Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

The Insights on Why Diabetes Prevalence May Increase Amid or Post COVID-19 Pandemic

Author(s): Ntethelelo Sibiya*, Nomusa Mzimela, Bonisiwe Mbatha, Phikelelani Ngubane and Andile Khathi

Volume 19, Issue 4, 2023

Published on: 14 June, 2022

Article ID: e110422203401 Pages: 9

DOI: 10.2174/1573399818666220411122345

Price: $65

conference banner
Abstract

Background: Diabetes mellitus and prediabetes have been shown to be associated with high rates of developing severe COVID 19 complications resulting in morbidity and mortality. Emerging reports suggest that COVID 19 is associated with glycaemic control aberrations, although the extent is not clear at present. Accordingly, in this review, the efforts are directed to shed light on why we can anticipate an increase in diabetes cases amid or post-COVID 19 pandemic.

Methods: Articles reviewed were identified using the Google Scholar database, and the search was done using the English language.

Results: Previous studies have shown that viral inflammation triggers insulin resistance, which can progress to overt diabetes. SARS-CoV-2 has also been shown to cause acute pancreatitis, which can increase the risk of developing diabetes mellitus. The control of the COVID 19 pandemic partly relied on non-pharmaceutical measures, which included lockdowns. This resulted in a lack of physical activity and unhealthy eating behaviour, which could contribute to obesity and, ultimately, insulin resistance.

Conclusion: While no concrete data has been established on the possibility of seeing an increase in diabetes prevalence due to COVID 19, studies are necessary to establish the link. Despite the unavailability of data at present, we suggest that frequent screening of diabetes and prediabetes should be encouraged, especially in those individuals with a history of COVID 19 infection.

Keywords: COVID 19, diabetes, insulin resistance, inflammation, prevalence, SARS-CoV-2.

[1]
Belle T, Coppieters K, Herrath M. Type 1 diabetes: Aetiology, immunology and therapeutic strategies. American Physiological Society 2001; 59: 79-118.
[2]
Fazeli Farsani S, van der Aa MP, van der Vorst MM, Knibbe CA, de Boer A. Global trends in the incidence and prevalence of type 2 diabetes in children and adolescents: A systematic review and evaluation of methodological approaches. Diabetologia 2013; 56(7): 1471-88.
[http://dx.doi.org/10.1007/s00125-013-2915-z] [PMID: 23677041]
[3]
Abegunde DO, Mathers CD, Adam T, Ortegon M, Strong K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet 2007; 370(9603): 1929-38.
[http://dx.doi.org/10.1016/S0140-6736(07)61696-1] [PMID: 18063029]
[4]
Colagiuri S. Epidemiology of prediabetes. Med Clin North Am 2011; 95(2): 299-307. vii.
[http://dx.doi.org/10.1016/j.mcna.2010.11.003] [PMID: 21281834]
[5]
Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat Rev Endocrinol 2021; 17(1): 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[6]
Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect 2020; 81(6): e4-6.
[http://dx.doi.org/10.1016/j.jinf.2020.08.029] [PMID: 32853602]
[7]
Kiernan K, MacIver NJ. Viral infection “interferes” with glucose tolerance. Immunity 2018; 49(1): 6-8.
[http://dx.doi.org/10.1016/j.immuni.2018.06.013] [PMID: 30021147]
[8]
Liu Y, Ho RCM, Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: A meta-analysis and meta-regression. J Affect Disord 2012; 139(3): 230-9.
[http://dx.doi.org/10.1016/j.jad.2011.08.003] [PMID: 21872339]
[9]
Steinberg GR, Michell BJ, van Denderen BJ, et al. Tumor necrosis factor α-induced skeletal muscle insulin resistance involves suppres-sion of AMP-kinase signaling. Cell Metab 2006; 4(6): 465-74.
[http://dx.doi.org/10.1016/j.cmet.2006.11.005] [PMID: 17141630]
[10]
Bhaskar S, Sinha A, Banach M, et al. Cytokine storm in COVID 19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM consortium position paper. Front Immunol 2020; 11: 1648.
[http://dx.doi.org/10.3389/fimmu.2020.01648] [PMID: 32754159]
[11]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013; 36 (Suppl. 1): S67-74.
[http://dx.doi.org/10.2337/dc13-S067] [PMID: 23264425]
[12]
Abuissa H, Bel DS, O’keefe JH Jr. Strategies to prevent type 2 diabetes. Curr Med Res Opin 2005; 21(7): 1107-14.
[http://dx.doi.org/10.1185/030079905X50606] [PMID: 16004680]
[13]
Bender C, Rajendran S, von Herrath MG. New insights into the role of autoreactive CD8 T cells and cytokines in human type 1 diabetes. Front Endocrinol (Lausanne) 2021; 11: 606434.
[http://dx.doi.org/10.3389/fendo.2020.606434] [PMID: 33469446]
[14]
Stolar M. Glycemic control and complications in type 2 diabetes mellitus. Am J Med 2010; 123(3) (Suppl.): S3-S11.
[http://dx.doi.org/10.1016/j.amjmed.2009.12.004] [PMID: 20206730]
[15]
Sarafidis PA, Ruilope LM. Insulin resistance, hyperinsulinemia, and renal injury: Mechanisms and implications. Am J Nephrol 2006; 26(3): 232-44.
[http://dx.doi.org/10.1159/000093632] [PMID: 16733348]
[16]
Yang G, Li C, Gong Y, et al. Assessment of insulin resistance in subjects with normal glucose tolerance, hyperinsulinemia with normal blood glucose tolerance, impaired glucose tolerance, and newly diagnosed type 2 diabetes (prediabetes insulin resistance research). J Diabetes Res 2016; 2016: 9270768.
[http://dx.doi.org/10.1155/2016/9270768] [PMID: 26770991]
[17]
Pearson-Stuttard J, Blundell S, Harris T, Cook DG, Critchley J. Diabetes and infection: Assessing the association with glycaemic control in population-based studies. Lancet Diabetes Endocrinol 2016; 4(2): 148-58.
[http://dx.doi.org/10.1016/S2213-8587(15)00379-4] [PMID: 26656292]
[18]
Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12(3): 144-53.
[http://dx.doi.org/10.1038/nrendo.2015.216] [PMID: 26678809]
[19]
Hand TW, Cui W, Jung YW, et al. Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proc Natl Acad Sci USA 2010; 107(38): 16601-6.
[http://dx.doi.org/10.1073/pnas.1003457107] [PMID: 20823247]
[20]
Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol 2021; 93(1): 250-6.
[http://dx.doi.org/10.1002/jmv.26232] [PMID: 32592501]
[21]
Sinha P, Matthay MA, Calfee CS. Is a “cytokine storm” relevant to COVID 19? JAMA Intern Med 2020; 180(9): 1152-4.
[http://dx.doi.org/10.1001/jamainternmed.2020.3313] [PMID: 32602883]
[22]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID 19 cytokine storm; what we know so far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[23]
Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020; 39(7): 2085-94.
[http://dx.doi.org/10.1007/s10067-020-05190-5] [PMID: 32474885]
[24]
Kamenova P. Improvement of insulin sensitivity in patients with type 2 diabetes mellitus after oral administration of alpha-lipoic acid. Hormones (Athens) 2006; 5(4): 251-8.
[http://dx.doi.org/10.14310/horm.2002.11191] [PMID: 17178700]
[25]
Arner P. Insulin resistance in type 2 diabetes: Role of fatty acids. Diabetes Metab Res Rev 2002; 18(S2) (Suppl. 2): S5-9.
[http://dx.doi.org/10.1002/dmrr.254] [PMID: 11921432]
[26]
Martins AR, Nachbar RT, Gorjao R, et al. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: Importance of the mitochondrial function. Lipids Health Dis 2012; 11(1): 30.
[http://dx.doi.org/10.1186/1476-511X-11-30] [PMID: 22360800]
[27]
Mo J, Zhou Y, Yang R, et al. Ginsenoside Rg1 ameliorates palmitic acid-induced insulin resistance in HepG2 cells in association with modulating Akt and JNK activity. Pharmacol Rep 2019; 71(6): 1160-7.
[http://dx.doi.org/10.1016/j.pharep.2019.07.004] [PMID: 31675670]
[28]
Stafeev IS, Michurina SS, Podkuychenko NV, Vorotnikov AV, Menshikov MY, Parfyonova YV. Interleukin-4 restores insulin sensitivity in lipid-induced insulin-resistant adipocytes. Biochemistry (Mosc) 2018; 83(5): 498-506.
[http://dx.doi.org/10.1134/S0006297918050036] [PMID: 29738684]
[29]
Pardo V, González-Rodríguez Á, Muntané J, Kozma SC, Valverde ÁM. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection. Food Chem Toxicol 2015; 80: 298-309.
[http://dx.doi.org/10.1016/j.fct.2015.03.029] [PMID: 25846498]
[30]
Mayans L. Metabolic syndrome: Insulin resistance and prediabetes. FP Essent 2015; 435: 11-6.
[PMID: 26280340]
[31]
Prabhakar PK. Pathophysiology of secondary complications of diabetes mellitus. Asian J Pharm Clin Res 2016; 9(1): 32-6.
[32]
Mattson MP. Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer’s disease. J Neurovirol 2002; 8(6): 539-50.
[http://dx.doi.org/10.1080/13550280290100978] [PMID: 12476348]
[33]
Chen Z, Yu R, Xiong Y, Du F, Zhu S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids Health Dis 2017; 16(1): 203.
[http://dx.doi.org/10.1186/s12944-017-0572-9] [PMID: 29037210]
[34]
Elenkov IJ, Iezzoni DG, Daly A, Harris AG, Chrousos GP. Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation 2005; 12(5): 255-69.
[http://dx.doi.org/10.1159/000087104] [PMID: 16166805]
[35]
Talukdar S, Oh DY, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 2012; 18(9): 1407-12.
[http://dx.doi.org/10.1038/nm.2885] [PMID: 22863787]
[36]
Mlinar B, Marc J, Janež A, Pfeifer M. Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 2007; 375(1-2): 20-35.
[http://dx.doi.org/10.1016/j.cca.2006.07.005] [PMID: 16956601]
[37]
Cetraro Catter P. The Role of NF-κB in ER stress and its pathological implications. Bachelors Thesus ub Biotechnology. Universitat Politecnica de Valencia. 2022.
[38]
Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 2010; 314(1): 1-16.
[http://dx.doi.org/10.1016/j.mce.2009.07.031] [PMID: 19682539]
[39]
Romero-Gómez M. Insulin resistance and hepatitis C. World J Gastroenterol 2006; 12(44): 7075-80.
[http://dx.doi.org/10.3748/wjg.v12.i44.7075] [PMID: 17131467]
[40]
Kaddai V, Negro F. Current understanding of insulin resistance in hepatitis C. Expert Rev Gastroenterol Hepatol 2011; 5(4): 503-16.
[http://dx.doi.org/10.1586/egh.11.43] [PMID: 21780897]
[41]
Šestan M, Marinović S, Kavazović I, et al. Virus-induced interferon-γ causes insulin resistance in skeletal muscle and derails glycemic control in obesity. Immunity 2018; 49(1): 164-177.e6.
[http://dx.doi.org/10.1016/j.immuni.2018.05.005] [PMID: 29958802]
[42]
Poustchi H, Negro F, Hui J, et al. Insulin resistance and response to therapy in patients infected with chronic hepatitis C virus genotypes 2 and 3. J Hepatol 2008; 48(1): 28-34.
[http://dx.doi.org/10.1016/j.jhep.2007.07.026] [PMID: 17977612]
[43]
Desbois AC, Cacoub P. Diabetes mellitus, insulin resistance and hepatitis C virus infection: A contemporary review. World J Gastroenterol 2017; 23(9): 1697-711.
[http://dx.doi.org/10.3748/wjg.v23.i9.1697] [PMID: 28321170]
[44]
Dhanireddy S, Altemeier WA, Matute-Bello G, et al. Mechanical ventilation induces inflammation, lung injury, and extra-pulmonary organ dysfunction in experimental pneumonia. Lab Invest 2006; 86(8): 790-9.
[http://dx.doi.org/10.1038/labinvest.3700440] [PMID: 16855596]
[45]
Moradian N, Gouravani M, Salehi MA, et al. Cytokine release syndrome: Inhibition of pro-inflammatory cytokines as a solution for reducing COVID-19 mortality. Eur Cytokine Netw 2020; 31(3): 81-93.
[http://dx.doi.org/10.1684/ecn.2020.0451] [PMID: 33361013]
[46]
Rubino F, Amiel SA, Zimmet P, et al. New-onset diabetes in COVID 19. N Engl J Med 2020; 383(8): 789-90.
[http://dx.doi.org/10.1056/NEJMc2018688] [PMID: 32530585]
[47]
Bloomgarden ZT. Diabetes and COVID-19. J Diabetes 2020; 12(4): 347-8.
[http://dx.doi.org/10.1111/1753-0407.13027] [PMID: 32162476]
[48]
Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr 2020; 14(3): 211-2.
[http://dx.doi.org/10.1016/j.dsx.2020.03.002] [PMID: 32172175]
[49]
Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020; 8(6): 546-50.
[http://dx.doi.org/10.1016/S2213-8587(20)30152-2] [PMID: 32334646]
[50]
Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res Clin Pract 2020; 164: 108214.
[http://dx.doi.org/10.1016/j.diabres.2020.108214] [PMID: 32416121]
[51]
Mukherjee S, Banerjee O, Singh S, Maji BK. COVID 19 could trigger global diabetes burden - A hypothesis. Diabetes Metab Syndr 2020; 14(5): 963-4.
[http://dx.doi.org/10.1016/j.dsx.2020.06.049] [PMID: 32604015]
[52]
Accili D. Can COVID-19 cause diabetes? Nat Metab 2021; 3(2): 123-5.
[http://dx.doi.org/10.1038/s42255-020-00339-7] [PMID: 33432203]
[53]
Hollstein T, Schulte DM, Schulz J, et al. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: A case report. Nat Metab 2020; 2(10): 1021-4.
[http://dx.doi.org/10.1038/s42255-020-00281-8] [PMID: 32879473]
[54]
Drucker DJ. Diabetes, obesity, metabolism, and SARS-CoV-2 infection: The end of the beginning. Cell Metab 2021; 33(3): 479-98.
[http://dx.doi.org/10.1016/j.cmet.2021.01.016] [PMID: 33529600]
[55]
Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (COVID-19). Diabetes Metab Res Rev 2021; 37(2): e3377.
[http://dx.doi.org/10.1002/dmrr.3377] [PMID: 32588943]
[56]
Seow CJ, Wei Choon Koh A, Lian JX, Dalan R, Boehm BO. Non autoimmune type 1B diabetes after mild COVID-19: Report of three cases. Diabetes Metab Res Rev 2021; 37(5): e3438.
[http://dx.doi.org/10.1002/dmrr.3438] [PMID: 33534177]
[57]
Kamrath C, Mönkemöller K, Biester T, et al. Ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes during the COVID 19 pandemic in Germany. JAMA 2020; 324(8): 801-4.
[http://dx.doi.org/10.1001/jama.2020.13445] [PMID: 32702751]
[58]
Singh AK, Singh R. Hyperglycemia without diabetes and new-onset diabetes are both associated with poorer outcomes in COVID-19. Diabetes Res Clin Pract 2020; 167: 108382.
[http://dx.doi.org/10.1016/j.diabres.2020.108382] [PMID: 32853686]
[59]
Chen J, Wu C, Wang X, Yu J, Sun Z. The impact of COVID 19 on blood glucose: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2020; 11: 574541.
[http://dx.doi.org/10.3389/fendo.2020.574541] [PMID: 33123093]
[60]
Fignani D, Licata G, Brusco N, et al. SARS-CoV-2 receptor angiotensin I-converting enzyme type 2 (ACE2) is expressed in human pancreatic β-cells and in the human pancreas microvasculature. Front Endocrinol (Lausanne) 2020; 11: 596898.
[http://dx.doi.org/10.3389/fendo.2020.596898] [PMID: 33281748]
[61]
Anand ER, Major C, Pickering O, Nelson M. Acute pancreatitis in a COVID-19 patient. Br J Surg 2020; 107(7): e182-2.
[http://dx.doi.org/10.1002/bjs.11657] [PMID: 32339257]
[62]
Cheung S, Delgado Fuentes A, Fetterman AD. Recurrent acute pancreatitis in a patient with COVID 19 infection. Am J Case Rep 2020; 21: e927076-1.
[http://dx.doi.org/10.12659/AJCR.927076] [PMID: 32833954]
[63]
Kusmartseva I, Wu W, Syed F, et al. Expression of SARS-CoV-2 entry factors in the pancreas of normal organ donors and individuals with COVID 19. Cell Metab 2020; 32(6): 1041-1051.e6.
[http://dx.doi.org/10.1016/j.cmet.2020.11.005] [PMID: 33207244]
[64]
Müller JA, Groß R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 2021; 3(2): 149-65.
[http://dx.doi.org/10.1038/s42255-021-00347-1] [PMID: 33536639]
[65]
Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol 2020; 18(9): 2128-2130.e2.
[http://dx.doi.org/10.1016/j.cgh.2020.04.040] [PMID: 32334082]
[66]
Zhang B, Dong C, Li S, Song X, Wei W, Liu L. Triglyceride to high-density lipoprotein cholesterol ratio is an important determinant of cardiovascular risk and poor prognosis in coronavirus disease-19: A retrospective case series study. Diabetes Metab Syndr Obes 2020; 13: 3925-36.
[http://dx.doi.org/10.2147/DMSO.S268992] [PMID: 33122929]
[67]
Astrup A. Healthy lifestyles in Europe: Prevention of obesity and type II diabetes by diet and physical activity. Public Health Nutr 2001; 4(2B): 499-515.
[http://dx.doi.org/10.1079/PHN2001136] [PMID: 11683545]
[68]
Robinson E, Boyland E, Chisholm A, et al. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite 2021; 156: 104853.
[http://dx.doi.org/10.1016/j.appet.2020.104853] [PMID: 33038479]
[69]
Poelman MP, Gillebaart M, Schlinkert C, et al. Eating behavior and food purchases during the COVID-19 lockdown: A crosssectional study among adults in the Netherlands. Appetite 2021; 157: 105002.
[http://dx.doi.org/10.1016/j.appet.2020.105002] [PMID: 33068668]
[70]
Cecchetto C, Aiello M, Gentili C, Ionta S, Osimo SA. Increased emotional eating during COVID-19 associated with lockdown, psychological and social distress. Appetite 2021; 160: 105122.
[http://dx.doi.org/10.1016/j.appet.2021.105122] [PMID: 33453336]
[71]
Reilly JJ, El-Hamdouchi A, Diouf A, Monyeki A, Somda SA. Determining the worldwide prevalence of obesity. Lancet 2018; 391(10132): 1773-4.
[http://dx.doi.org/10.1016/S0140-6736(18)30794-3] [PMID: 29739565]
[72]
Marchitelli S, Mazza C, Lenzi A, Ricci E, Gnessi L, Roma P. Weight gain in a sample of patients affected by overweight/obesity with and without a psychiatric diagnosis during the COVID 19 lockdown. Nutrients 2020; 12(11): 3525.
[http://dx.doi.org/10.3390/nu12113525] [PMID: 33207742]
[73]
Sánchez E, Lecube A, Bellido D, Monereo S, Malagón MM, Tinahones FJ. Leading factors for weight gain during COVID 19 lockdown in a Spanish population: A cross-sectional study. Nutrients 2021; 13(3): 894.
[http://dx.doi.org/10.3390/nu13030894] [PMID: 33801989]
[74]
Gupta S, Hayek SS, Wang W, et al. Factors associated with death in critically ill patients with coronavirus disease 2019 in the US. JAMA Intern Med 2020; 180(11): 1436-47.
[http://dx.doi.org/10.1001/jamainternmed.2020.3596] [PMID: 32667668]
[75]
Masuo K, Rakugi H, Ogihara T, Esler MD, Lambert GW. Cardiovascular and renal complications of type 2 diabetes in obesity: Role of sympathetic nerve activity and insulin resistance. Curr Diabetes Rev 2010; 6(2): 58-67.
[http://dx.doi.org/10.2174/157339910790909396] [PMID: 20034369]
[76]
Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 2006; 55(6): 1832-9.
[http://dx.doi.org/10.2337/db05-1620] [PMID: 16731850]
[77]
Kruger HS, Puoane T, Senekal M, van der Merwe MT. Obesity in South Africa: Challenges for government and health professionals. Public Health Nutr 2005; 8(5): 491-500.
[http://dx.doi.org/10.1079/PHN2005785] [PMID: 16153330]
[78]
Tremblay MS, Katzmarzyk PT, Willms JD. Temporal trends in overweight and obesity in Canada, 1981-1996. Int J Obes 2002; 26(4): 538-43.
[http://dx.doi.org/10.1038/sj.ijo.0801923] [PMID: 12075581]
[79]
Karatas S, Yesim T, Beysel S. Impact of lockdown COVID-19 on metabolic control in type 2 diabetes mellitus and healthy people. Prim Care Diabetes 2021; 15(3): 424-7.
[http://dx.doi.org/10.1016/j.pcd.2021.01.003] [PMID: 33441263]
[80]
Ruiz-Roso MB, Knott-Torcal C, Matilla-Escalante DC, et al. COVID 19 lockdown and changes of the dietary pattern and physical activity habits in a cohort of patients with type 2 diabetes mellitus. Nutrients 2020; 12(8): 2327.
[http://dx.doi.org/10.3390/nu12082327] [PMID: 32759636]
[81]
D’Onofrio L, Pieralice S, Maddaloni E, et al. Effects of the COVID-19 lockdown on glycaemic control in subjects with type 2 diabetes: The glycalock study. Diabetes Obes Metab 2021; 23(7): 1624-30.
[http://dx.doi.org/10.1111/dom.14380] [PMID: 33764666]
[82]
Xiong J, Lipsitz O, Nasri F, et al. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J Affect Disord 2020; 277: 55-64.
[http://dx.doi.org/10.1016/j.jad.2020.08.001] [PMID: 32799105]
[83]
Heitzman J. Impact of COVID-19 pandemic on mental health. Psychiatr Pol 2020; 54(2): 187-98.
[http://dx.doi.org/10.12740/PP/120373] [PMID: 32772053]
[84]
Fofana NK, Latif F, Sarfraz S, Bilal , Bashir MF, Komal B. Fear and agony of the pandemic leading to stress and mental illness: An emerging crisis in the novel coronavirus (COVID-19) outbreak. Psychiatry Res 2020; 291: 113230.
[http://dx.doi.org/10.1016/j.psychres.2020.113230] [PMID: 32593067]
[85]
Hertz-Palmor N, Moore TM, Gothelf D, et al. Association among income loss, financial strain and depressive symptoms during COVID-19: Evidence from two longitudinal studies. J Affect Disord 2021; 291: 1-8.
[http://dx.doi.org/10.1016/j.jad.2021.04.054] [PMID: 34022550]
[86]
Nyashanu M, Simbanegavi P, Gibson L. Exploring the impact of COVID-19 pandemic lockdown on informal settlements in Tshwane Gauteng Province, South Africa. Glob Public Health 2020; 15(10): 1443-53.
[http://dx.doi.org/10.1080/17441692.2020.1805787] [PMID: 32780633]
[87]
Guilliams TG, Edwards L. Chronic stress and the HPA axis. Standard 2010; 9(2): 1-12.
[88]
Miller DB, O’Callaghan JP. Neuroendocrine aspects of the response to stress. Metabolism 2002; 51(6) (Suppl. 1): 5-10.
[http://dx.doi.org/10.1053/meta.2002.33184] [PMID: 12040534]
[89]
Khani S, Tayek JA. Cortisol increases gluconeogenesis in humans: Its role in the metabolic syndrome. Clin Sci (Lond) 2001; 101(6): 739-47.
[http://dx.doi.org/10.1042/CS20010180] [PMID: 11724664]
[90]
Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 2003; 285(4): E685-92.
[http://dx.doi.org/10.1152/ajpendo.00253.2003] [PMID: 12959935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy