Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

What is the Role of Lithium in Epilepsy?

Author(s): Sree Lalitha Bojja, Neha Singh, Kiran Kumar Kolathur and Chamallamudi Mallikarjuna Rao*

Volume 20, Issue 10, 2022

Published on: 24 June, 2022

Page: [1850 - 1864] Pages: 15

DOI: 10.2174/1570159X20666220411081728

Price: $65

Abstract

Lithium is a well-known FDA-approved treatment for bipolar and mood disorders. Lithium has been an enigmatic drug with multifaceted actions involving various neurotransmitters and intricate cell signalling cascades. Recent studies highlight the neuroprotective and neurotrophic actions of lithium in amyotrophic lateral sclerosis, Alzheimer’s disease, intracerebral hemorrhage, and epilepsy. Of note, lithium holds a significant interest in epilepsy, where the past reports expose its non-specific proconvulsant action, followed lately by numerous studies for anti-convulsant action. However, the exact mechanism of action of lithium for any of its effects is still largely unknown. The present review integrates findings from several reports and provides detailed possible mechanisms of how a single molecule exhibits marked pro-epileptogenic as well as anti-convulsant action. This review also provides clarity regarding the safety of lithium therapy in epileptic patients.

Keywords: Lithium, seizures, epilepsy, lithium-pilocarpine model, inflammation, glycogen synthase kinase-3β (GSK-3β).

Graphical Abstract
[1]
Shepherd, M.L.M.R.R. Clinical Psychopharmacology; Lea and Febiger: Philadelphia, 1968.
[2]
Julius, S.C.; Brenner, R.P. Myoclonic seizures with lithium. Biol. Psychiatry, 1987, 22(10), 1184-1190.
[http://dx.doi.org/10.1016/0006-3223(87)90026-6] [PMID: 3117123]
[3]
Wharton, R.N. Grand mal seizures with lithium treatment. Am. J. Psychiatry, 1969, 125(10), 1446-1447.
[http://dx.doi.org/10.1176/ajp.125.10.1446] [PMID: 4975138]
[4]
Shorter, E. The history of lithium therapy. Bipolar Disord., 2009, 11(s2)(Suppl. 2), 4-9.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00706.x] [PMID: 19538681]
[5]
López-Muñoz, F.; Shen, W.W.; D’Ocon, P.; Romero, A.; Álamo, C. A history of the pharmacological treatment of bipolar disorder. Int. J. Mol. Sci., 2018, 19(7), E2143.
[http://dx.doi.org/10.3390/ijms19072143] [PMID: 30041458]
[6]
Tondo, L.; Alda, M.; Bauer, M.; Bergink, V.; Grof, P.; Hajek, T.; Lewitka, U.; Licht, R.W.; Manchia, M.; Müller-Oerlinghausen, B.; Nielsen, R.E.; Selo, M.; Simhandl, C.; Baldessarini, R.J. Clinical use of lithium salts: Guide for users and prescribers. Int. J. Bipolar Disord., 2019, 7(1), 16.
[http://dx.doi.org/10.1186/s40345-019-0151-2] [PMID: 31328245]
[7]
Garrod, A. The nature and treatment of gout, and rheumatic G. Foreign Med. Chir. Rev., 1860, 25(50), 419-435.
[8]
Hammond, W. A treatise on the diseases of the nervous system. Med. Chir. Rev. J. Med. Sci. Anal. Ser., 1822, 3(10), 277-306.
[9]
Goldney, R. The lange theory of ‘periodical depressions’: A landmark in the history of lithium therapy. Aust. N. Z. J. Psychiatry, 2006, 40(4), 377-377.
[http://dx.doi.org/10.1080/j.1440-1614.2006.01808.x]
[10]
Cade, J.F. Lithium salts in the treatment of psychotic excitement: John F Cade. Aust. N. Z. J. Psychiatry, 1982, 16(3), 129-133.
[http://dx.doi.org/10.3109/00048678209159969] [PMID: 6758755]
[11]
Noack, C.H.; Trautner, E.M. The lithium treatment of maniacal psychosis. Med. J. Aust., 1951, 2(7), 219-222.
[http://dx.doi.org/10.5694/j.1326-5377.1951.tb68249.x] [PMID: 14881840]
[12]
Gershon, S.; Yuwiler, A. Lithium ion: A specific psychopharmacological approach to the treatment of mania. J. Neuropsychiatry, 1960, 1, 229-241.
[13]
Baastrup, P.C.; Schou, M. Lithium as a prophylactic agents. Its effect against recurrent depressions and manic-depressive psychosis. Arch. Gen. Psychiatry, 1967, 16(2), 162-172.
[http://dx.doi.org/10.1001/archpsyc.1967.01730200030005] [PMID: 6019331]
[14]
Angst, J.; Weis, P.; Grof, P.; Baastrup, P.C.; Schou, M. Lithium prophylaxis in recurrent affective disorders. Br. J. Psychiatry, 1970, 116(535), 604-614.
[http://dx.doi.org/10.1192/bjp.116.535.604] [PMID: 4916293]
[15]
Hampel, H.; Lista, S.; Mango, D.; Nisticò, R.; Perry, G.; Avila, J.; Hernandez, F.; Geerts, H.; Vergallo, A. Lithium as a treatment for alzheimer’s disease: The systems pharmacology perspective. J. Alzheimers Dis., 2019, 69(3), 615-629.
[http://dx.doi.org/10.3233/JAD-190197] [PMID: 31156173]
[16]
Lazzara, C.A.; Kim, Y-H. Potential application of lithium in Parkinson’s and other neurodegenerative diseases. Front. Neurosci., 2015, 9, 403.
[http://dx.doi.org/10.3389/fnins.2015.00403] [PMID: 26578864]
[17]
Liu, Z.; Li, R.; Jiang, C.; Zhao, S.; Li, W.; Tang, X. The neuroprotective effect of lithium chloride on cognitive impairment through glycogen synthase kinase-3β inhibition in intracerebral hemorrhage rats. Eur. J. Pharmacol., 2018, 840, 50-59.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.019] [PMID: 30336136]
[18]
Jiang, G.; Pu, T.; Li, Z.; Zhang, X.; Zhou, R.; Cao, X.; Yu, J.; Wang, X. Lithium affects rat hippocampal electrophysiology and epileptic seizures in a dose dependent manner. Epilepsy Res., 2018, 146, 112-120.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.07.021] [PMID: 30096484]
[19]
Forlenza, O.V.; De-Paula, V.J.R.; Diniz, B.S.O. Neuroprotective effects of lithium: Implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci., 2014, 5(6), 443-450.
[http://dx.doi.org/10.1021/cn5000309] [PMID: 24766396]
[20]
Brown, K.M.; Tracy, D.K. Lithium: The pharmacodynamic actions of the amazing ion. Ther. Adv. Psychopharmacol., 2013, 3(3), 163-176.
[http://dx.doi.org/10.1177/2045125312471963] [PMID: 24167688]
[21]
Rijal, S.; Jang, S.H.; Park, S.J.; Han, S.K. Lithium Enhances the GABAergic Synaptic Activities on the Hypothalamic Preoptic Area (hPOA) Neurons. Int. J. Mol. Sci., 2021, 22(8), 3908.
[http://dx.doi.org/10.3390/ijms22083908] [PMID: 33918982]
[22]
Jakobsson, E.; Argüello-Miranda, O.; Chiu, S-W.; Fazal, Z.; Kruczek, J.; Nunez-Corrales, S.; Pandit, S.; Pritchet, L. Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J. Membr. Biol., 2017, 250(6), 587-604.
[http://dx.doi.org/10.1007/s00232-017-9998-2] [PMID: 29127487]
[23]
Grandjean, E.M.; Aubry, J.M. Lithium: Updated human knowledge using an evidence-based approach: Part III: Clinical safety. CNS Drugs, 2009, 23(5), 397-418.
[http://dx.doi.org/10.2165/00023210-200923050-00004] [PMID: 19453201]
[24]
Mohandas, E.; Rajmohan, V. Lithium use in special populations. Indian J. Psychiatry, 2007, 49(3), 211-218.
[http://dx.doi.org/10.4103/0019-5545.37325] [PMID: 20661390]
[25]
Schmitz, B. Depression and mania in patients with epilepsy. Epilepsia, 2005, 46(Suppl. 4), 45-49.
[http://dx.doi.org/10.1111/j.1528-1167.2005.463009.x] [PMID: 15938709]
[26]
Mula, M.; Monaco, F. Antiepileptic drug-induced mania in patients with epilepsy: What do we know? Epilepsy Behav., 2006, 9(2), 265-267.
[http://dx.doi.org/10.1016/j.yebeh.2006.06.016] [PMID: 16887395]
[27]
Kanner, A.M. Most antidepressant drugs are safe for patients with epilepsy at therapeutic doses: A review of the evidence. Epilepsy Behav., 2016, 61, 282-286.
[http://dx.doi.org/10.1016/j.yebeh.2016.03.022] [PMID: 27236241]
[28]
Brown, P.; Kashiviswanath, S.; Huynh, A.; Allha, N.; Piaggio, K.; Sahoo, S.; Gupta, A. Lithium therapy in comorbid temporal lobe epilepsy and cycloid psychosis. Oxf. Med. Case Rep., 2016, 2016(12), omw089.
[http://dx.doi.org/10.1093/omcr/omw089] [PMID: 28031853]
[29]
Parmelee, D.X.; O’Shanick, G.J. Carbamazepine-lithium toxicity in brain-damaged adolescents. Brain Inj., 1988, 2(4), 305-308.
[http://dx.doi.org/10.3109/02699058809150900] [PMID: 3144406]
[30]
Prueter, C.; Norra, C. Mood disorders and their treatment in patients with epilepsy. J. Neuropsychiatry Clin. Neurosci., 2005, 17(1), 20-28.
[http://dx.doi.org/10.1176/jnp.17.1.20] [PMID: 15746479]
[31]
Roccatagliata, L.; Audenino, D.; Primavera, A.; Cocito, L. Nonconvulsive status epilepticus from accidental lithium ingestion. Am. J. Emerg. Med., 2002, 20(6), 570-572.
[http://dx.doi.org/10.1053/ajem.2002.34957] [PMID: 12369038]
[32]
Kuruvilla, P.K.; Alexander, J. Lithium toxicity presenting as non-convulsive status epilepticus (NCSE). Aust. N. Z. J. Psychiatry, 2001, 35(6), 852-852.
[http://dx.doi.org/10.1046/j.1440-1614.2001.0971a.x] [PMID: 11990898]
[33]
Bellesi, M.; Passamonti, L.; Silvestrini, M.; Bartolini, M.; Provinciali, L. Non-convulsive status epilepticus during lithium treatment at therapeutic doses. Neurol. Sci., 2006, 26(6), 444-446.
[http://dx.doi.org/10.1007/s10072-006-0530-1] [PMID: 16601939]
[34]
Netto, I.; Phutane, V.H. Reversible lithium neurotoxicity: Review of the literatur. Prim. Care Companion CNS Disord., 2012, 14(1), PCC.11r01197.
[http://dx.doi.org/10.4088/PCC.11r01197] [PMID: 22690368]
[35]
Mégarbane, B.; Hanak, A.S.; Chevillard, L. Lithium-related neurotoxicity despite serum concentrations in the therapeutic range: Risk factors and diagnosis. Shanghai Jingshen Yixue, 2014, 26(4), 243-244.
[http://dx.doi.org/10.3969/J.ISSN.1002-0829.2014.04.009] [PMID: 25317012]
[36]
Curia, G.; Longo, D.; Biagini, G.; Jones, R.S.G.; Avoli, M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods, 2008, 172(2), 143-157.
[http://dx.doi.org/10.1016/j.jneumeth.2008.04.019] [PMID: 18550176]
[37]
Bojja, S.L.; Medhi, B.; Anand, S.; Bhatia, A.; Joshi, R.; Minz, R.W. Metformin ameliorates the status epilepticus- induced hippocampal pathology through possible mTOR modulation. Inflammopharmacology, 2021, 29(1), 137-151.
[http://dx.doi.org/10.1007/s10787-020-00782-8] [PMID: 33386490]
[38]
Izsak, J.; Seth, H.; Iljin, M.; Theiss, S.; Ågren, H.; Funa, K.; Aigner, L.; Hanse, E.; Illes, S. Differential acute impact of therapeutically effective and overdose concentrations of lithium on human neuronal single cell and network function. Transl. Psychiatry, 2021, 11(1), 1-15.
[http://dx.doi.org/10.1038/s41398-021-01399-3]
[39]
Mertens, J.; Wang, Q.W.; Kim, Y.; Yu, D.X.; Pham, S.; Yang, B.; Zheng, Y.; Diffenderfer, K.E.; Zhang, J.; Soltani, S. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 2015, 527(7576), 95-99.
[http://dx.doi.org/10.1038/nature15526]
[40]
Marchi, N.; Fan, Q.; Ghosh, C.; Fazio, V.; Bertolini, F.; Betto, G.; Batra, A.; Carlton, E.; Najm, I.; Granata, T.; Janigro, D. Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol. Dis., 2009, 33(2), 171-181.
[http://dx.doi.org/10.1016/j.nbd.2008.10.002] [PMID: 19010416]
[41]
Friedman, A.; Behrens, C.J.; Heinemann, U. Cholinergic dysfunction in temporal lobe epilepsy. Epilepsia, 2007, 48(s5)(Suppl. 5), 126-130.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01300.x] [PMID: 17910592]
[42]
Friedman, A.; Dingledine, R. Molecular cascades that mediate the influence of inflammation on epilepsy. Epilepsia, 2011, 52(Suppl. 3), 33-39.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03034.x] [PMID: 21542844]
[43]
Zimmerman, G.; Njunting, M.; Ivens, S.; Tolner, E.A.; Behrens, C.J.; Gross, M.; Soreq, H.; Heinemann, U.; Friedman, A. Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats. Eur. J. Neurosci., 2008, 27(4), 965-975.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06070.x] [PMID: 18333967]
[44]
Hamilton, S.E.; Loose, M.D.; Qi, M.; Levey, A.I.; Hille, B.; McKnight, G.S.; Idzerda, R.L.; Nathanson, N.M. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl. Acad. Sci. USA, 1997, 94(24), 13311-13316.
[http://dx.doi.org/10.1073/pnas.94.24.13311] [PMID: 9371842]
[45]
Jope, R.S. Lithium selectively potentiates cholinergic activity in rat brain. Prog. Brain Res., 1993, 98(317), 322.
[http://dx.doi.org/10.1016/S0079-6123(08)62414-0]
[46]
Hillert, M.H.; Imran, I.; Zimmermann, M.; Lau, H.; Weinfurter, S.; Klein, J. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. J. Neurochem., 2014, 131(1), 42-52.
[http://dx.doi.org/10.1111/jnc.12787] [PMID: 24909269]
[47]
Yamada, K.; Saltarelli, M.D.; Coyle, J.T. [3H]hemicholinium-3 binding in rats with status epilepticus induced by lithium chloride and pilocarpine. Eur. J. Pharmacol., 1991, 195(3), 395-397.
[http://dx.doi.org/10.1016/0014-2999(91)90481-5] [PMID: 1651249]
[48]
Gibbons, A.S.; Jeon, W.J.; Scarr, E.; Dean, B. Changes in muscarinic M2 receptor levels in the cortex of subjects with bipolar disorder and major depressive disorder and in rats after treatment with mood stabilisers and antidepressants. Int. J. Neuropsychopharmacol., 2016, 19(4), 1-9.
[http://dx.doi.org/10.1093/ijnp/pyv118] [PMID: 26475745]
[49]
Jope, R.S.; Wright, S.M.; Walter-Ryan, W.G.; Alarcon, R.D. Effects of bipolar affective disorder and lithium administration on the cholinergic system in human blood. J. Psychiatr. Res., 1986, 20(1), 9-18.
[http://dx.doi.org/10.1016/0022-3956(86)90019-1] [PMID: 3712294]
[50]
Raghu, P.; Joseph, A.; Krishnan, H.; Singh, P.; Saha, S. Phosphoinositides: Regulators of nervous system function in health and disease. Front. Mol. Neurosci., 2019, 12, 208.
[http://dx.doi.org/10.3389/fnmol.2019.00208] [PMID: 31507376]
[51]
Sherman, W.R.; Munsell, L.Y.; Gish, B.G.; Honchar, M.P. Effects of systemically administered lithium on phosphoinositide metabolism in rat brain, kidney, and testis. J. Neurochem., 1985, 44(3), 798-807.
[http://dx.doi.org/10.1111/j.1471-4159.1985.tb12886.x] [PMID: 2983019]
[52]
Einat, H.; Kofman, O.; Itkin, O.; Lewitan, R.J.; Belmaker, R.H. Augmentation of lithium’s behavioral effect by inositol uptake inhibitors. J. Neural Transm. (Vienna), 1998, 105(1), 31-38.
[http://dx.doi.org/10.1007/s007020050035] [PMID: 9588758]
[53]
Sade, Y.; Toker, L.; Kara, N.Z.; Einat, H.; Rapoport, S.; Moechars, D.; Berry, G.T.; Bersudsky, Y.; Agam, G. IP3 accumulation and/or inositol depletion: Two downstream lithium’s effects that may mediate its behavioral and cellular changes. Transl. Psychiatry, 2016, 6(12), e968.
[http://dx.doi.org/10.1038/tp.2016.217] [PMID: 27922641]
[54]
Kofman, O.; Sherman, W.R.; Katz, V.; Belmaker, R.H. Restoration of brain myo-inositol levels in rats increases latency to lithium-pilocarpine seizures. Psychopharmacology (Berl.), 1993, 110(1-2), 229-234.
[http://dx.doi.org/10.1007/BF02246978] [PMID: 7870890]
[55]
Belmaker, R.H.; Bersudsky, Y. Lithium-pilocarpine seizures as a model for lithium action in mania. Neurosci. Biobehav. Rev., 2007, 31(6), 843-849.
[http://dx.doi.org/10.1016/j.neubiorev.2007.05.001] [PMID: 17602744]
[56]
Bymaster, F.P.; Carter, P.A.; Yamada, M.; Gomeza, J.; Wess, J.; Hamilton, S.E.; Nathanson, N.M.; McKinzie, D.L.; Felder, C.C. Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur. J. Neurosci., 2003, 17(7), 1403-1410.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02588.x] [PMID: 12713643]
[57]
Szot, P. Common factors among alzheimer’s disease, parkinson’s disease, and epilepsy: Possible role of the noradrenergic nervous system. Epilepsia, 2012, 53 Suppl 1(SUPPL. 1), 61-66.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03476.x]
[58]
Sastre, E.; Nicolay, A.; Bruguerolle, B.; Portugal, H. Effect of lithium on norepinephrine metabolic pathways. Life Sci., 2005, 77(7), 758-767.
[http://dx.doi.org/10.1016/j.lfs.2004.12.033] [PMID: 15936350]
[59]
Devaki, R.; Shankar Rao, S.; Nadgir, S.M. The effect of lithium on the adrenoceptor-mediated second messenger system in the rat brain. J. Psychiatry Neurosci., 2006, 31(4), 246-252.
[PMID: 16862242]
[60]
Kadzielawa, K. Inhibition of the action of anticonvulsants by lithium treatment. Pharmacol. Biochem. Behav., 1979, 10(6), 917-921.
[http://dx.doi.org/10.1016/0091-3057(79)90067-4] [PMID: 482313]
[61]
Marchi, N.; Oby, E.; Batra, A.; Uva, L.; De Curtis, M.; Hernandez, N.; Van Boxel-Dezaire, A.; Najm, I.; Janigro, D. In vivo and in vitro effects of pilocarpine: Relevance to ictogenesis. Epilepsia, 2007, 48(10), 1934-1946.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01185.x] [PMID: 17645533]
[62]
Marchi, N.; Johnson, A.J.; Puvenna, V.; Johnson, H.L.; Tierney, W.; Ghosh, C.; Cucullo, L.; Fabene, P.F.; Janigro, D. Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia, 2011, 52(9), 1627-1634.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03080.x] [PMID: 21627645]
[63]
Haupt, M.; Zechmeister, B.; Bosche, B.; Lieschke, S.; Zheng, X.; Zhang, L.; Venkataramani, V.; Jin, F.; Hein, K.; Weber, M.S.; Hermann, D.M.; Bähr, M.; Doeppner, T.R. Lithium enhances post-stroke blood-brain barrier integrity, activates the MAPK/ERK1/2 pathway and alters immune cell migration in mice. Neuropharmacology, 2020, 181, 108357.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108357] [PMID: 33065166]
[64]
Uva, L.; Librizzi, L.; Marchi, N.; Noe, F.; Bongiovanni, R.; Vezzani, A.; Janigro, D.; de Curtis, M. Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea-pig brain requires enhancement of blood-brain barrier permeability. Neuroscience, 2008, 151(1), 303-312.
[http://dx.doi.org/10.1016/j.neuroscience.2007.10.037] [PMID: 18082973]
[65]
Taler, M.; Aronovich, R.; Henry Hornfeld, S.; Dar, S.; Sasson, E.; Weizman, A.; Hochman, E. Regulatory effect of lithium on hippocampal blood-brain barrier integrity in a rat model of depressive-like behavior. Bipolar Disord., 2021, 23(1), 55-65.
[http://dx.doi.org/10.1111/bdi.12962] [PMID: 32558151]
[66]
Weissberg, I.; Wood, L.; Kamintsky, L.; Vazquez, O.; Milikovsky, D.Z.; Alexander, A.; Oppenheim, H.; Ardizzone, C.; Becker, A.; Frigerio, F.; Vezzani, A.; Buckwalter, M.S.; Huguenard, J.R.; Friedman, A.; Kaufer, D. Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol. Dis., 2015, 78, 115-125.
[http://dx.doi.org/10.1016/j.nbd.2015.02.029] [PMID: 25836421]
[67]
Suraweera, C.; Hanwella, R.; de Silva, V. Use of lithium in clozapine-induced neutropenia: A case report. BMC Res. Notes, 2014, 7(1), 635.
[http://dx.doi.org/10.1186/1756-0500-7-635] [PMID: 25214394]
[68]
Amitai, M.; Zivony, A.; Kronenberg, S.; Nagar, L.; Saar, S.; Sever, J.; Apter, A.; Shoval, G.; Golubchik, P.; Hermesh, H.; Weizman, A.; Zalsman, G. Short-term effects of lithium on white blood cell counts and on levels of serum thyroid-stimulating hormone and creatinine in adolescent inpatients: A retrospective naturalistic study. J. Child Adolesc. Psychopharmacol., 2014, 24(9), 494-500.
[http://dx.doi.org/10.1089/cap.2013.0046] [PMID: 24828326]
[69]
Young, W. Review of lithium effects on brain and blood. Cell Transplant., 2009, 18(9), 951-975.
[http://dx.doi.org/10.3727/096368909X471251] [PMID: 19523343]
[70]
Silva, R.; Mesquita, A.R.; Bessa, J.; Sousa, J.C.; Sotiropoulos, I.; Leão, P.; Almeida, O.F.X.; Sousa, N. Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: The role of glycogen-synthase-kinase-3β. Neuroscience, 2008, 152(3), 656-669.
[http://dx.doi.org/10.1016/j.neuroscience.2007.12.026] [PMID: 18291594]
[71]
Leeds, P.R.; Yu, F.; Wang, Z.; Chiu, C.T.; Zhang, Y.; Leng, Y.; Linares, G.R.; Chuang, D.M. New avenue for lithium: Intervention in traumatic brain injury. ACS Chemical Neuroscience American Chemical Society, 2014, 422-433.
[http://dx.doi.org/10.1021/cn500040g]
[72]
Hokin, L.E.; Dixon, J.F.; Los, G.V. A novel action of lithium: Stimulation of glutamate release and inositol 1,4,5 trisphosphate accumulation via activation of the N-methyl D-aspartate receptor in monkey and mouse cerebral cortex slices. Adv. Enzyme Regul., 1996, 36, 229-244.
[http://dx.doi.org/10.1016/0065-2571(95)00021-6] [PMID: 8869749]
[73]
Kelly, P.T.; Mackinnon, R.L., II; Dietz, R.V.; Maher, B.J.; Wang, J. Postsynaptic IP3 receptor-mediated Ca2+ release modulates synaptic transmission in hippocampal neurons. Brain Res. Mol. Brain Res., 2005, 135(1-2), 232-248.
[http://dx.doi.org/10.1016/j.molbrainres.2004.12.018] [PMID: 15857686]
[74]
Pisani, A.; Bonsi, P.; Martella, G.; De Persis, C.; Costa, C.; Pisani, F.; Bernardi, G.; Calabresi, P. Intracellular calcium increase in epileptiform activity: Modulation by levetiracetam and lamotrigine. Epilepsia, 2004, 45(7), 719-728.
[http://dx.doi.org/10.1111/j.0013-9580.2004.02204.x] [PMID: 15230693]
[75]
Imran, I.; Hillert, M.H.; Klein, J. Early metabolic responses to lithium/pilocarpine-induced status epilepticus in rat brain. J. Neurochem., 2015, 135(5), 1007-1018.
[http://dx.doi.org/10.1111/jnc.13360] [PMID: 26365376]
[76]
Rosa, A.O.; Rapoport, S.I. Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. Biochim. Biophys. Acta, 2009, 1791(8), 697-705.
[http://dx.doi.org/10.1016/j.bbalip.2009.03.009] [PMID: 19327408]
[77]
Bera, A.; Srivastava, A.; Dubey, V.; Dixit, A.B.; Tripathi, M.; Sharma, M.C.; Lalwani, S.; Chandra, P.S.; Banerjee, J. Altered hippocampal expression and function of cytosolic phospholipase A2 (cPLA2) in temporal lobe epilepsy (TLE). Neurol. Res., 2022, 1-6.
[http://dx.doi.org/10.1080/01616412.2022.2051131] [PMID: 35285418]
[78]
Basselin, M.; Chang, L.; Seemann, R.; Bell, J.M.; Rapoport, S.I. Chronic lithium administration potentiates brain arachidonic acid signaling at rest and during cholinergic activation in awake rats. J. Neurochem., 2003, 85(6), 1553-1562.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01811.x] [PMID: 12787074]
[79]
Duda, P.; Wiśniewski, J.; Wójtowicz, T.; Wójcicka, O.; Jaśkiewicz, M.; Drulis-Fajdasz, D.; Rakus, D.; McCubrey, J.A.; Gizak, A. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin. Ther. Targets, 2018, 22(10), 833-848.
[http://dx.doi.org/10.1080/14728222.2018.1526925] [PMID: 30244615]
[80]
Ryves, W.J.; Harwood, A.J. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun., 2001, 280(3), 720-725.
[http://dx.doi.org/10.1006/bbrc.2000.4169] [PMID: 11162580]
[81]
Chalecka-Franaszek, E.; Chuang, D.M. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc. Natl. Acad. Sci. USA, 1999, 96(15), 8745-8750.
[http://dx.doi.org/10.1073/pnas.96.15.8745] [PMID: 10411946]
[82]
Gómez-Sintes, R.; Lucas, J.J. NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy. J. Clin. Invest., 2010, 120(7), 2432-2445.
[http://dx.doi.org/10.1172/JCI37873] [PMID: 20530871]
[83]
Beurel, E.; Jope, R.S. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog. Neurobiol., 2006, 79(4), 173-189.
[http://dx.doi.org/10.1016/j.pneurobio.2006.07.006] [PMID: 16935409]
[84]
Engel, T.; Gómez-Sintes, R.; Alves, M.; Jimenez-Mateos, E.M.; Fernández-Nogales, M.; Sanz-Rodriguez, A.; Morgan, J.; Beamer, E.; Rodríguez-Matellán, A.; Dunleavy, M.; Sano, T.; Avila, J.; Medina, M.; Hernandez, F.; Lucas, J.J.; Henshall, D.C. Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death Dis., 2018, 9(10), 969.
[http://dx.doi.org/10.1038/s41419-018-0963-5] [PMID: 30237424]
[85]
John, F.J. Cade. Classics 515.520 _ Enhanced Reader.Pdf. Med. J. Aust., 1949, 2(36), 3.
[86]
Puglisi-Allegra, S.; Ruggieri, S.; Fornai, F. Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. Transl. Psychiatry, 2021, 11(1), 366.
[http://dx.doi.org/10.1038/s41398-021-01492-7] [PMID: 34226487]
[87]
Bahremand, A.; Nasrabady, S.E.; Ziai, P.; Rahimian, R.; Hedayat, T.; Payandemehr, B.; Dehpour, A.R. Involvement of nitric oxide-cGMP pathway in the anticonvulsant effects of lithium chloride on PTZ-induced seizure in mice. Epilepsy Res., 2010, 89(2-3), 295-302.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.02.001] [PMID: 20304610]
[88]
Prosser, J.M.; Fieve, R.R. Patients receiving lithium therapy have a reduced prevalence of neurological and cardiovascular disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 71, 39-44.
[http://dx.doi.org/10.1016/j.pnpbp.2016.06.006] [PMID: 27328427]
[89]
Lyoo, I.K.; Dager, S.R.; Kim, J.E.; Yoon, S.J.; Friedman, S.D.; Dunner, D.L.; Renshaw, P.F. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: A longitudinal brain imaging study. Neuropsychopharmacology, 2010, 35(8), 1743-1750.
[http://dx.doi.org/10.1038/npp.2010.41] [PMID: 20357761]
[90]
Agam, G.; Levine, J. Neuroprotective effects of lithium in neuropsychiatric disorders. Neuroprotection in Autism, Schizophrenia and Alzheimer’s Disease, 2020, 5(6), 209-241.
[http://dx.doi.org/10.1016/B978-0-12-814037-6.00006-9]
[91]
Yuan, J.; Song, J.; Zhu, D.; Sun, E.; Xia, L.; Zhang, X.; Gao, C.; Agam, G.; Wang, X.; Blomgren, K.; Zhu, C. Lithium treatment is safe in children with intellectual disability. Front. Mol. Neurosci., 2018, 11, 425.
[http://dx.doi.org/10.3389/fnmol.2018.00425] [PMID: 30524233]
[92]
Mohammad Jafari, R.; Ghahremani, M.H.; Rahimi, N.; Shadboorestan, A.; Rashidian, A.; Esmaeili, J.; Ejtemaei Mehr, S.; Dehpour, A.R. The anticonvulsant activity and cerebral protection of chronic lithium chloride via NMDA receptor/nitric oxide and phospho-ERK. Brain Res. Bull., 2018, 137, 1-9.
[http://dx.doi.org/10.1016/j.brainresbull.2017.10.015] [PMID: 29102713]
[93]
Shukla, S.; Mukherjee, S.; Decina, P. Lithium in the treatment of bipolar disorders associated with epilepsy: An open study. J. Clin. Psychopharmacol., 1988, 8(3), 201-204.
[http://dx.doi.org/10.1097/00004714-198806000-00009] [PMID: 3379144]
[94]
Kavallinis, G.P. Lithium in epilepsy. Clin. Electroencephalogr., 1977, 8(1), 51-56.
[http://dx.doi.org/10.1177/155005947700800106]
[95]
Inal, A.; Chaumette, B.; Soleimani, M.; Guerrot, A.M.; Goldenberg, A.; Lebas, A.; Gerardin, P.; Ferrafiat, V. Lithium improved behavioral and epileptic symptoms in an adolescent with ring chromosome 20 and bipolar disorder not otherwise specified. Clin. Case Rep., 2018, 6(11), 2234-2239.
[http://dx.doi.org/10.1002/ccr3.1796] [PMID: 30455928]
[96]
Erwin, C.W.; Gerber, C.J.; Morrison, S.D.; James, J.F. Lithium carbonate and convulsive disorders. Arch. Gen. Psychiatry, 1973, 28(5), 646-648.
[http://dx.doi.org/10.1001/archpsyc.1973.01750350026005] [PMID: 4573418]
[97]
Hong, N.; Choi, Y-S.; Kim, S.Y.; Kim, H.J. Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice. Korean J. Physiol. Pharmacol., 2017, 21(1), 125-131.
[http://dx.doi.org/10.4196/kjpp.2017.21.1.125] [PMID: 28066149]
[98]
Li, X.; Bijur, G.N.; Jope, R.S. Glycogen synthase kinase-3β, mood stabilizers, and neuroprotection. Bipolar Disord., 2002, 4(2), 137-144.
[http://dx.doi.org/10.1034/j.1399-5618.2002.40201.x] [PMID: 12071511]
[99]
Dell’Osso, L.; del Grande, C.; Gesi, C.; Carmassi, C.; Musetti, L. A new look at an old drug: Neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr. Dis. Treat., 2016, 1687-1703.
[http://dx.doi.org/10.2147/NDT.S106479]
[100]
Kritis, A.A.; Stamoula, E.G.; Paniskaki, K.A.; Vavilis, T.D. Researching glutamate - induced cytotoxicity in different cell lines: A comparative/collective analysis/study. Front. Cell. Neurosci., 2015, 9, 91.
[http://dx.doi.org/10.3389/fncel.2015.00091] [PMID: 25852482]
[101]
Hashimoto, R.; Hough, C.; Nakazawa, T.; Yamamoto, T.; Chuang, D.M. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: Involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J. Neurochem., 2002, 80(4), 589-597.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00728.x] [PMID: 11841566]
[102]
Nonaka, S.; Chuang, D.M. Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. Neuroreport, 1998, 9(9), 2081-2084.
[http://dx.doi.org/10.1097/00001756-199806220-00031] [PMID: 9674597]
[103]
Ghasemi, M.; Shafaroodi, H.; Nazarbeiki, S.; Meskar, H.; Heydarpour, P.; Ghasemi, A.; Talab, S.S.; Ziai, P.; Bahremand, A.; Dehpour, A.R. Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav., 2010, 18(3), 171-178.
[http://dx.doi.org/10.1016/j.yebeh.2010.04.002] [PMID: 20605531]
[104]
Ghasemi, M.; Dehpour, A.R. The NMDA receptor/nitric oxide pathway: A target for the therapeutic and toxic effects of lithium. Trends Pharmacol. Sci., 2011, 32(7), 420-434.
[http://dx.doi.org/10.1016/j.tips.2011.03.006] [PMID: 21492946]
[105]
Wang, H.Y.; Johnson, G.P.; Friedman, E. Lithium treatment inhibits protein kinase C translocation in rat brain cortex. Psychopharmacology (Berl.), 2001, 158(1), 80-86.
[http://dx.doi.org/10.1007/s002130100834] [PMID: 11685387]
[106]
Chiu, C.T.; Chuang, D.M. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol. Ther., 2010, 128(2), 281-304.
[http://dx.doi.org/10.1016/j.pharmthera.2010.07.006] [PMID: 20705090]
[107]
Ivanova, V.O.; Balaban, P.M.; Bal, N.V. Modulation of AMPA Receptors by Nitric Oxide in Nerve Cells. Int. J. Mol. Sci., 2020, 21(3), 1-19.
[http://dx.doi.org/10.3390/ijms21030981] [PMID: 32024149]
[108]
Kumar, A.; Lalitha, S.; Mishra, J. Possible nitric oxide mechanism in the protective effect of hesperidin against pentylenetetrazole (PTZ)-induced kindling and associated cognitive dysfunction in mice. Epilepsy Behav., 2013, 29(1), 103-111.
[http://dx.doi.org/10.1016/j.yebeh.2013.06.007] [PMID: 23939034]
[109]
Roy, U.; Mukherjee, B.P. Correlation of lithium effect on electroshock- induced seizure in rats with its concentration in brain and plasma. Arch. Int. Pharmacodyn. Ther., 1982, 255(1), 81-88.
[PMID: 7073401]
[110]
Honar, H.; Riazi, K.; Homayoun, H.; Demehri, S.; Dehghani, M.; Vafaie, K.; Ebrahimkhani, M.R.; Rashidi, N.; Gaskari, S.A.; Dehpour, A.R. Lithium inhibits the modulatory effects of morphine on susceptibility to pentylenetetrazole-induced clonic seizure in mice: Involvement of a nitric oxide pathway. Brain Res., 2004, 1029(1), 48-55.
[http://dx.doi.org/10.1016/j.brainres.2004.09.018] [PMID: 15533315]
[111]
Rahimi, N.; Hassanipour, M.; Yarmohammadi, F.; Faghir-Ghanesefat, H.; Pourshadi, N.; Bahramnejad, E.; Dehpour, A.R. Nitric oxide and glutamate are contributors of anti-seizure activity of rubidium chloride: A comparison with lithium. Neurosci. Lett., 2019, 708(June), 134349.
[http://dx.doi.org/10.1016/j.neulet.2019.134349] [PMID: 31238129]
[112]
Amiri, S.; Haj-Mirzaian, A.; Amini-Khoei, H.; Shirzadian, A.; Rahimi-Balaei, M.; Razmi, A.; Bergen, H.; Rastegar, M.; Kordjazy, N.; Haj-Mirzaian, A.; Ejtemai-Mehr, S.; Dehpour, A.R. Lithium attenuates the proconvulsant effect of adolescent social isolation stress via involvement of the nitrergic system. Epilepsy Behav., 2016, 61, 6-13.
[http://dx.doi.org/10.1016/j.yebeh.2016.04.035] [PMID: 27232376]
[113]
Malhi, G.S.; Tanious, M.; Das, P.; Coulston, C.M.; Berk, M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs, 2013, 27(2), 135-153.
[http://dx.doi.org/10.1007/s40263-013-0039-0] [PMID: 23371914]
[114]
Payandemehr, B.; Bahremand, A.; Ebrahimi, A.; Nasrabady, S.E.; Rahimian, R.; Bahremand, T.; Sharifzadeh, M.; Dehpour, A.R. Protective effects of lithium chloride on seizure susceptibility: Involvement of α2-adrenoceptor. Pharmacol. Biochem. Behav., 2015, 133, 37-42.
[http://dx.doi.org/10.1016/j.pbb.2015.03.016] [PMID: 25824982]
[115]
Jaworski, T. Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(9), 118745.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118745] [PMID: 32450268]
[116]
Toral-Rios, D.; Pichardo-Rojas, P.S.; Alonso-Vanegas, M.; Campos-Peña, V. GSK3β and Tau protein in alzheimer’s disease and epilepsy. Front. Cell. Neurosci., 2020, 14(19), 19.
[http://dx.doi.org/10.3389/fncel.2020.00019] [PMID: 32256316]
[117]
Xi, Z-Q.; Xiao, F.; Yuan, J.; Wang, X-F.; Wang, L.; Quan, F-Y.; Liu, G-W. Gene expression analysis on anterior temporal neocortex of patients with intractable epilepsy. Wiley Online Library, 2009, 63(11), 1017-1028.
[http://dx.doi.org/10.1002/syn.20681] [PMID: 19623530]
[118]
Aourz, N.; Serruys, A.K.; Chabwine, J.N.; Balegamire, P.B.; Afrikanova, T.; Edrada-Ebel, R.; Grey, A.I.; Kamuhabwa, A.R.; Walrave, L.; Esguerra, C.V.; van Leuven, F.; de Witte, P.A.M.; Smolders, I.; Crawford, A.D. Identification of GSK-3 as a Potential Therapeutic Entry Point for Epilepsy. ACS Chem. Neurosci., 2019, 10(4), 1992-2003.
[http://dx.doi.org/10.1021/acschemneuro.8b00281] [PMID: 30351911]
[119]
Goodenough, S.; Conrad, S.; Skutella, T.; Behl, C. Inactivation of glycogen synthase kinase-3β protects against kainic acid-induced neurotoxicity in vivo . Brain Res., 2004, 1026(1), 116-125.
[http://dx.doi.org/10.1016/j.brainres.2004.08.021] [PMID: 15476703]
[120]
Li, Q.; Li, H.; Roughton, K.; Wang, X.; Kroemer, G.; Blomgren, K.; Zhu, C. Lithium reduces apoptosis and autophagy after neonatal hypoxia-ischemia. Cell Death Dis., 2010, 1(7), e56.
[http://dx.doi.org/10.1038/cddis.2010.33] [PMID: 21364661]
[121]
Yazlovitskaya, E.M.; Edwards, E.; Thotala, D.; Fu, A.; Osusky, K.L.; Whetsell, W.O., Jr; Boone, B.; Shinohara, E.T.; Hallahan, D.E. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res., 2006, 66(23), 11179-11186.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2740] [PMID: 17145862]
[122]
Xia, M.Y.; Zhao, X.Y.; Huang, Q.L.; Sun, H.Y.; Sun, C.; Yuan, J.; He, C.; Sun, Y.; Huang, X.; Kong, W.; Kong, W.J. Activation of Wnt/β-catenin signaling by lithium chloride attenuates d-galactose-induced neurodegeneration in the auditory cortex of a rat model of aging. FEBS Open Bio, 2017, 7(6), 759-776.
[http://dx.doi.org/10.1002/2211-5463.12220] [PMID: 28593132]
[123]
Hodges, S.L.; Lugo, J.N. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res., 2018, 146, 9-16.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.07.002] [PMID: 30053675]
[124]
Wexler, E.M.; Geschwind, D.H.; Palmer, T.D. lithium regulates adult hippocampal progenitor development through canonical wnt pathway activation. Mol. Psychiatry, 2008, 13(3), 285-292.
[http://dx.doi.org/10.1038/sj.mp.4002093]
[125]
Busceti, C.L.; Biagioni, F.; Aronica, E.; Riozzi, B.; Storto, M.; Battaglia, G.; Giorgi, F.S.; Gradini, R.; Fornai, F.; Caricasole, A.; Nicoletti, F.; Bruno, V. Induction of the Wnt inhibitor, Dickkopf-1, is associated with neurodegeneration related to temporal lobe epilepsy. Epilepsia, 2007, 48(4), 694-705.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01055.x] [PMID: 17437412]
[126]
Borsotto, M.; Cavarec, L.; Bouillot, M.; Romey, G.; Macciardi, F.; Delaye, A.; Nasroune, M.; Bastucci, M.; Sambucy, J.L.; Luan, J.J.; Charpagne, A.; Jouët, V.; Léger, R.; Lazdunski, M.; Cohen, D.; Chumakov, I. PP2A-Bgamma subunit and KCNQ2 K+ channels in bipolar disorder. Pharmacogenomics J., 2007, 7(2), 123-132.
[http://dx.doi.org/10.1038/sj.tpj.6500400] [PMID: 16733521]
[127]
Post, R.M.; Weiss, S.R.B.; Pert, A. Differential effects of carbamazepine and lithium on sensitization and kindling. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1984, 8(3), 425-434.
[http://dx.doi.org/10.1016/S0278-5846(84)80031-7] [PMID: 6435180]
[128]
Clifford, D.B.; Podolsky, A.; Zorumski, C.F. Acute effects of lithium on hippocampal kindled seizures. Epilepsia, 1985, 26(6), 689-692.
[http://dx.doi.org/10.1111/j.1528-1157.1985.tb05712.x] [PMID: 4076072]
[129]
Minabe, Y.; Emori, K.; Kurachi, M. Effects of chronic lithium treatment on limbic seizure generation in the cat. Psychopharmacology (Berl.), 1988, 96(3), 391-394.
[http://dx.doi.org/10.1007/BF00216068] [PMID: 3146773]
[130]
Ormandy, G.C.; Song, L.; Jope, R.S. Analysis of the convulsant-potentiating effects of lithium in rats. Exp. Neurol., 1991, 111(3), 356-361.
[http://dx.doi.org/10.1016/0014-4886(91)90103-J] [PMID: 1847879]
[131]
Göttert, R.; Fidzinski, P.; Kraus, L.; Schneider, U.C.; Holtkamp, M.; Endres, M.; Gertz, K.; Kronenberg, G. Lithium inhibits tryptophan catabolism via the inflammation-induced kynurenine pathway in human microglia. bioRxiv, 2020, 70(3), 558-571.
[http://dx.doi.org/10.1101/2020.11.24.388470]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy