[4]
Lundberg, A. Transcriptional gene signatures: Passing the restriction point for routine clinical implementation. Phd Thesis: Uni of California, SanFrancisco. 2019.
[8]
Ponraj, D.N.; Jenifer, M.E.; Poongodi, P.; Manoharan, J.S. A survey on the preprocessing techniques of mammogram for the detection of breast cancer. J. Emerg.Trends Comput. Inform. Sci., 2011, 2(12), 656-664.
[12]
Ramani, R.; Suthanthiravanitha, S.; Valarmathy, S. A survey of current image segmentation techniques for detection of breast cancer. Int. J. Eng. Res. Appl., 2012, 2(5), 1124-1129. [IJERA]
[13]
Ramani, R.; Valarmathy, S.; Vanitha, N.S. Breast cancer detection in mammograms based on clustering techniques-a survey. Int. J. Comput. Appl., 2013, 62(11), 17-21.
[14]
Heath, M.; Bowyer, K.; Kopans, D.; Kegelmeyer, P.; Moore, R.; Chang, K. Current status of the digital database for screening mammography. In: Digital mammography; Springer: Dordrecht, 1998; pp. 457-460.
[16]
SUCKLING, J P. The mammographic image analysis society digital mammogram database. Digital Mammo 1994, 375-386.
[17]
Lopez, M.G.; Posada, N.; Moura, D.C.; Pollán, R.R.; Valiente, J.M.F.; Ortega, C.S. BCDR: A breast cancer digital repository. In: 15th International conference on experimental mechanics; , 2012; pp. 1065-1066.
[21]
Augusto, GB Multiple Kernel Learning for Breast Cancer Classification, 2014.
[23]
Gardner, W.D. Breast Cancer database provides faster access to patient record. Grid technology is at the heart of this massive database that holds over a million mammography images. Information Week, 2005.
[24]
Halling-Brown, M.D.; Warren, L.M.; Ward, D.; Lewis, E.; Mackenzie, A.; Wallis, M.G. OPTIMAM Mammography image database: A large scale resource of mammography images and clinical data. Radiol: Artf. Intell, 2020, 3(1)
[26]
Elmoufidi, A. Pre-processing algorithms on digital X-ray mammograms. IEEE International Smart Cities Conference (ISC2); IEEE, 2019.
[27]
Lu, H.C.; Loh, E.W.; Huang, S.C. The classification of mammogram using convolutional neural network with specific image preprocessing for breast cancer detection. 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD) IEEE, 2019.
[29]
Sundaram, K.M.; Sasikala, D.; Rani, P.A. A study on preprocessing a mammogram image using adaptive median filter. Int. J. Innov. Res. Sci. Eng. Technol., 2014, 3(3), 10333-10337.
[32]
Moghbel, M.; Ooi, C.Y.; Ismail, N.; Hau, Y.W.; Memari, N. A review of breast boundary and pectoral muscle segmentation methods in computer-aided detection/diagnosis of breast mammography. Artif. Intell. Rev., 2019, 1-46.
[33]
Rahimeto, S.; Debelee, T.G.; Yohannes, D.; Schwenker, F. Automatic pectoral muscle removal in mammograms. Evol. Syst., 2019, 1-8.
[48]
Kumar, S.; Chandra, M. Detection of microcalcification using the wavelet based adaptive sigmoid function and neural network. JIPS, 2017, 13(4), 703-715.
[51]
Yu, Z.; Bajaj, C. A fast and adaptive method for image contrast enhancement. In: International Conference on Image Processing IEEE; , 2004; 1, pp. 1001-1004.
[54]
Dabass, J.; Arora, S.; Vig, R.; Hanmandlu, M. Mammogram image enhancement using entropy and CLAHE based intuitionistic fuzzy method. 6th International Conference on Signal Processing and Integrated Networks IEEE, 2019, 24-29.
[55]
Muneeswaran, V.; Rajasekaran, M.P. Local contrast regularized contrast limited adaptive histogram equalization using tree seed algorithm-An aid for mammogram images enhancement. In: Smart Intelligent Computing and Applications; Springer: Singapore, 2019; pp. 693-701.
[60]
Chan, N.H.; Hasikin, K.; Kadri, N.A. An improved enhancement technique for mammogram image analysis: A fuzzy rule-based approach of contrast enhancement. In: 15th International Colloquium on Signal Processing & Its Applications; IEEE , 2019; pp. 202-206.
[63]
Chen, Z.; Zwiggelaar, R. Segmentation of the breast region with pectoral muscle removal in mammograms. Medical Image Understanding and Analysis; MIUA, 2010, pp. 71-76.
[64]
Wang, K.; Qin, H.; Fisher, P.R.; Zhao, W. Automatic Registration of Mammograms using Texture-based Anisotropic Features. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro; , 2006; pp. 64-867.
[71]
Sasikala, S.; Bharathi, M.; Ezhilarasi, M.; Arunkumar, S. Breast cancer detection based on medio-lateral obliqueview and craniocaudal view mammograms: An overview. IEEE 10th International Conference on Awareness Science and Technology; IEEE, 2019.
[73]
Wirth, M.A.; Narhan, J.; Gray, D.W. Nonrigid mammogram registration using mutual information. In: Medical Imaging 2002: Image Processing; International Society for Optics and Photonics, 2002; pp. 562-573.
[79]
Li, L.; Qian, W.; Clarke, L.P.; Clark, R.A.; Thomas, J.A. Improving mass detection by adaptive and multiscale processing in digitized mammograms. In: Medical Imaging 1999: Image Processing; International Society for Optics and Photonics, 1999; p. 3661.
[81]
Zhang, Y.; Tomuro, N.; Furst, J.; Raicu, D.S. Image enhancement and edge-based mass segmentation in mammogram. In: Medical Imaging 2010: Image Processing; International Society for Optics and Photonics, 2010; p. 7623.
[84]
Bharadwaj, A.S.; Celenk, M. Detection of microcalcification with top-hat transform and the Gibbs random fields. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society., IEEE 2015. 2015, 6382-5.
[87]
D’Elia, C.; Marrocco, C.; Molinara, M.; Poggi, G.; Scarpa, G.; Tortorella, F. Detection of microcalcifications clusters in mammograms through TS-MRF segmentation and SVM-based classification. Proceedings of the 17th International Conference on Pattern Recognition IEEE, 2004.
[102]
Le, T.L.T.; Thome, N.; Bernard, S.; Bismuth, V.; Patoureaux, F. Multitask classification and segmentation for cancer diagnosis in mammography., 2019.
[103]
Min, H.; Wilson, D.; Huang, Y.; Liu, S.; Crozier, S.; Bradley, A.P. Fully automatic computer-aided mass detection and segmentation via pseudo-color mammograms and Mask R-CNN. In: IEEE 17th International Symposium on Biomedical Imaging (ISBI) IEEE; , 2020; pp. 1111-1115.
[109]
Breast cancer screening using convolutional neural network and follow-up digital mammography. Zheng, Y.; Yang, C.; Merkulov, A., Eds; Computational Imaging, I.I.I., Ed.; International Society for Optics and Photonics, 2018.
[111]
Lévy, D.; Jain, A. Breast mass classification from mammograms using deep convolutional neural networks; Cornell University, 2016.
[114]
Sert, E.; Ertekin, S.; Halici, U. Ensemble of convolutional neural networks for classification of breast microcalcification from mammograms. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE; , 2017; pp. 689-692.
[115]
Chen, Y.; Zhang, Q.; Wu, Y.; Liu, B.; Wang, M.; Lin, Y. Fine-tuning resnet for breast cancer classification from mammography. In: The International Conference on Healthcare Science and Engineering; , 2018; pp. 83-96.
[117]
Dhungel, N.; Carneiro, G.; Bradley, A.P. Fully automated classification of mammograms using deep residual neural networks. In IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) IEEE, 2017, vol. 11731
[120]
Soriano, D.; Aguilar, C.; Ramirez-Morales, I.; Tusa, E.; Rivas, W.; Pinta, M. Mammogram classification schemes by using convolutional neural networks. In: International Conference on Technology Trends; , 2017; p. 798.
[126]
Adedigba, A.P.; Adeshinat, S.A.; Aibinu, A.M. Deep learning-based mammogram classification using small dataset. In: 2019 15th International Conference on Electronics, Computer and Computation (ICECCO); IEEE , 2019; pp. 1-6.
[130]
Uppal, MTN Classification of mammograms for breast cancer detection using fusion of discrete cosine transform and discrete wavelet transform features. Biomed. Res., 2016, 27(2)
[132]
Lotter, W.; Sorensen, G.; Cox, D. A multi-scale CNN and curriculum learning strategy for mammogram classification. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer, 2017, pp. 169-177.
[133]
Wu, E.; Wu, K.; Cox, D.; Lotter, W. Conditional infilling GANs for data augmentation in mammogram classification. Image Analysis for Moving Organ, Breast, and Thoracic Images; Springer, 2018, pp. 98-106.