Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

General Research Article

TROP2 下调 DSG2 通过 EGFR/AKT 和 DSG2/PG/β-Catenin 通路促进胃癌细胞侵袭和迁移

卷 22, 期 8, 2022

发表于: 09 June, 2022

页: [691 - 702] 页: 12

弟呕挨: 10.2174/1568009622666220407111013

价格: $65

Open Access Journals Promotions 2
摘要

背景:胃癌(GC)是全球第四大常见癌症,也是癌症相关死亡的第二大原因。 TROP2 过表达与许多癌症密切相关,包括胃肠道肿瘤。 DSG2是细胞粘附中的重要蛋白质,其缺失影响细胞迁移。 目的与目的:本研究旨在探讨TROP2促进胃癌发生的具体机制,为胃癌的防治提供依据。 方法:DSG2通过免疫共沉淀和质谱鉴定为GC细胞中TROP2的相互作用蛋白。用 TROP2 过压或敲低研究了 TROP2 对 DSG2 表达的调节行为。由 DSG2 介导的细胞 - 细胞粘附能力通过粘附相关测定进行评估。进行电子显微镜观察以访问GC肿瘤桥粒组装。通过蛋白质印迹评估 EGFR/AKT 和 DSG2/PG/β-连环蛋白途径中的蛋白质。 结果:本研究表明, 胃癌细胞中 TROP2 的大量表达降低了 DSG2 水平以及桥粒粘附, 增加了细胞侵袭和迁移, 并通过 EGFR/AKT 和 DSG2/PG/β-catenin 途径促进了恶性进展。 结论:TROP2通过EGFR/AKT和DSG2/PG/β-catenin通路降低DSG2表达,促进胃癌细胞侵袭和迁移。

关键词: TROP2、DSG2、胃癌、桥粒、粘附、相互作用蛋白。

« Previous
图形摘要
[1]
Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet, 2016, 388(10060), 2654-2664.
[http://dx.doi.org/10.1016/S0140-6736(16)30354-3] [PMID: 27156933]
[2]
Zong, L.; Abe, M.; Seto, Y.; Ji, J. The challenge of screening for early gastric cancer in China. Lancet, 2016, 388(10060), 2606.
[http://dx.doi.org/10.1016/S0140-6736(16)32226-7] [PMID: 27894662]
[3]
Song, Z.; Wu, Y.; Yang, J.; Yang, D.; Fang, X. Progress in the treatment of advanced gastric cancer. Tumour Biol., 2017, 39(7), 1010428317714626.
[http://dx.doi.org/10.1177/1010428317714626] [PMID: 28671042]
[4]
Figueiredo, C.; Camargo, M.C.; Leite, M.; Fuentes-Pananá, E.M.; Rabkin, C.S.; Machado, J.C. Pathogenesis of gastric cancer: Genetics and molecular classification. Curr. Top. Microbiol. Immunol., 2017, 400, 277-304.
[http://dx.doi.org/10.1007/978-3-319-50520-6_12] [PMID: 28124158]
[5]
McDougall, A.R.A.; Tolcos, M.; Hooper, S.B.; Cole, T.J.; Wallace, M.J. Trop2: From development to disease. Dev. Dyn., 2015, 244(2), 99-109.
[http://dx.doi.org/10.1002/dvdy.24242] [PMID: 25523132]
[6]
Shvartsur, A.; Bonavida, B. Trop2 and its overexpression in cancers: Regulation and clinical/therapeutic implications. Genes Cancer, 2015, 6(3-4), 84-105.
[http://dx.doi.org/10.18632/genesandcancer.40] [PMID: 26000093]
[7]
Mühlmann, G.; Spizzo, G.; Gostner, J.; Zitt, M.; Maier, H.; Moser, P.; Gastl, G.; Zitt, M.; Müller, H.M.; Margreiter, R.; Ofner, D.; Fong, D. TROP2 expression as prognostic marker for gastric carcinoma. J. Clin. Pathol., 2009, 62(2), 152-158.
[http://dx.doi.org/10.1136/jcp.2008.060590] [PMID: 18930986]
[8]
Bardia, A.; Mayer, I.A.; Diamond, J.R.; Moroose, R.L.; Isakoff, S.J.; Starodub, A.N.; Shah, N.C.; O’Shaughnessy, J.; Kalinsky, K.; Guarino, M.; Abramson, V.; Juric, D.; Tolaney, S.M.; Berlin, J.; Messersmith, W.A.; Ocean, A.J.; Wegener, W.A.; Maliakal, P.; Sharkey, R.M.; Govindan, S.V.; Goldenberg, D.M.; Vahdat, L.T. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J. Clin. Oncol., 2017, 35(19), 2141-2148.
[http://dx.doi.org/10.1200/JCO.2016.70.8297] [PMID: 28291390]
[9]
McDougall, A.R.; Hooper, S.B.; Zahra, V.A.; Cole, T.J.; Lo, C.Y.; Doran, T.; Wallace, M.J. Trop2 regulates motility and lamellipodia formation in cultured fetal lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 305(7), L508-L521.
[http://dx.doi.org/10.1152/ajplung.00160.2012] [PMID: 23893297]
[10]
Delva, E.; Tucker, D.K.; Kowalczyk, A.P. The desmosome. Cold Spring Harb. Perspect. Biol., 2009, 1(2), a002543.
[http://dx.doi.org/10.1101/cshperspect.a002543] [PMID: 20066089]
[11]
Wang, C.E.; Yumul, R.C.; Lin, J.; Cheng, Y.; Lieber, A.; Pun, S.H. Junction opener protein increases nanoparticle accumulation in solid tumors. J. Control. Release, 2018, 272, 9-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.032] [PMID: 29305923]
[12]
Chidgey, M.; Dawson, C. Desmosomes: A role in cancer? Br. J. Cancer, 2007, 96(12), 1783-1787.
[http://dx.doi.org/10.1038/sj.bjc.6603808] [PMID: 17519903]
[13]
Brooke, M.A.; Nitoiu, D.; Kelsell, D.P. Cell-cell connectivity: Desmosomes and disease. J. Pathol., 2012, 226(2), 158-171.
[http://dx.doi.org/10.1002/path.3027] [PMID: 21989576]
[14]
Dusek, R.L.; Attardi, L.D. Desmosomes: New perpetrators in tumour suppression. Nat. Rev. Cancer, 2011, 11(5), 317-323.
[http://dx.doi.org/10.1038/nrc3051] [PMID: 21508970]
[15]
Nekrasova, O.E.; Amargo, E.V.; Smith, W.O.; Chen, J.; Kreitzer, G.E.; Green, K.J. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J. Cell Biol., 2011, 195(7), 1185-1203.
[http://dx.doi.org/10.1083/jcb.201106057] [PMID: 22184201]
[16]
Yang, L.; Lee, M.M.; Leung, M.M.; Wong, Y.H. Regulator of G protein signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion. Cell. Signal., 2016, 28(11), 1663-1672.
[http://dx.doi.org/10.1016/j.cellsig.2016.07.017] [PMID: 27495875]
[17]
Lin, Y.; Peng, N.; Zhuang, H.; Zhang, D.; Wang, Y.; Hua, Z.C. Heat shock proteins HSP70 and MRJ cooperatively regulate cell adhesion and migration through urokinase receptor. BMC Cancer, 2014, 14, 639.
[http://dx.doi.org/10.1186/1471-2407-14-639] [PMID: 25175595]
[18]
Rötzer, V.; Hartlieb, E.; Vielmuth, F.; Gliem, M.; Spindler, V.; Waschke, J. E-cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion. Cell. Mol. Life Sci., 2015, 72(24), 4885-4897.
[http://dx.doi.org/10.1007/s00018-015-1977-0] [PMID: 26115704]
[19]
Thomas, P.; Smart, T.G. HEK293 cell line: A vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods, 2005, 51(3), 187-200.
[http://dx.doi.org/10.1016/j.vascn.2004.08.014] [PMID: 15862464]
[20]
Chrétien, D.; Bénit, P.; Ha, H.H.; Keipert, S.; El-Khoury, R.; Chang, Y.T.; Jastroch, M.; Jacobs, H.T.; Rustin, P.; Rak, M. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol., 2018, 16(1), e2003992.
[http://dx.doi.org/10.1371/journal.pbio.2003992] [PMID: 29370167]
[21]
Wen, L.; Voronina, S.; Javed, M.A.; Awais, M.; Szatmary, P.; Latawiec, D.; Chvanov, M.; Collier, D.; Huang, W.; Barrett, J.; Begg, M.; Stauderman, K.; Roos, J.; Grigoryev, S.; Ramos, S.; Rogers, E.; Whitten, J.; Velicelebi, G.; Dunn, M.; Tepikin, A.V.; Criddle, D.N.; Sutton, R. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology, 2015, 149(2), 481-92.e7.
[http://dx.doi.org/10.1053/j.gastro.2015.04.015] [PMID: 25917787]
[22]
Zhao, W.; Zhu, H.; Zhang, S.; Yong, H.; Wang, W.; Zhou, Y.; Wang, B.; Wen, J.; Qiu, Z.; Ding, G.; Feng, Z.; Zhu, J. Trop2 is overexpressed in gastric cancer and predicts poor prognosis. Oncotarget, 2016, 7(5), 6136-6145.
[http://dx.doi.org/10.18632/oncotarget.6733] [PMID: 26716416]
[23]
Inamura, K.; Yokouchi, Y.; Kobayashi, M.; Ninomiya, H.; Sakakibara, R.; Subat, S.; Nagano, H.; Nomura, K.; Okumura, S.; Shibutani, T.; Ishikawa, Y. Association of tumor TROP2 expression with prognosis varies among lung cancer subtypes. Oncotarget, 2017, 8(17), 28725-28735.
[http://dx.doi.org/10.18632/oncotarget.15647] [PMID: 28404926]
[24]
Zimmers, S.M.; Browne, E.P.; Williams, K.E.; Jawale, R.M.; Otis, C.N.; Schneider, S.S.; Arcaro, K.F. TROP2 methylation and expression in tamoxifen-resistant breast cancer. Cancer Cell Int., 2018, 18, 94.
[http://dx.doi.org/10.1186/s12935-018-0589-9] [PMID: 30002602]
[25]
Wu, B.; Yu, C.; Zhou, B.; Huang, T.; Gao, L.; Liu, T.; Yang, X. Overexpression of TROP2 promotes proliferation and invasion of ovarian cancer cells. Exp. Ther. Med., 2017, 14(3), 1947-1952.
[http://dx.doi.org/10.3892/etm.2017.4788] [PMID: 28962108]
[26]
Kröger, C.; Loschke, F.; Schwarz, N.; Windoffer, R.; Leube, R.E.; Magin, T.M. Keratins control intercellular adhesion involving PKC-α-mediated desmoplakin phosphorylation. J. Cell Biol., 2013, 201(5), 681-692.
[http://dx.doi.org/10.1083/jcb.201208162] [PMID: 23690176]
[27]
Dieding, M.; Debus, J.D.; Kerkhoff, R.; Gaertner-Rommel, A.; Walhorn, V.; Milting, H.; Anselmetti, D. Arrhythmogenic cardiomyopathy related DSG2 mutations affect desmosomal cadherin binding kinetics. Sci. Rep., 2017, 7(1), 13791.
[http://dx.doi.org/10.1038/s41598-017-13737-x] [PMID: 29062102]
[28]
Overmiller, A.M.; Pierluissi, J.A.; Wermuth, P.J.; Sauma, S.; Martinez-Outschoorn, U.; Tuluc, M.; Luginbuhl, A.; Curry, J.; Harshyne, L.A.; Wahl, J.K., III; South, A.P.; Mahoney, M.G. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J., 2017, 31(8), 3412-3424.
[http://dx.doi.org/10.1096/fj.201601138RR] [PMID: 28438789]
[29]
Chenchen Zhu, H.J.W.D. Activation of p38/HSP27 pathway counters melatonin-induced inhibitory effect on proliferation of human gastric cancer cells. J. Biomed. Res., 2019, 33, 317-324.
[30]
Brennan, D.; Peltonen, S.; Dowling, A.; Medhat, W.; Green, K.J.; Wahl, J.K., III; Del Galdo, F.; Mahoney, M.G. A role for caveolin-1 in desmoglein binding and desmosome dynamics. Oncogene, 2012, 31(13), 1636-1648.
[http://dx.doi.org/10.1038/onc.2011.346] [PMID: 21841821]
[31]
Galbiati, F.; Volonte, D.; Brown, A.M.C.; Weinstein, D.E.; Ben-Ze’ev, A.; Pestell, R.G.; Lisanti, M.P. Caveolin-1 expression inhibits Wnt/β-catenin/Lef-1 signaling by recruiting β-catenin to caveolae membrane domains. J. Biol. Chem., 2000, 275(30), 23368-23377.
[http://dx.doi.org/10.1074/jbc.M002020200] [PMID: 10816572]
[32]
Chen, J.; Nekrasova, O.E.; Patel, D.M.; Klessner, J.L.; Godsel, L.M.; Koetsier, J.L.; Amargo, E.V.; Desai, B.V.; Green, K.J. The C-terminal unique region of desmoglein 2 inhibits its internalization via tail-tail interactions. J. Cell Biol., 2012, 199(4), 699-711.
[http://dx.doi.org/10.1083/jcb.201202105] [PMID: 23128240]
[33]
Klessner, J.L.; Desai, B.V.; Amargo, E.V.; Getsios, S.; Green, K.J. EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol. Biol. Cell, 2009, 20(1), 328-337.
[http://dx.doi.org/10.1091/mbc.e08-04-0356] [PMID: 18987342]
[34]
Kottke, M.D.; Delva, E.; Kowalczyk, A.P. The desmosome: Cell science lessons from human diseases. J. Cell Sci., 2006, 119(Pt 5), 797-806.
[http://dx.doi.org/10.1242/jcs.02888] [PMID: 16495480]
[35]
Chitaev, N.A.; Leube, R.E.; Troyanovsky, R.B.; Eshkind, L.G.; Franke, W.W.; Troyanovsky, S.M. The binding of plakoglobin to desmosomal cadherins: Patterns of binding sites and topogenic potential. J. Cell Biol., 1996, 133(2), 359-369.
[http://dx.doi.org/10.1083/jcb.133.2.359] [PMID: 8609168]
[36]
Cai, F.; Zhu, Q.; Miao, Y.; Shen, S.; Su, X.; Shi, Y. Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown suppresses NSCLC growth by regulation of p27 and CDK2. J. Cancer Res. Clin. Oncol., 2017, 143(1), 59-69.
[http://dx.doi.org/10.1007/s00432-016-2250-0] [PMID: 27629878]
[37]
Breuninger, S.; Reidenbach, S.; Sauer, C.G.; Ströbel, P.; Pfitzenmaier, J.; Trojan, L.; Hofmann, I. Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: Implications for diagnosis and tumor progression. Am. J. Pathol., 2010, 176(5), 2509-2519.
[http://dx.doi.org/10.2353/ajpath.2010.090737] [PMID: 20348237]
[38]
Hütz, K.; Zeiler, J.; Sachs, L.; Ormanns, S.; Spindler, V. Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells. Mol. Carcinog., 2017, 56(8), 1884-1895.
[http://dx.doi.org/10.1002/mc.22644] [PMID: 28277619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy