Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

L-Glutamic Acid Mitigates Carbon Tetrachloride-Induced Acute Tissue Injury by Reducing Oxidative Stress in a Rat Model

Author(s): Nataliya Salyha* and Yuriy Salyha

Volume 16, Issue 2, 2022

Published on: 20 May, 2022

Page: [130 - 137] Pages: 8

DOI: 10.2174/2212796816666220408104856

Price: $65

Abstract

Background: Tetrachloromethane (CCl4) is a highly toxic environmental pollutant that causes specific and serious damage to various organs of animals and humans. The study of its effect on physiological and biochemical processes in the mammalian organism is very important, despite the severe restrictions on the use of tetrachloromantane in recent years. The fact is that they can be used as a model for many toxicological studies.

Objective: The experimental studies aimed at exploring the ameliorative effects of L-glutamic acid (LGlu) on CCl4 toxicity in the myocardium, lung tissues and blood of male rats.

Methods: Rats were exposed to CCl4, and later rats were treated with L-Glu. The GSH level and the activities of antioxidant enzymes were studied. In addition to this, the content of lipid peroxidation products was monitored.

Results: The obtained results suggest that CCl4 causes oxidative stress in rat tissues, accompanied by an increase in lipid peroxidation products and a decrease in glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GST), glucose-6-phosphate dehydrogenase (G6PDH), superoxide dismutase (SOD), catalase (CAT) activities and reduced glutathione (GSH) content. The enzymatic activity in tissues of rats treated with L-Glu was restored. Moreover, the changes, which were observed in the studied parameters, showed to be less significant compared to CCl4 treated group.

Conclusion: These results suggest that L-Glu inhibits free radical processes. In summary, this study demonstrates the feasibility of the administration of L-Glu supplementation, which could be used to protect and mitigate the CCl4-induced oxidative stress.

Keywords: L-glutamic acid, carbon tetrachloride, enzymes, oxidative stress, myocardium, lung.

Graphical Abstract
[1]
McGill, M.R.; Jaeschke, H. Animal models of drug-induced liver injury. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(5), 1031-1039.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.037] [PMID: 31007174]
[2]
Ren, X.; Xin, L.T.; Zhang, M.Q.; Zhao, Q.; Yue, S.Y.; Chen, K.X.; Guo, Y.W.; Shao, C.L.; Wang, C.Y. Hepatoprotective effects of a traditional Chinese medicine formula against carbon tetrachloride-induced hepatotoxicity in vivo and in vitro. Biomed. Pharmacother., 2019, 17, 109190.
[http://dx.doi.org/10.1016/j.biopha.2019.109190] [PMID: 31387170]
[3]
Wang, W.; Jiang, L.; Ren, Y.; Shen, M.; Xie, J. Characterizations and hepatoprotective effect of polysaccharides from Mesona blumes against tetrachloride-induced acute liver injury in mice. Int. J. Biol. Macromol., 2019, 124, 788-795.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.260] [PMID: 30502438]
[4]
Ernst, L.; Zieglowski, L.; Schulz, M.; Moss, M.; Meyer, M.; Weiskirchen, R.; Palme, R.; Hamann, M.; Talbot, S.R.; Tolba, R.H. Severity assessment in mice subjected to carbon tetrachloride. Sci. Rep., 2020, 10(1), 15790.
[http://dx.doi.org/10.1038/s41598-020-72801-1] [PMID: 32978437]
[5]
Nevzorova, Y.A.; Boyer-Diaz, Z.; Cubero, F.J.; Gracia-Sancho, J. Animal models for liver disease - A practical approach for translational research. J. Hepatol., 2020, 73(2), 423-440.
[http://dx.doi.org/10.1016/j.jhep.2020.04.011] [PMID: 32330604]
[6]
Zheng, Y.; Cui, B.; Sun, W.; Wang, S.; Huang, X.; Gao, H.; Gao, F.; Cheng, Q.; Lu, L.; An, Y.; Li, X.; Sun, N. Potential crosstalk between liver and extra-liver organs in mouse models of acute liver injury. Int. J. Biol. Sci., 2020, 16(7), 1166-1179.
[http://dx.doi.org/10.7150/ijbs.41293] [PMID: 32174792]
[7]
Zhou, Y.; Peng, C.; Zhou, Z.; Huang, K. Ketoconazole pretreatment ameliorates carbon tetrachloride-induced acute liver injury in rats by suppressing inflammation and oxidative stress. J. Toxicol. Sci., 2019, 44(6), 405-414.
[http://dx.doi.org/10.2131/jts.44.405] [PMID: 31168027]
[8]
Mori, M.; Izawa, T.; Inai, Y.; Fujiwara, S.; Aikawa, R.; Kuwamura, M.; Yamate, J. Dietary iron overload differentially modulates chemically-induced liver injury in rats. Nutrients, 2020, 12(9), 2784.
[http://dx.doi.org/10.3390/nu12092784] [PMID: 32932999]
[9]
Kouam, A.F.; Owona, B.A.; Fifen, R.; Njayou, F.N.; Moundipa, P.F. Inhibition of CYP2E1 and activation of Nrf2 signaling pathways by a fraction from Entada africana alleviate carbon tetrachloride-induced hepatotoxicity. Heliyon, 2020, 6(8), e04602.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04602] [PMID: 32904230]
[10]
Boll, M.; Weber, L.W.; Becker, E.; Stampfl, A. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z. Naturforsch. C J. Biosci., 2001, 56(7-8), 649-659.
[http://dx.doi.org/10.1515/znc-2001-7-826] [PMID: 11531102]
[11]
Yilmaz, E.P.T.; Un, H.; Gundogdu, B.; Polat, E.; Askin, S.; Topdagi, Y.E.; Halici, Z. Protective effect of lycopene against reperfusion injury in rats with ovarian torsion: A biochemical and histopathological evaluation. J. Lab. Physicians, 2020, 12(1), 32-37.
[http://dx.doi.org/10.1055/s-0040-1715553] [PMID: 32792791]
[12]
Li, X.; Liu, X.; Zhang, Y.; Cheng, C.; Fan, J.; Zhou, J.; Garstka, M.A.; Li, Z. Hepatoprotective effect of apolipoprotein A4 against carbon tetrachloride induced acute liver injury through mediating hepatic antioxidant and inflammation response in mice. Biochem. Biophys. Res. Commun., 2021, 534, 659-665.
[http://dx.doi.org/10.1016/j.bbrc.2020.11.024] [PMID: 33239168]
[13]
Ono, R.; Yoshioka, Y.; Furukawa, Y.; Naruse, M.; Kuwagata, M.; Ochiya, T.; Kitajima, S.; Hirabayashi, Y. Novel hepatotoxicity biomarkers of extracellular vesicle (EV)-associated miRNAs induced by CCl4. Toxicol. Rep., 2020, 7, 685-692.
[http://dx.doi.org/10.1016/j.toxrep.2020.05.002] [PMID: 32528856]
[14]
Pergel, A.; Tümkaya, L.; Çolakoğlu, M.K.; Demiral, G.; Kalcan, S.; Özdemir, A.; Mercantepe, T.; Yilmaz, A. Effects of infliximab against carbon tetrachloride-induced intestinal injury via lipid peroxidation and apoptosis. Hum. Exp. Toxicol., 2019, 38(11), 1275-1282.
[http://dx.doi.org/10.1177/0960327119867758] [PMID: 31378095]
[15]
Deniz, G.Y.; Laloglu, E.; Koc, K.; Geyikoglu, F. Hepatoprotective potential of Ferula communis extract for carbon tetrachloride induced hepatotoxicity and oxidative damage in rats. Biotech. Histochem., 2019, 94(5), 334-340.
[http://dx.doi.org/10.1080/10520295.2019.1566831] [PMID: 30712392]
[16]
Nuhu, F.; Gordon, A.; Sturmey, R.; Seymour, A.M.; Bhandari, S. Measurement of glutathione as a tool for oxidative stress studies by high performance liquid chromatography. Molecules, 2020, 25(18), 4196.
[http://dx.doi.org/10.3390/molecules25184196] [PMID: 32933160]
[17]
Ustuner, D.; Colak, E.; Dincer, M.; Tekin, N.; Burukoglu Donmez, D.; Akyuz, F.; Colak, E.; Kolaç, U.K.; Entok, E.; Ustuner, M.C. Posttreatment effects of Olea europaea l. leaf extract on carbon tetrachloride-induced liver injury and oxidative stress in rats. J. Med. Food, 2018, 21(9), 899-904.
[http://dx.doi.org/10.1089/jmf.2017.0143] [PMID: 29648970]
[18]
Dutta, S.; Chakraborty, A.K.; Dey, P.; Kar, P.; Guha, P.; Sen, S.; Kumar, A.; Sen, A.; Chaudhuri, T.K. Amelioration of CCl4 induced liver injury in Swiss Albino mice by antioxidant rich leaf extract of croton bonplandianus baill. PLoS One, 2018, 13(4), e0196411.
[http://dx.doi.org/10.1371/journal.pone.0196411]
[19]
Kuras, L.D.; Erstenyuk, H.M. Energy supply of laboratory rats tissues at combined action of cadmium chloride and sodium nitrite. Bìol. Tvarin., 2020, 22(1), 10-14.
[http://dx.doi.org/10.15407/animbiol22.01.010]
[20]
Ganie, S.A.; Haq, E.; Hamid, A.; Qurishi, Y.; Mahmood, Z.; Zargar, B.A.; Masood, A.; Zargar, M.A. Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum. BMC Complement. Altern. Med., 2011, 11(17), 17.
[http://dx.doi.org/10.1186/1472-6882-11-17] [PMID: 21356055]
[21]
Khan, R.A. Protective effect of Launaea procumbens (L.) on lungs against CCl4-induced pulmonary damages in rat. BMC Complement. Altern. Med., 2012, 12(1), 133.
[http://dx.doi.org/10.1186/1472-6882-12-133] [PMID: 22909101]
[22]
Khan, R.A.; Khan, M.R.; Sahreen, S. Protective effect of sonchus asper extracts against experimentally induced lung injuries in rats: A novel study. Exp. Toxicol. Pathol., 2012, 64(7-8), 725-731.
[http://dx.doi.org/10.1016/j.etp.2011.01.007] [PMID: 21315567]
[23]
Kurt, A.; Tumkaya, L.; Yuce, S.; Turut, H.; Cure, M.C.; Sehitoglu, I.; Kalkan, Y.; Pusuroglu, G.; Cure, E. The protective effect of infliximab against carbon tetrachloride-induced acute lung injury. Iran. J. Basic Med. Sci., 2016, 19(6), 685-691.
[PMID: 27482351]
[24]
Gülcen, B.; Karaca, O.; Kus, M.A.; Çolakoğlu, S. Lung tissue damage in the experimental carbon tetrachloride toxicity and protective role of melatonin hormone: A light microscopic and biochemical study. Duzce Med. J., 2012, 14(3), 37-42.
[http://dx.doi.org/10.1186/1472-6882-11-17]
[25]
Taslidere, E.; Esrefoglu, M.; Elbe, H.; Cetin, A.; Ates, B. Protective effects of melatonin and quercetin on experimental lung injury induced by carbon tetrachloride in rats. Exp. Lung Res., 2014, 40(2), 59-65.
[http://dx.doi.org/10.3109/01902148.2013.866181] [PMID: 24447267]
[26]
Teschke, R. Liver injury by carbon tetrachloride intoxication in 16 patients treated with forced ventilation to accelerate toxin removal via the lungs: A clinical report. Toxics, 2018, 6(2), 1497-1510.
[http://dx.doi.org/10.3390/toxics6020025] [PMID: 29702608]
[27]
Al-Rasheed, N.M.; Al-Rasheed, N.M.; Faddah, L.M.; Mohamed, A.M.; Mohammad, R.A.; Al-Amin, M. Potential impact of silymarin in combination with chlorogenic acid and/or melatonin in combating cardiomyopathy induced by carbon tetrachloride. Saudi J. Biol. Sci., 2014, 21(3), 265-274.
[http://dx.doi.org/10.1016/j.sjbs.2013.09.006] [PMID: 24955012]
[28]
Hamed, H.; Gargouri, M.; Bellassoued, K.; Ghannoudi, Z.; Elfeki, A.; Gargouri, A. Cardiopreventive effects of camel milk against carbon tetrachloride induced oxidative stress, biochemical and histological alterations in mice. Arch. Physiol. Biochem., 2018, 124(3), 253-260.
[http://dx.doi.org/10.1080/13813455.2017.1395889] [PMID: 29108440]
[29]
Brown, D.A.; Perry, J.B.; Allen, M.E.; Sabbah, H.N.; Stauffer, B.L.; Shaikh, S.R.; Cleland, J.G.F.; Colucci, W.S.; Butler, J.; Voors, A.A.; Anker, S.D.; Pitt, B.; Pieske, B.; Filippatos, G.; Greene, S.J.; Gheorghiade, M. Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol., 2017, 14(4), 238-250.
[http://dx.doi.org/10.1038/nrcardio.2016.203] [PMID: 28004807]
[30]
Cynober, L. Metabolism of dietary glutamate in adults. Ann. Nutr. Metab., 2018, 73(Suppl. 5), 5-14.
[http://dx.doi.org/10.1159/000494776] [PMID: 30508813]
[31]
Xue, H.; Field, C.J. New role of glutamate as an immunoregulator via glutamate receptors and transporters. Front. Biosci. (Schol. Ed.), 2011, 3(1), 1007-1020.
[http://dx.doi.org/10.2741/205] [PMID: 21622250]
[32]
Salyha, N. Effects of L-glutamic acid and pyridoxine on glutathione depletion and lipid peroxidation generated by epinephrine-induced stress in rats. Ukr. Biochem. J., 2018, 90(4), 102-110.
[http://dx.doi.org/10.15407/ubj90.04.102]
[33]
Hou, Y.; Wu, G. L-Glutamate nutrition and metabolism in swine. Amino Acids, 2018, 50(11), 1497-1510.
[http://dx.doi.org/10.1007/s00726-018-2634-3] [PMID: 30116978]
[34]
Salyha, N.O. Effect of glutamic acid and cysteine on oxidative stress markers in rats. Ukr. Biochem. J., 2020, 92(6), 39-46.
[http://dx.doi.org/10.15407/ubj92.06.165]
[35]
Tomé, D. The roles of dietary glutamate in the intestine. Ann. Nutr. Metab., 2018, 73(5)(Suppl. 5), 15-20.
[http://dx.doi.org/10.1159/000494777] [PMID: 30508814]
[36]
Magi, S.; Piccirillo, S.; Amoroso, S. The dual face of glutamate: From a neurotoxin to a potential survival factor-metabolic implications in health and disease. Cell. Mol. Life Sci., 2019, 76(8), 1473-1488.
[http://dx.doi.org/10.1007/s00018-018-3002-x] [PMID: 30599069]
[37]
Salyha, N.; Salyha, Y. Protective role of l-glutamic acid and l-cysteine in mitigation the chlorpyrifos-induced oxidative stress in rats. Environ. Toxicol. Pharmacol., 2018, 64, 155-163.
[http://dx.doi.org/10.1016/j.etap.2018.10.010] [PMID: 30412861]
[38]
Tabassum, S.; Ahmad, S.; Madiha, S.; Shahzad, S.; Batool, Z.; Sadir, S.; Haider, S. Free L-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats. Sci. Rep., 2020, 10(1), 11206.
[http://dx.doi.org/10.1038/s41598-020-68041-y] [PMID: 32641780]
[39]
Albarracin, S.L.; Baldeon, M.E.; Sangronis, E.; Petruschina, A.C.; Reyes, F.G.R. L-glutamate: A key amino acid for senory and metabolic functions. Arch. Latinoam. Nutr., 2016, 66(2), 101-112.
[PMID: 29737666]
[40]
Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta, 2013, 1830(5), 3143-3153.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.008] [PMID: 22995213]
[41]
Salyha, N.O. [Activity of the glutathione system of antioxidant defense in rats under the action of L-glutamic acid]. Ukr. Biokhim. Zh., 2013, 85(4), 40-47.
[http://dx.doi.org/10.15407/ubj85.04.040] [PMID: 24319971]
[42]
Rosalovsky, V.P.; Grabovska, S.V.; Salyha, Y.T. Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure. Ukr. Biochem. J., 2015, 87(5), 124-132.
[http://dx.doi.org/10.15407/ubj87.05.124] [PMID: 26717603]
[43]
Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in theentire antioxidant defence grid. Alex. J. Med., 2018, 54, 287-293.
[44]
Walker, M.C.; van der Donk, W.A. The many roles of glutamate in metabolism. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 419-430.
[http://dx.doi.org/10.1007/s10295-015-1665-y] [PMID: 26323613]
[45]
Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients, 2018, 10(11), 1564.
[http://dx.doi.org/10.3390/nu10111564] [PMID: 30360490]
[46]
Ballester, M.; Sentandreu, E.; Luongo, G.; Santamaria, R.; Bolonio, M.; Isabel, M.; Balaguer, A. Glutamine/glutamate metabolism rewiring in reprogrammed human hepatocyte-like cells. Sci. Rep., 2019, 9(17978), 1-12.
[47]
Young, V.R.; Ajami, A.M. Glutamate: An amino acid of particular distinction. J. Nutr., 2000, 130(4S Suppl), 892S-900S.
[http://dx.doi.org/10.1093/jn/130.4.892S] [PMID: 10736349]
[48]
Almeida, E.B.; Santos, J.M.; Paixão, V.; Amaral, J.B.; Foster, R. L-Glutamine supplementation improves the benefits of combined-exercise training on oral redox balance and inflammatory status in elderly individuals. Oxid. Med. Cell. Longev., 2020, 2020, 2852181.
[http://dx.doi.org/10.1155/2020/2852181]
[49]
Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med., 2020, 52(9), 1496-1516.
[http://dx.doi.org/10.1038/s12276-020-00504-8] [PMID: 32943735]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy