Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Editorial

When the Mind Comes to Live Inside the Body: The Ontogeny of the Perceptual Control Clock

Author(s): Sari Goldstein Ferber*, Ronny Geva and Aron Weller

Volume 21, Issue 1, 2023

Published on: 27 September, 2022

Page: [13 - 21] Pages: 9

DOI: 10.2174/1570159X20666220411095508

Open Access Journals Promotions 2
Abstract

In this editorial, we discuss the neurobiological processes underlying the early emergence of awareness that we term the “when” and “how” the mind comes to live inside the body. We describe an accumulative developmental process starting during embryonic life and continuing to fetal and postnatal development, of coupling of heart rate, body movements, and sleep states on the behavioral level with underlying mechanisms on the structural, functional, cellular, and molecular levels. A developmental perspective is proposed based on Perceptual Control Theory (PCT). This includes a developing sequence of modules starting from early sensing of neural intensities to early manifestation of human mindful capacities. We also address pharmacological treatments administered to preterm infants, which may interfere with this development, and highlight the need to consider this potential “side effect” of current pharmaceuticals when developing novel pharmacogenomic treatments.

Keywords: Fetal development, coupling, thalamus, brainstem, epigenomics, preterm infants.

[1]
Rueda, M.R.; Pozuelos, J.P.; Cómbita, L.M. Cognitive neuroscience of attention. AIMS Neurosci., 2015, 2(4), 183-202.
[2]
Neta, M.; Nelson, S.M.; Petersen, S.E. Dorsal anterior cingulate, medial superior frontal cortex, and anterior insula show performance reporting-related late task control signals. Cereb. Cortex, 2017, 27(3), 2154-2165.
[PMID: 26972752]
[3]
Posner, M.I.; Rothbart, M.K.; Voelker, P. Developing brain networks of attention. Curr. Opin. Pediatr., 2016, 28(6), 720-724.
[http://dx.doi.org/10.1097/MOP.0000000000000413] [PMID: 27552068]
[4]
Posner, M.I.; Rothbart, M.K.; Sheese, B.E.; Voelker, P. Developing attention: Behavioral and brain mechanisms. Adv. Neurosci. (Hindawi), 2014, 2014, 405094.
[http://dx.doi.org/10.1155/2014/405094] [PMID: 25110757]
[5]
Schmidt, E.L.; Burge, W.; Visscher, K.M.; Ross, L.A. Cortical thickness in frontoparietal and cingulo-opercular networks predicts executive function performance in older adults. Neuropsychol., 2016, 30(3), 322-331.
[http://dx.doi.org/10.1037/neu0000242] [PMID: 26460586]
[6]
Geva, R.; Gardner, J.M.; Karmel, B.Z. Feeding-based arousal effects on visual recognition memory in early infancy. Dev. Psychol., 1999, 35(3), 640-650.
[http://dx.doi.org/10.1037/0012-1649.35.3.640] [PMID: 10380856]
[7]
Conejero, Á; Guerra, S.; Abundis-Gutiérrez, A.; Rueda, M.R. Frontal theta activation associated with error detection in toddlers: Influence of familial socioeconomic status. Dev. Sci., 2018, 21(1), e12494.
[http://dx.doi.org/10.1111/desc.12494] [PMID: 27981736]
[8]
Judaš, M.; Sedmak, G.; Kostović, I. The significance of the subplate for evolution and developmental plasticity of the human brain. Front. Hum. Neurosci., 2013, 7(JUL), 423.
[PMID: 23935575]
[9]
Kostović, I.; Judaš, M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr., 2010, 99(8), 1119-1127.
[http://dx.doi.org/10.1111/j.1651-2227.2010.01811.x] [PMID: 20367617]
[10]
Lagercrantz, H. Infant brain development: Formation of the mind and the emergence of consciousness; Springer International Publishing, 2016.
[http://dx.doi.org/10.1007/978-3-319-44845-9]
[11]
Kurjak, A.; Stanojević, M.; Salihagić-Kadić, A.; Spalldi Barišić, L.; Jakovljević, M. Is four-dimensional (4D) ultrasound entering a new field of Fetal Psychiatry? Psychiatr. Danub., 2019, 31(2), 133-140.
[http://dx.doi.org/10.24869/psyd.2019.133] [PMID: 31291216]
[12]
Kostovic, I.; Vasung, L. Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin. Perinatol., 2009, 33(4), 220-233.
[http://dx.doi.org/10.1053/j.semperi.2009.04.003] [PMID: 19631083]
[13]
Vasung, L.; Raguz, M.; Kostovic, I.; Takahashi, E. Spatiotemporal relationship of brain pathways during human fetal development using high-angular resolution diffusion MR imaging and histology. Front. Neurosci., 2017, 11(JUL), 348.
[http://dx.doi.org/10.3389/fnins.2017.00348] [PMID: 28744187]
[14]
Powers, W.T. Making Sense of Behavior: The Meaning of Control; Benchmark: New Canaan, CT, 1998.
[15]
Mansell, W.; Marken, R.S. The origins and future of control theory in psychology. Rev. Gen. Psychol., 2015, 19(4), 425-430.
[http://dx.doi.org/10.1037/gpr0000057]
[16]
Rochat, P. The ontogeny of human self-consciousness. Curr. Dir. Psychol. Sci., 2018, 27(5), 345-350.
[http://dx.doi.org/10.1177/0963721418760236]
[17]
Orr, E.; Geva, R. Symbolic play and language development. Infant Behav. Dev., 2015, 38, 147-161.
[http://dx.doi.org/10.1016/j.infbeh.2015.01.002] [PMID: 25658200]
[18]
Thomason, M.E.; Grove, L.E.; Lozon, T.A., Jr; Vila, A.M.; Ye, Y.; Nye, M.J.; Manning, J.H.; Pappas, A.; Hernandez-Andrade, E.; Yeo, L.; Mody, S.; Berman, S.; Hassan, S.S.; Romero, R. Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Dev. Cogn. Neurosci., 2015, 11, 96-104.
[http://dx.doi.org/10.1016/j.dcn.2014.09.001] [PMID: 25284273]
[19]
Partanen, E.; Kujala, T.; Tervaniemi, M.; Huotilainen, M. Prenatal music exposure induces long-term neural effects. PLoS One, 2013, 8(10), e78946.
[http://dx.doi.org/10.1371/journal.pone.0078946] [PMID: 24205353]
[20]
Huotilainen, M. A new dimension on foetal language learning. Acta Paediatr., 2013, 102(2), 102-103.
[http://dx.doi.org/10.1111/apa.12122] [PMID: 23278627]
[21]
Anderson, A.L.; Thomason, M.E. Functional plasticity before the cradle: A review of neural functional imaging in the human fetus. Neurosci. Biobehav. Rev., 2013, 37(9)(9 Pt B), 2220-2232.
[http://dx.doi.org/10.1016/j.neubiorev.2013.03.013] [PMID: 23542738]
[22]
Tsuneishi, S.; Casaer, P. Effects of preterm extrauterine visual experience on the development of the human visual system: A flash VEP study. Dev. Med. Child Neurol., 2000, 42(10), 663-668.
[http://dx.doi.org/10.1017/S0012162200001225] [PMID: 11085293]
[23]
Goldstein Ferber, S.; Weller, A.; Ben-Shachar, M.; Klinger, G.; Geva, R. Development of the Ontogenetic Self-Regulation Clock. Int. J. Mol. Sci., 2022, 23(2), 993.
[http://dx.doi.org/10.3390/ijms23020993] [PMID: 35055184]
[24]
Jaimes, C.; Machado-Rivas, F.; Afacan, O.; Khan, S.; Marami, B.; Ortinau, C.M.; Rollins, C.K.; Velasco-Annis, C.; Warfield, S.K.; Gholipour, A. In vivo characterization of emerging white matter microstructure in the fetal brain in the third trimester. Hum. Brain Mapp., 2020, 41(12), 3177-3185.
[http://dx.doi.org/10.1002/hbm.25006] [PMID: 32374063]
[25]
Hooker, J.D.; Khan, M.A.; Farkas, A.B.; Lirette, S.T.; Joyner, D.A.; Gordy, D.P.; Storrs, J.M.; Roda, M.S.; Bofill, J.A.; Smith, A.D.; James, J.R. Third-trimester in utero fetal brain diffusion tensor imaging fiber tractography: A prospective longitudinal characterization of normal white matter tract development. Pediatr. Radiol., 2020, 50(7), 973-983.
[http://dx.doi.org/10.1007/s00247-020-04639-8] [PMID: 32399686]
[26]
Brade, T.; Pane, L.S.; Moretti, A.; Chien, K.R.; Laugwitz, K.L. Embryonic heart progenitors and cardiogenesis. Cold Spring Harb. Perspect. Med., 2013, 3(10), a013847.
[http://dx.doi.org/10.1101/cshperspect.a013847] [PMID: 24086063]
[27]
Burton, G.J.; Jauniaux, E. Development of the human placenta and fetal heart: Synergic or independent? Front. Physiol., 2018, 9(APR), 373.
[http://dx.doi.org/10.3389/fphys.2018.00373] [PMID: 29706899]
[28]
Einspieler, C.; Prayer, D.; Marschik, P.B. Fetal movements: The origin of human behaviour. Dev. Med. Child Neurol., 2021, 63(10), 1142-1148.
[http://dx.doi.org/10.1111/dmcn.14918] [PMID: 33973235]
[29]
Lüchinger, A.B.; Hadders-Algra, M.; van Kan, C.M.; de Vries, J.I.P. Fetal onset of general movements. Pediatr. Res., 2008, 63(2), 191-195.
[http://dx.doi.org/10.1203/PDR.0b013e31815ed03e] [PMID: 18091359]
[30]
Graven, S.N.; Browne, J.V. Sleep and brain development: The critical role of sleep in fetal and early neonatal brain development. Newborn Infant Nurs. Rev., 2008, 8(4), 173-179.
[http://dx.doi.org/10.1053/j.nainr.2008.10.008]
[31]
Brändle,J.; Preissl, H.; Draganova, R.; Ortiz, E.; Kagan, K.O.; Abele, H.; Brucker, S.Y.; Kiefer-Schmidt, I. Heart rate variability parameters and fetal movement complement fetal behavioral states detection via magnetography to monitor neurovegetative development. Front. Hum. Neurosci., 2015, 9, 147.
[http://dx.doi.org/10.3389/fnhum.2015.00147] [PMID: 25904855]
[32]
Anders, T.F.; Roffwarg, H.P. The relationship between maternal and neonatal sleep. Neuropadiatrie, 1973, 4(2), 151-161.
[http://dx.doi.org/10.1055/s-0028-1091736] [PMID: 4352213]
[33]
Peirano, P. Algarín, C.; Uauy, R. Sleep-wake states and their regulatory mechanisms throughout early human development. J. Pediatr., 2003, 143(4)(Suppl.), S70-S79.
[http://dx.doi.org/10.1067/S0022-3476(03)00404-9] [PMID: 14597916]
[34]
Kostović, I.; Sedmak, G. Judaš, M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage, 2019, 188, 743-773.
[http://dx.doi.org/10.1016/j.neuroimage.2018.12.043] [PMID: 30594683]
[35]
Flower, M.J. Neuromaturation of the human fetus. J. Med. Philos., 1985, 10(3), 237-251.
[http://dx.doi.org/10.1093/jmp/10.3.237] [PMID: 4045332]
[36]
Zizzo, A.R.; Kirkegaard, I.; Hansen, J.; Uldbjerg, N. Mølgaard, H. Fetal heart rate variability is affected by fetal movements: A systematic review. Front. Physiol., 2020, 11, 578898.
[http://dx.doi.org/10.3389/fphys.2020.578898] [PMID: 33101059]
[37]
Dalton, K.J.; Dawes, G.S.; Patrick, J.E. The autonomic nervous system and fetal heart rate variability. Am. J. Obstet. Gynecol., 1983, 146(4), 456-462.
[http://dx.doi.org/10.1016/0002-9378(83)90828-1] [PMID: 6859165]
[38]
Sachis, P.N.; Armstrong, D.L.; Becker, L.E.; Bryan, A.C. Myelination of the human vagus nerve from 24 weeks postconceptional age to adolescence. J. Neuropathol. Exp. Neurol., 1982, 41(4), 466-472.
[http://dx.doi.org/10.1097/00005072-198207000-00009] [PMID: 7086467]
[39]
Longin, E.; Gerstner, T.; Schaible, T.; Lenz, T. König, S. Maturation of the autonomic nervous system: Differences in heart rate variability in premature vs. term infants. J. Perinat. Med., 2006, 34(4), 303-308.
[http://dx.doi.org/10.1515/JPM.2006.058] [PMID: 16856820]
[40]
Visser, G.H.A.; Poelmann-Weesjes, G.; Cohen, T.M.N.; Bekedam, D.J. Fetal behavior at 30 to 32 weeks of gestation. Pediatr. Res., 1987, 22(6), 655-658.
[http://dx.doi.org/10.1203/00006450-198712000-00009] [PMID: 3431947]
[41]
Olson, L.; Boréus, L.O.; Seiger, A. Histochemical demonstration and mapping of 5-hydroxytryptamine- and catecholamine-containing neuron systems in the human fetal brain. Z. Anat. Entwicklungsgesch., 1973, 139(3), 259-282.
[http://dx.doi.org/10.1007/BF00519968] [PMID: 4707937]
[42]
Kostović, I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog. Neurobiol., 2020, 194, 101883.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101883] [PMID: 32659318]
[43]
Kostović, I.; Radoš, M.; Kostović-Srzentić, M.; Krsnik, Ž. Fundamentals of the development of connectivity in the human fetal brain in late gestation: From 24 weeks gestational age to term. J. Neuropathol. Exp. Neurol., 2021, 80(5), 393-414.
[http://dx.doi.org/10.1093/jnen/nlab024] [PMID: 33823016]
[44]
Bennett, S. A history of control engineering, 1930-1955; Peter Peregrinus, 1993.
[http://dx.doi.org/10.1049/PBCE047E]
[45]
Powers, W. Living control systems III: The fact of control; Williams & Company: Savannah, GA, 2008.
[46]
Mansell, W. The perceptual control model of psychopathology. Curr. Opin. Psychol., 2021, 41, 15-20.
[http://dx.doi.org/10.1016/j.copsyc.2021.01.008] [PMID: 33662864]
[47]
Carver, C.S.; Scheier, M.F. Control theory: A useful conceptual framework for personality-social, clinical, and health psychology. Psychol. Bull., 1982, 92(1), 111-135.
[http://dx.doi.org/10.1037/0033-2909.92.1.111] [PMID: 7134324]
[48]
Goldstein Ferber, S.; Als, H.; McAnulty, G.; Klinger, G.; Weller, A. Multi-level hypothalamic neuromodulation of self-regulation and cognition in preterm infants: Towards a control systems model. Compr Psychoneuroendocrinology., 2022, 9, 100109.
[http://dx.doi.org/10.1016/j.cpnec.2021.100109]
[49]
Mansell, W. An integrative control theory perspective on consciousness. Psychol. Rev., 2022.
[http://dx.doi.org/10.1037/rev0000384]
[50]
Plooij, F. The phylogeny, ontogeny, causation and function of regression periods explained by reorganizations of the hierarchy of perceptual control systems. In: The Interdisciplinary Handbook of Perceptual Control Theory: Living Control Systems IV; Mansell, W., Ed.; Academic Press, 2020; pp. 199-225.
[http://dx.doi.org/10.1016/B978-0-12-818948-1.00008-3]
[51]
Burstein, O.; Zevin, Z.; Geva, R. Preterm birth and the development of visual attention during the first 2 years of life: A systematic review and meta-analysis. JAMA Netw. Open, 2021, 4(3), e213687.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.3687] [PMID: 33783515]
[52]
Als, H. A synactive model of neonatal behavioral organization: Framework for the assessment of neurobehavioral development in the premature infant and for support of infants and parents in the neonatal intensive care environment. Phys. Occup. Ther. Pediatr., 1986, 6(3-4), 3-53.
[http://dx.doi.org/10.1080/J006v06n03_02]
[53]
Als, H. Toward a synactive theory of development: Promise for the assessment and support of infant individuality. Infant Ment. Health J., 1982, 3(4), 229-243.
[http://dx.doi.org/10.1002/1097-0355(198224)3:4<229:AID-IMHJ2280030405>3.0.CO;2-H]
[54]
Ferber, SG; Makhoul, IR The effect of skin-to-skin contact (Kangaroo Care) ahortly after birth on the neurobehavioral responses of the term newborn: A randomized, controlled trial. Pediatrics,2004, 113(4 I), 858-865.
[55]
Antsaklis, P.; Gao, Z. Control system design. The Electronics Engineers’ Handbook, 5th ed; McGraw-Hill: New York, 2005, pp. 19.1-19.30.
[56]
Dorf, R.C.; Bishop, R.H.; Columbus, B.; New, I.; San, Y.; Upper, F. Modern Control Systems; Pearson, 2011.
[57]
Robertson, R.J.J.; Glines, L.A.A. The Phantom Plateau returns. Percept. Mot. Skills, 1985, 61(1), 55-64.
[http://dx.doi.org/10.2466/pms.1985.61.1.55] [PMID: 4047889]
[58]
Powers, W.T. Comment on the “Phantom Plateau”. Percept. Mot. Skills, 1985, 61(1), 329-330.
[http://dx.doi.org/10.2466/pms.1985.61.1.329]
[59]
Kern, A. Understanding multivariable control: The missing metric: An improved understanding of the role of multivariable control in industrial process operations will lead to more cost-effective solutions and engage a wider circle of people in the process automati. Control Eng., 2020, 67(4), 26-28.
[60]
Dehorter, N.; Vinay, L.; Hammond, C.; Ben-Ari, Y. Timing of developmental sequences in different brain structures: Physiological and pathological implications. Eur. J. Neurosci., 2012, 35(12), 1846-1856.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08152.x] [PMID: 22708595]
[61]
Hartley, C.; Farmer, S.; Berthouze, L. Temporal ordering of input modulates connectivity formation in a developmental neuronal network model of the cortex. PLoS One, 2020, 15(1), e0226772.
[http://dx.doi.org/10.1371/journal.pone.0226772] [PMID: 31923200]
[62]
Fischi-Gómez, E.; Vasung, L.; Meskaldji, D.E.; Lazeyras, F.; Borradori-Tolsa, C.; Hagmann, P.; Barisnikov, K.; Thiran, J.P.; Hüppi, P.S. Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cereb. Cortex, 2015, 25(9), 2793-2805.
[http://dx.doi.org/10.1093/cercor/bhu073] [PMID: 24794920]
[63]
Tau, G.Z.; Peterson, B.S. Normal development of brain circuits. Neuropsychopharmacol, 2009, 35(1), 147-168.
[64]
Hillman, N.H.; Kallapur, S.G.; Jobe, A.H. Physiology of transition from intrauterine to extrauterine life. Clin. Perinatol., 2012, 39(4), 769-783.
[http://dx.doi.org/10.1016/j.clp.2012.09.009] [PMID: 23164177]
[65]
Moon, C.M.; Fifer, W.P. Evidence of transnatal auditory learning. J. Perinatol., 2000, 20(8 Pt 2), S37-S44.
[http://dx.doi.org/10.1038/sj.jp.7200448] [PMID: 11190699]
[66]
Carvalho, M.E.S.; de Miranda Justo, J.M.R.; Gratier, M.; da Silva, H.M.F.R. The impact of maternal voice on the fetus: A systematic review. Curr. Women s Heal Rev., 2018, 15(3), 196-206.
[67]
Coulon, M.; Guellai, B.; Streri, A. Recognition of unfamiliar talking faces at birth. Int. J. Behav. Dev., 2011, 35(3), 282-287.
[http://dx.doi.org/10.1177/0165025410396765]
[68]
Geva, R.; Feldman, R. A neurobiological model for the effects of early brainstem functioning on the development of behavior and emotion regulation in infants: Implications for prenatal and perinatal risk. J. Child Psychol. Psychiatry, 2008, 49(10), 1031-1041.
[http://dx.doi.org/10.1111/j.1469-7610.2008.01918.x] [PMID: 18771507]
[69]
Burstein, O.; Geva, R. The brainstem-informed autism framework: Early life neurobehavioral markers. Front. Integr. Neurosci., 2021, 15, 759614.
[70]
Hugues, P.; Vincent, P.; Sophie, F.; Antoine, G.; Patricia, F.; Patrick, P.; Alain, B.; Frédéric, R.; Jean-Claude, B. Autonomic maturation from birth to 2 years: normative values. Heliyon, 2019, 5(3), e01300.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01300]
[71]
Yiallourou, S.R.; Sands, S.A.; Walker, A.M.; Horne, R.S.C. Maturation of heart rate and blood pressure variability during sleep in term-born infants. Sleep, 2012, 35(2), 177-186.
[http://dx.doi.org/10.5665/sleep.1616]
[72]
Koutcherov, Y.; Mai, J.K.; Paxinos, G. Hypothalamus of the human fetus. J. Chem. Neuroanat., 2003, 26(4), 253-270.
[http://dx.doi.org/10.1016/j.jchemneu.2003.07.002]
[73]
Cheng, G.; Zhou, X.; Qu, J.; Ashwell, K.W.S.; Paxinos, G. Central vagal sensory and motor connections: human embryonic and fetal development. Auton. Neurosci., 2004, 114(1-2), 83-96.
[http://dx.doi.org/10.1016/j.autneu.2004.06.008]
[74]
DiPietro, J.A.; Hodgson, D.M.; Costigan, K.A.; Hilton, S.C.; Johnson, T.R.B. Fetal neurobehavioral development. Child Dev., 1996, 67(5), 2553-2567.
[PMID: 9022256]
[75]
Mulkey, S.B.; du Plessis, A.J. Autonomic nervous system development and its impact on neuropsychiatric outcome. Pediatr. Res., 2019, 85(2), 120-126.
[http://dx.doi.org/10.1038/s41390-018-0155-0]
[76]
Marco, C.; Francesco, C.; Alessandro, C.; Nicola, B.; Dario, B.; Francesco, C.; Carla, G. Corti, Andrea, M. Heart rate variability in the perinatal period: A critical and conceptual review. Front. Neurosci., 2020, 14.
[http://dx.doi.org/10.3389/fnins.2020.561186]
[77]
Schmidt, A.; Schukat-Talamazzini, E.G.; Zöllkau, J.; Pytlik, A.; Leibl, S.; Kumm, K. Universal characteristics of evolution and development are inherent in fetal autonomic brain maturation. Auton. Neurosci., 2018, 212, 32-41.
[http://dx.doi.org/10.1016/j.autneu.2018.02.004]
[78]
Dirk, H.; Florian, T.; Susan, J.; Samuel, N.; Otto, W.W.; Ekkehard, S.; Uwe, S. Fetal functional brain age assessed from universal developmental indices obtained from neuro-vegetative activity patterns. PLoS One, 2013, 8(9)
[http://dx.doi.org/10.1371/journal.pone.0074431]
[79]
Dirk, H.; Uwe, S.; Eva-Maria, K.; Alexander, S.; Otto, W.W.; Ekkehard, S.; Wolfgang, H.; Dietrich, H.W.G. Peter, van L. Validation of functional fetal autonomic brain age score fABAS in 5 min short recordings. Physiol. Meas., 2015, 36(11), 2369-2378.
[http://dx.doi.org/10.1088/0967-3334/36/11/2369]
[80]
Colleen, P.; Christa, E.; Toril, F.; Lars, A.; Michael, D.S.; Alexander, D.; Jeremy, D.M. Correlates of normal and abnormal general movements in infancy and long-term neurodevelopment of preterm infants: Insights from functional connectivity studies at term equivalence. J. Clin. Med., 2020, 9, 834.
[http://dx.doi.org/10.3390/jcm9030834]
[81]
Shuffrey, L.C.; Myers, M.M.; Odendaal, H.J.; Elliott, A.J.; du Plessis, C.; Groenewald, C.; Larry, B.; Jyoti, A.; David, J.N.; Joseph, R.; William, P.F. Fetal heart rate, heart rate variability, and heart rate/movement coupling in the Safe Passage Study. J. Perinatol., 2019, 39(5), 608-618.
[http://dx.doi.org/10.1038/s41372-019-0342-9]
[82]
Monk, C.; Myers, M.M.; Sloan, R.P.; Ellman, L.M.; Fifer, W.P. Effects of women’s stress-elicited physiological activity and chronic anxiety on fetal heart rate. J. Dev. Behav. Pediatr., 2003, 24(1), 32-38.
[http://dx.doi.org/10.1097/00004703-200302000-00008]
[83]
Monk, C.; Fifer, W.P.; Sloan, R.P. Myers, M.M.; Bagiella, E.; Ellman, L.; Hurtado, A. Physiologic responses to cognitive challenge during pregnancy: effects of task and repeat testing. Int. J. Psychophysiol., 2001, 40(2), 149-159.
[http://dx.doi.org/10.1016/s0167-8760(00)00158-6]
[84]
Zimmer, E.Z.; Fifer, W.P.; Kim, Y.I.; Rey, H.R.; Chao, C.R.; Myers, M.M. Response of the premature fetus to stimulation by speech sounds. Early Hum. Dev., 1993, 33(3), 207-215.
[http://dx.doi.org/10.1016/0378-3782(93)90147-m]
[85]
Adrien, J.; Bourgoin, S.; Hamon, M. Midbrain raphe lesion in the newborn rat I. Neurophysiological aspects of sleep. Brain Res., 1977, 127(1), 99-110.
[http://dx.doi.org/10.1016/0006-8993(77)90382-1] [PMID: 861756]
[86]
Jouvet, M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb. Physiol., 1972, 64, 166-307.
[PMID: 4403272]
[87]
Geva, R.; Yaron, H.; Kuint, J. Neonatal sleep predicts attention orienting and Distractibility. J. Atten. Disord., 2016, 20(2), 138-150.
[http://dx.doi.org/10.1177/1087054713491493] [PMID: 23893532]
[88]
Hunt, C.E. The cardiorespiratory control hypothesis for sudden infant death syndrome. Clin. Perinatol., 1992, 19(4), 757-771.
[http://dx.doi.org/10.1016/S0095-5108(18)30429-9] [PMID: 1464189]
[89]
Ferber, S.G.; Roth, T.L.; Weller, A. Epigenetic fragility of the endocannabinoid system under stress: Risk for mood disorders and pharmacogenomic implications. Epigenomics, 2020, 12(8), 657-660.
[http://dx.doi.org/10.2217/epi-2020-0037] [PMID: 32396405]

© 2024 Bentham Science Publishers | Privacy Policy