Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Bioinformatics

Evaluating the Potential of Adathoda vasica against Respiratory Infection caused by Klebsiella pneumoniae

Author(s): Sharly Elgal Nirmal Kumar, John Marshal Jayaraj, Karthikeyan Muthusamy, Jasmine Ranjan Samuel* and Gopinath Krishnasamy*

Volume 2, Issue 5, 2022

Published on: 09 June, 2022

Page: [372 - 381] Pages: 10

DOI: 10.2174/2210298102666220406120341

Open Access Journals Promotions 2
Abstract

Background: Adathoda vasica is the most well-known medicinal herb to treat respiratory conditions. The leaves of Adathoda vasica have been found to exert a stimulant effect on the respiratory system. Adathoda vasica leaves contain rich content of alkaloids that contribute to most of the pharmacological activity.

Objective: This study aimed to evaluate the effectiveness of Adathoda vasica extract against the respiratory pathogen Klebsiella pneumoniae in vivo and an animal model.

Methods: The effectiveness of the A. vasica extracts to inhibit the chief respiratory pathogen, K. pneumoniae, in vivo using CFU assay was carried out in animal models. The bioactive compounds were screened through GC-MS and were docked with FIMG protein and COVID-19 proteins to assess the efficacy of the compounds against respiratory infection.

Results: The result revealed A. vasica as an effective herb against respiratory infection. The ethanol extract of A. vasica was subjected to GC-MS analysis. Based on the percentage of peak area, three compounds were chosen for docking analysis for FIMG and SARS-CoV-2 proteins, which revealed higher binding affinity and interacted with the residues. The greater ZOI by disc diffusion assay and reduced CFU in plant-treated rat lung tissues confirmed the antibacterial potential of A. vasica against K. pneumoniae.

Conclusion: The bioactive compounds of A. vasica leaves could be promising candidates to treat respiratory infections caused by K. pneumoniae.

Keywords: Adathoda vasica, phytochemical, CFU, COVID-19, Klebsiella pneumoniae, molecular docking.

Graphical Abstract
[1]
Abdulhasan, G.A. The biological effect of Rosmarinus of-ficinelis L. essential oil on biofilm formation and some fim-brial genes (fimH-1 and mrkD) of Klebseilla pneumoniae. Iraqi J. Sci., 2015, 56, 2553-2560.
[2]
Kumar, A. Vipin; Kumar, R.; Singh, L.; Chauhan, Sweety S., Pharmacognostic study and establishment of quality parame-ters of leaves of Adathoda vasica (L.). J. Med. Plants Stud., 2013, 1, 35-40.
[3]
Nair, R.; Chanda, S. Activity of some medicinal plants against certain pathogenic bacterial strains. Indian J. Pharmacol., 2006, 38(2), 142-144.
[http://dx.doi.org/10.4103/0253-7613.24625]
[4]
Bhaskar, K. Phytochemical composition, antioxidant, antimi-crobial and cytotoxic potential of methanolic extracts of Adahtoda vasica (Acanthaceae), research. J. Pharm. Teach., 2011, 6, 974.
[5]
Berendt, R.F.; Long, G.G.; Abeles, F.B.; Canonico, P.G.; El-well, M.R.; Powanda, M.C. Pathogenesis of respiratory Klebsiella pneumoniae infection in rats: Bacteriological and histological findings and metabolic alterations. Infect. Immun., 1977, 15(2), 586-593.
[http://dx.doi.org/10.1128/iai.15.2.586-593.1977]
[6]
Bhatti, V.; Kwatra, K.S.; Puri, S.; Calton, N. Histopathological spectrum and immunohistochemical profile of lung carcino-mas: A 9-year study from a tertiary hospital in North India. Int. J. Appl. Basic Med. Res., 2019, 9(3), 169-175.
[http://dx.doi.org/10.4103/ijabmr.IJABMR_66_19] [PMID: 31392181]
[7]
Chakraborty, A.; Brantner, A.H. Study of alkaloids from Adhatoda vasica Nees on their anti-inflammatory activity. Phytother. Res., 2001, 15(6), 532-534.
[http://dx.doi.org/10.1002/ptr.737] [PMID: 11536385]
[8]
Claeson, U.P.; Malmfors, T.; Wikman, G.; Bruhn, J.G. Adhatoda vasica: A critical review of ethnopharmacological and toxicological data. J. Ethnopharmacol., 2000, 72(1-2), 1-20.
[http://dx.doi.org/10.1016/S0378-8741(00)00225-7] [PMID: 10967448]
[9]
Lau, S.K.P.; Woo, P.C.Y.; Yip, C.C.Y.; Tse, H.; Tsoi, H.W.; Cheng, V.C.C.; Lee, P.; Tang, B.S.; Cheung, C.H.; Lee, R.A.; So, L.Y.; Lau, Y.L.; Chan, K.H.; Yuen, K.Y. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J. Clin. Microbiol., 2006, 44(6), 2063-2071.
[http://dx.doi.org/10.1128/JCM.02614-05] [PMID: 16757599]
[10]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein. J. Curr. Know. Virol., 2019, 16, 1-22.
[11]
Duraipandiyan, V.; Al-Dhabi, N.A.; Balachandran, C.; Igna-cimuthu, S.; Sankar, C.; Balakrishna, K. Antimicrobial, anti-oxidant, and cytotoxic properties of vasicine acetate synthe-sized from vasicine isolated from Adhatoda vasica L. BioMed Res. Int., 2015, 2015, 727304.
[http://dx.doi.org/10.1155/2015/727304] [PMID: 25632399]
[12]
Webb, R.L.; Schiering, N.; Sedrani, R.; Maibaum, J. Direct renin inhibitors as a new therapy for hypertension. J. Med. Chem., 2010, 53(21), 7490-7520.
[http://dx.doi.org/10.1021/jm901885s] [PMID: 20731374]
[13]
Parihar, L.; Sharma, L.; Kapoor, P.; Parihar, P. Detection of antioxidant, immunomodulatory and antimicrobial activity of Amomum aromaticum against Klebsiella pneumoniae. J. Pharm. Res., 2012, 5(2), 901-905.
[http://dx.doi.org/10.15698/cst2020.04.216]
[14]
Raoult, D.; Zumla, A.; Locatelli, F.; Ippolito, G.; Kroemer, G. Coronavirus infections: Epidemiological, clinical and immu-nological features and hypotheses. Cell Stress, 2020, 4(4), 66-75.
[http://dx.doi.org/10.15698/cst2020.04.216] [PMID: 32292881]
[15]
Ribeiro, S.M.; Cardoso, M.H.; Cândido, E.S.; Franco, O.L. Understanding, preventing and eradicating Klebsiella pneu-moniae biofilms. Future Microbiol., 2016, 11(4), 527-538.
[http://dx.doi.org/10.2217/fmb.16.7] [PMID: 27064296]
[16]
Vladimir, P.; Berishvili, P.; Alexander, N. Kuimov, Discovery of novel tankyrase inhibitors through molecular docking-based virtual screening and molecular dynamics simulation studies. Molecules, 2020, 25(14), 3171.
[http://dx.doi.org/10.3390/molecules25143171]
[17]
Liu, J.; Feng, K.; Ren, Y. In silico studies on potential TNKS inhibitors: A combination of pharmacophore and 3D-QSAR modelling, virtual screening, molecular docking and molecular dynamics. J. Biomol. Struct. Dyn., 2019, 37(14), 3803-3821.
[http://dx.doi.org/10.1080/07391102.2018.1528887] [PMID: 30261821]
[18]
Zarei, A.; Hulley, P.A.; Sabokbar, A.; Javaid, M.K.; Morovat, A. 25-Hydroxy- and 1α,25-dihydroxycholecalciferol have greater potencies than 25-Hydroxy- and 1α,25-dihydroxyergocalciferol in modulating cultured human and mouse osteoblast activities. PLoS One, 2016, 11(11), e0165462.
[http://dx.doi.org/10.1371/journal.pone.0165462] [PMID: 27893751]
[19]
Nagamani, S.; Muthusamy, K. A theoretical insight to under-stand the molecular mechanism of dual target ligand CTA-018 in the chronic kidney disease pathogenesis. PLoS One, 2018, 13(10), e0203194.
[http://dx.doi.org/10.1371/journal.pone.0203194] [PMID: 30286109]
[20]
Kumar, M.; Dandapat, S.; Kumar, A.; Sinha, M.P. Pharmaco-logical screening of leaf extract of Adhatoda vasica for thera-peutic efficacy. Glob. J. Pharmacol., 2014, 8(4), 494-500.
[http://dx.doi.org/10.5829/idosi.gjp.2014.8.4.8419]

© 2024 Bentham Science Publishers | Privacy Policy