusion of autologous cord blood cells is considered safe as they are non-antigenic. Depending on the degree of differentiation, the ability to regenerate themselves and the origin of many stem cell types can be differentiated. The application of stem cells (SCs) has great potential for managing T1DM due to their regenerative capabilities and promising immunological characteristics. Due to lesser ethical complications and easy procedures of isolation, hUCB has become a precious medical intervention.

Keywords: Umbilical cord blood stem cells, type 1 diabetes mellitus, immunogenicity, glucose homeostasis, gynecological waste, plasticity.

[1]
Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2014; 383(9911): 69-82.
[http://dx.doi.org/10.1016/S0140-6736(13)60591-7] [PMID: 23890997]
[2]
Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464(7293): 1293-300.
[http://dx.doi.org/10.1038/nature08933] [PMID: 20432533]
[3]
Kassem DH, Kamal MM. Therapeutic efficacy of umbilical cord-derived stem cells for diabetes mellitus: A meta-analysis study. Stem Cell Res Ther 2020; 11(1): 484.
[http://dx.doi.org/10.1186/s13287-020-01996-x] [PMID: 33198815]
[4]
Kakkar A, Sorout A, Tiwari M, et al. Current status of stem cell treatment for type 1 diabetes mellitus. Tissue Eng Regen Med 2018; 15(6): 699-709.
[http://dx.doi.org/10.1007/s13770-018-0143-9] [PMID: 30603589]
[5]
He B, Li X, Yu H, Zhou Z. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus. J Diabetes 2015; 7(6): 762-73.
[http://dx.doi.org/10.1111/1753-0407.12286] [PMID: 25799887]
[6]
Bandeiras C, Hwa AJ, Cabral JMS, Ferreira FC, Finkelstein SN, Gabbay RA. Economics of beta-cell replacement therapy. Curr Diab Rep 2019; 19(9): 75.
[http://dx.doi.org/10.1007/s11892-019-1203-9] [PMID: 3137593]
[7]
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103(2): 137-49.
[http://dx.doi.org/10.1016/j.diabres.2013.11.002] [PMID: 24630390]
[8]
Farooq T, Rehman K, Hameed A, Akash MSH. Stem cell therapy and type 1 diabetes mellitus: Treatment strategies and future perspectives. Adv Exp Med Biol 2019; 1084: 95-107.
[http://dx.doi.org/10.1007/5584_2018_195] [PMID: 29896720]
[9]
Vanikar AV, Trivedi HL, Thakkar UG. Stem cell therapy emerging as the key player in treating type 1 diabetes mellitus. Cytotherapy 2016; 18(9): 1077-86.
[http://dx.doi.org/10.1016/j.jcyt.2016.06.006] [PMID: 27424148]
[10]
Op de Beeck A, Eizirik DL. Viral infections in type 1 diabetes mellitus-why the β cells? Nat Rev Endocrinol 2016; 12(5): 263-73.
[http://dx.doi.org/10.1038/nrendo.2016.30] [PMID: 27020257]
[11]
Couri CEB, Voltarelli JC. Autologous stem cell transplantation for early type 1 diabetes mellitus. Autoimmunity 2008; 41(8): 666-72.
[http://dx.doi.org/10.1080/08916930802200208] [PMID: 18958750]
[12]
Lv W, Graves DT, He L, et al. Depletion of the diabetic gut microbiota resistance enhances stem cells therapy in type 1 diabetes mellitus. Theranostics 2020; 10(14): 6500-16.
[http://dx.doi.org/10.7150/thno.44113] [PMID: 32483466]
[13]
Katuchova J, Harvanova D, Spakova T, et al. Mesenchymal stem cells in the treatment of type 1 diabetes mellitus. Endocr Pathol 2015; 26(2): 95-103.
[http://dx.doi.org/10.1007/s12022-015-9362-y] [PMID: 25762503]
[14]
Burrack AL, Martinov T, Fife BT, Fife BTT. Cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabetes. Front Endocrinol (Lausanne) 2017; 8: 343.
[http://dx.doi.org/10.3389/fendo.2017.00343] [PMID: 29259578]
[15]
Domínguez-Bendala J, Lanzoni G, Inverardi L, Ricordi C. Concise review: Mesenchymal stem cells for diabetes. Stem Cells Transl Med 2012; 59-63.
[http://dx.doi.org/10.5966/sctm.2011-0017] [PMID: 2319764]
[16]
Fiorina P, Voltarelli J, Zavazava N, et al. Immunological applications of stem cells in type 1 diabetes. Endocr Rev 2011; 32(6): 725-54.
[http://dx.doi.org/10.1210/er.2011-0008] [PMID: 21862682]
[17]
Peng B, Dubey NK, Mishra VK, et al. Review article addressing stem cell therapeutic approaches in pathobiology of diabetes and its complications. J Diabetes Res 2018; 2018: 7806435.
[http://dx.doi.org/10.1155/2018/7806435] [PMID: 30046616]
[18]
Muzes G, Sipos F. Issues and opportunities of stem cell therapy in autoimmune disease. West J Stem Cells 2019; 11(4): 212-21.
[19]
Nojehdehi S, Soudi S, Hesampour A, Rasouli S, Soleimani. M, Hashemi SM. Immunomodulatory effects of mesenchymal stem cell - derived exosomes on experimental type ‐ 1 autoimmune diabetes. J Cell Biochem 2018; 119(11): 9433-43.
[http://dx.doi.org/10.1002/jcb.27260] [PMID: 30074271]
[20]
Schroeder IS. Potential of pluripotent stem cells for diabetes therapy. Curr Diab Rep 2012; 12(5): 490-8.
[http://dx.doi.org/10.1007/s11892-012-0292-5] [PMID: 22753002]
[21]
Lin H, Chan T, Fu R, et al. Review applicability of adipose-derived stem cells in type 1 diabetes mellitus. Cell Transplant 2015; 24(3): 521-32.
[http://dx.doi.org/10.3727/096368915X686977] [PMID: 25621468]
[22]
Li T, Xia M, Gao Y, Chen Y, Xu Y. Human umbilical cord mesenchymal stem cells: An overview of their potential in cell-based therapy. Expert Opin Biol Ther 2015; 15(9): 1293-306.
[http://dx.doi.org/10.1517/14712598.2015.1051528] [PMID: 26067213]
[23]
Haller MJ, Viener HL, Wasserfall C, Brusko T, Atkinson MA, Schatz DA. Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol 2008; 36(6): 710-5.
[http://dx.doi.org/10.1016/j.exphem.2008.01.009] [PMID: 18358588]
[24]
Sarina , Li DF, Feng ZQ Du J, et al. Mechanism of placenta damage in gestational diabetes mellitus by TXNIP of patient samples and gene functional research in cell line. Diabetes Ther 2019; 10(6): 2265-88.
[http://dx.doi.org/10.1007/s13300-019-00713-z] [PMID: 31654346]
[25]
Stiner R, Alexander M, Liu G, et al. Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes. Cell Tissue Res 2019; 378(2): 155-62.
[http://dx.doi.org/10.1007/s00441-019-03046-2] [PMID: 31209568]
[26]
Han MX, Craig ME. Research using autologous cord blood - time for a policy change. Med J Aust 2013; 199(4): 288-99.
[http://dx.doi.org/10.5694/mja12.10835] [PMID: 23984789]
[27]
Reddi AS, Kuppasani K, Ende N. Human umbilical cord blood as an emerging stem cell therapy for diabetes mellitus. Curr Stem Cell Res Ther 2010; 5(4): 356-61.
[http://dx.doi.org/10.2174/157488810793351668] [PMID: 20528762]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy