Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Impact of Previous Pulmonary Tuberculosis on Chronic Obstructive Pulmonary Disease: Baseline Results from a Prospective Cohort Study

Author(s): Yide Wang, Zheng Li and Fengsen Li*

Volume 26, Issue 1, 2023

Published on: 31 May, 2022

Page: [93 - 102] Pages: 10

DOI: 10.2174/1386207325666220406111435

open access plus

conference banner
Abstract

Objective: Pulmonary tuberculosis (PTB) is a significant risk factor for COPD, and Xinjiang, China, has a high incidence of pulmonary tuberculosis. The effects of tuberculosis history on airflow restriction, clinical symptoms, and acute episodes in COPD patients have not been reported in the local population. Besides, the exact relationship between lung function changes in people with a history of tuberculosis and COPD risk is not clear.

Methods: This study is based on the Xinjiang baseline survey data included in the Natural Population Cohort Study in Northwest China from June to December, 2018. Subjects' questionnaires, physical examination, and lung function tests were performed through a face-to-face field survey to analyze the impact of previous pulmonary tuberculosis on local COPD. Furthermore, we clarified the specific relationship between pulmonary function decline and the probability of developing COPD in people with a history of tuberculosis.

Results: A total of 3249 subjects were eventually enrolled in this study, including 87 with a history of tuberculosis and 3162 non-TB. The prevalence of COPD in the prior TB group was significantly higher than that in the control group (p-value = 0.005). First, previous pulmonary tuberculosis is an essential contributor to airflow limitation in the general population and patients with COPD. In all subjects included, pulmonary function, FEV1% predicted (p-value < 0.001), and FEV1/FVC (%) (p-value < 0.001) were significantly lower in the prior TB group than in the control group. Compared to non-TB group, FEV1% prediction (p-value = 0.019) and FEV1/FVC (%) (p-value = 0.016) were found to be significantly reduced, and airflow restriction (p-value = 0.004) was more severe in prior TB group among COPD patients. Second, COPD patients in the prior TB group had more severe clinical symptoms. Compared with no history of tuberculosis, mMRC (p-value = 0.001) and CAT (p-value = 0.002) scores were higher in the group with a history of tuberculosis among COPD patients. Third, compared with the non-TB group, the number of acute exacerbations per year (p-values=0.008), the duration of each acute exacerbation (p-values=0.004), and hospitalization/ patient/year (p-values<0.001) were higher in the group with a history of tuberculosis among COPD patients. Finally, a dose-response relationship between FEV1/FVC (%) and the probability of developing COPD in people with previous pulmonary TB was observed; when FEV1/FVC (%) was < 80.8, the risk of COPD increased by 13.5% per unit decrease in lung function [0.865(0.805, 0.930)].

Conclusion: COPD patients with previous pulmonary tuberculosis have more severe airflow limitations and clinical symptoms and are at higher risk for acute exacerbations. Furthermore, lung function changes in people with a history of tuberculosis were associated with a dose-response relationship with the probability of developing COPD.

Keywords: Chronic obstructive pulmonary disease, tuberculosis, dose-response relationship, China, cohort study, COPD.

Graphical Abstract
[1]
Varmaghani, M.; Dehghani, M.; Heidari, E.; Sharifi, F.; Moghaddam, S.S.; Farzadfar, F. Global prevalence of chronic obstructive pulmonary disease: Systematic review and meta-analysis. East. Mediterr. Health J., 2019, 25(1), 47-57.
[http://dx.doi.org/10.26719/emhj.18.014] [PMID: 30919925]
[2]
Soriano, J.B.; Zielinski, J.; Price, D. Screening for and early detection of chronic obstructive pulmonary disease. Lancet, 2009, 374(9691), 721-732.
[http://dx.doi.org/10.1016/S0140-6736(09)61290-3] [PMID: 19716965]
[3]
Wang, C.; Xu, J.; Yang, L.; Xu, Y.; Zhang, X.; Bai, C.; Kang, J.; Ran, P.; Shen, H.; Wen, F.; Huang, K.; Yao, W.; Sun, T.; Shan, G.; Yang, T.; Lin, Y.; Wu, S.; Zhu, J.; Wang, R.; Shi, Z.; Zhao, J.; Ye, X.; Song, Y.; Wang, Q.; Zhou, Y.; Ding, L.; Yang, T.; Chen, Y.; Guo, Y.; Xiao, F.; Lu, Y.; Peng, X.; Zhang, B.; Xiao, D.; Chen, C.S.; Wang, Z.; Zhang, H.; Bu, X.; Zhang, X.; An, L.; Zhang, S.; Cao, Z.; Zhan, Q.; Yang, Y.; Cao, B.; Dai, H.; Liang, L.; He, J. China Pulmonary Health Study Group. Prevalence and risk factors of chronic obstruc-tive pulmonary disease in China (the China Pulmonary Health [CPH] study): A national cross-sectional study. Lancet, 2018, 391(10131), 1706-1717.
[http://dx.doi.org/10.1016/S0140-6736(18)30841-9] [PMID: 29650248]
[4]
Hoong, J.M.; Ferguson, M.; Hukins, C.; Collins, P.F. Econom-ic and operational burden associated with malnutrition in chronic obstructive pulmonary disease. Clin. Nutr., 2017, 36(4), 1105-1109.
[http://dx.doi.org/10.1016/j.clnu.2016.07.008] [PMID: 27496063]
[5]
Viinanen, A.; Lassenius, M.I.; Toppila, I.; Karlsson, A.; Veijalainen, L.; Idänpään-Heikkilä, J.J.; Laitinen, T. The bur-den of chronic obstructive pulmonary disease (COPD) in Fin-land: Impact of disease severity and eosinophil count on healthcare resource utilization. Int. J. Chron. Obstruct. Pulmon. Dis., 2019, 14, 2409-2421.
[http://dx.doi.org/10.2147/COPD.S222581] [PMID: 31749614]
[6]
Luckett, T.; San Martin, A.; Currow, D.C.; Johnson, M.J.; Barnes-Harris, M.M.; Phillips, J.L. A systematic review and meta-analysis of studies comparing burden from lung cancer and chronic obstructive pulmonary disease. Palliat. Med., 2020, 34(10), 1291-1304.
[http://dx.doi.org/10.1177/0269216320940153] [PMID: 32720568]
[7]
Menezes, A.M.B.; Hallal, P.C.; Perez-Padilla, R.; Jardim, J.R.; Muiño, A.; Lopez, M.V.; Valdivia, G.; Montes de Oca, M.; Talamo, C.; Pertuze, J.; Victora, C.G. Latin American Project for the Investigation of Obstructive Lung Disease (PLATINO) Team. Tuberculosis and airflow obstruction: Evidence from the PLATINO study in Latin America. Eur. Respir. J., 2007, 30(6), 1180-1185.
[http://dx.doi.org/10.1183/09031936.00083507] [PMID: 17804445]
[8]
Lam, K.B.; Jiang, C.Q.; Jordan, R.E.; Miller, M.R.; Zhang, W.S.; Cheng, K.K.; Lam, T.H.; Adab, P.; Prior, T.B. Prior TB, smoking, and airflow obstruction: A cross-sectional analysis of the Guangzhou Biobank Cohort Study. Chest, 2010, 137(3), 593-600.
[http://dx.doi.org/10.1378/chest.09-1435] [PMID: 19820078]
[9]
Barry, C.E., III; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat. Rev. Microbiol., 2009, 7(12), 845-855.
[http://dx.doi.org/10.1038/nrmicro2236] [PMID: 19855401]
[10]
Qi, Y-C.; Ma, M-J.; Li, D-J.; Chen, M-J.; Lu, Q-B.; Li, X-J.; Li, J-L.; Liu, W.; Cao, W-C. Multidrug-resistant and exten-sively drug-resistant tuberculosis in multi-ethnic region, Xin-jiang Uygur Autonomous Region, China. PLoS One, 2012, 7(2), e32103.
[http://dx.doi.org/10.1371/journal.pone.0032103] [PMID: 22384153]
[11]
Matheson, M.C.; Bowatte, G.; Perret, J.L.; Lowe, A.J.; Sena-ratna, C.V.; Hall, G.L.; de Klerk, N.; Keogh, L.A.; McDonald, C.F.; Waidyatillake, N.T.; Sly, P.D.; Jarvis, D.; Abramson, M.J.; Lodge, C.J.; Dharmage, S.C. Prediction models for the development of COPD: A systematic review. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 1927-1935.
[http://dx.doi.org/10.2147/COPD.S155675] [PMID: 29942125]
[12]
Wang, Y.; Li, Z.; Li, F.S. Development and assessment of prediction models for the development of COPD in a typical rural area in northwest China. Int. J. Chron. Obstruct. Pulmon. Dis., 2021, 16, 477-486.
[http://dx.doi.org/10.2147/COPD.S297380] [PMID: 33664570]
[13]
Jo, Y.S.; Choi, S.M.; Lee, J.; Park, Y.S.; Lee, S-M.; Yim, J-J.; Yoo, C-G.; Kim, Y.W.; Han, S.K.; Lee, C-H. The relationship between chronic obstructive pulmonary disease and comor-bidities: A cross-sectional study using data from KNHANES 2010-2012. Respir. Med., 2015, 109(1), 96-104.
[http://dx.doi.org/10.1016/j.rmed.2014.10.015] [PMID: 25434653]
[14]
Satia, I.; Priel, E.; Al-Khazraji, B.K.; Jones, G.; Freitag, A.; O’Byrne, P.M.; Killian, K.J. Exercise-induced bronchocon-striction and bronchodilation: Investigating the effects of age, sex, airflow limitation and FEV1. Eur. Respir. J., 2021, 58(2), 2004026.
[http://dx.doi.org/10.1183/13993003.04026-2020] [PMID: 33446611]
[15]
Lange, P.; Halpin, D.M.; O’Donnell, D.E.; MacNee, W. Diag-nosis, assessment, and phenotyping of COPD: Beyond FEV₁ Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11(Spec Iss), 3-12.
[PMID: 26937185]
[16]
Huang, W-C.; Wu, M-F.; Chen, H-C.; Hsu, J-Y.; Consortium, T.O.L.D. Taiwan Obstructive Lung Disease Consortium. Characteristics and risk factors for inconsistency between the risk of exacerbations and the severity of airflow limitation in COPD based on GOLD 2017: A retrospective, cross-sectional study. PLoS One, 2018, 13(3), e0193880.
[http://dx.doi.org/10.1371/journal.pone.0193880] [PMID: 29529075]
[17]
Cheng, S-L.; Lin, C-H.; Wang, C-C.; Chan, M-C.; Hsu, J-Y.; Hang, L-W.; Perng, D-W.; Yu, C-J.; Wang, H-C. Taiwan Clini-cal Trial Consortium for Respiratory Disease (TCORE). Com-parison between COPD assessment test (CAT) and modified medical research council (mMRC) dyspnea scores for evalua-tion of clinical symptoms, comorbidities and medical re-sources utilization in COPD patients. J. Formos. Med. Assoc., 2019, 118(1 Pt 3), 429-435.
[http://dx.doi.org/10.1016/j.jfma.2018.06.018] [PMID: 30150099]
[18]
Ko, F.W.; Chan, K.P.; Hui, D.S.; Goddard, J.R.; Shaw, J.G.; Reid, D.W.; Yang, I.A. Acute exacerbation of COPD. Respirology, 2016, 21(7), 1152-1165.
[http://dx.doi.org/10.1111/resp.12780] [PMID: 27028990]
[19]
Amaral, A.F.; Coton, S.; Kato, B.; Tan, W.C.; Studnicka, M.; Janson, C.; Gislason, T.; Mannino, D.; Bateman, E.D.; Buist, S.; Burney, P.G. BOLD Collaborative Research Group. Tuber-culosis associates with both airflow obstruction and low lung function: BOLD results. Eur. Respir. J., 2015, 46(4), 1104-1112.
[http://dx.doi.org/10.1183/13993003.02325-2014] [PMID: 26113680]
[20]
Park, H.J.; Byun, M.K.; Kim, H.J.; Ahn, C.M.; Kim, D.K.; Kim, Y.I.; Oh, J.Y.; Yoon, H.K.; Yoo, K.H.; Jung, K.S. Histo-ry of pulmonary tuberculosis affects the severity and clinical outcomes of COPD. Respirology, 2018, 23(1), 100-106.
[http://dx.doi.org/10.1111/resp.13147] [PMID: 28845558]
[21]
Zheng, Y-L.; Zhang, L-P.; Zhang, X-L.; Wang, K.; Zheng, Y-J. Forecast model analysis for the morbidity of tuberculosis in Xinjiang, China. PLoS One, 2015, 10(3), e0116832.
[http://dx.doi.org/10.1371/journal.pone.0116832] [PMID: 25760345]
[22]
Maimaiti, R.; Zhang, Y.; Pan, K.; Mijiti, P.; Wubili, M.; Musa, M.; Andersson, R. High prevalence and low cure rate of tu-berculosis among patients with HIV in Xinjiang, China. BMC Infect. Dis., 2017, 17(1), 15.
[http://dx.doi.org/10.1186/s12879-016-2152-4] [PMID: 28056848]
[23]
He, X.; Cao, M.; Mahapatra, T.; Du, X.; Mahapatra, S.; Li, Q.; Feng, L.; Tang, S.; Zhao, Z.; Liu, J.; Tang, W. Burden of tu-berculosis in Xinjiang between 2011 and 2015: A surveillance data-based study. PLoS One, 2017, 12(11), e0187592.
[http://dx.doi.org/10.1371/journal.pone.0187592] [PMID: 29121654]
[24]
Singh, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Criner, G.J.; Frith, P.; Halpin, D.M.G.; Han, M.; López Varela, M.V.; Martinez, F.; Montes de Oca, M.; Papi, A.; Pavord, I.D.; Roche, N.; Sin, D.D.; Stockley, R.; Vestbo, J.; Wedzicha, J.A.; Vogelmeier, C. Global strategy for the di-agnosis, management, and prevention of chronic obstructive lung disease: The GOLD science committee report 2019. Eur. Respir. J., 2019, 53(5), 1900164.
[http://dx.doi.org/10.1183/13993003.00164-2019] [PMID: 30846476]
[25]
Perez-Padilla, R.; Menezes, A.M.B. Chronic obstructive pul-monary disease in Latin America. Ann. Glob. Health, 2019, 85(1), 7.
[http://dx.doi.org/10.5334/aogh.2418] [PMID: 30741508]
[26]
Hnizdo, E.; Singh, T.; Churchyard, G. Chronic pulmonary function impairment caused by initial and recurrent pulmo-nary tuberculosis following treatment. Thorax, 2000, 55(1), 32-38.
[http://dx.doi.org/10.1136/thorax.55.1.32] [PMID: 10607799]
[27]
Kim, H.Y.; Song, K-S.; Goo, J.M.; Lee, J.S.; Lee, K.S.; Lim, T-H. Thoracic sequelae and complications of tuberculosis. Radiographics, 2001, 21(4), 839-858.
[http://dx.doi.org/10.1148/radiographics.21.4.g01jl06839] [PMID: 11452057]
[28]
Holloway, R.A.; Donnelly, L.E. Immunopathogenesis of chronic obstructive pulmonary disease. Curr. Opin. Pulm. Med., 2013, 19(2), 95-102.
[http://dx.doi.org/10.1097/MCP.0b013e32835cfff5] [PMID: 23325031]
[29]
Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, 8(12), 958-969.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[30]
Fu, J.; Lu, L.; Wang, H.; Hou, Y.; Dou, H. Hirsutella sinensis mycelium regulates autophagy of alveolar macrophages via TLR4/NF-κB signaling pathway. Int. J. Med. Sci., 2021, 18(8), 1810-1823.
[http://dx.doi.org/10.7150/ijms.51654] [PMID: 33746598]
[31]
Nouailles, G.; Dorhoi, A.; Koch, M.; Zerrahn, J.; Weiner, J., III; Faé, K.C.; Arrey, F.; Kuhlmann, S.; Bandermann, S.; Loewe, D.; Mollenkopf, H.J.; Vogelzang, A.; Meyer-Schwesinger, C.; Mittrücker, H.W.; McEwen, G.; Kaufmann, S.H. CXCL5-secreting pulmonary epithelial cells drive de-structive neutrophilic inflammation in tuberculosis. J. Clin. Invest., 2014, 124(3), 1268-1282.
[http://dx.doi.org/10.1172/JCI72030] [PMID: 24509076]
[32]
Kalchiem-Dekel, O.; Yao, X.; Barochia, A.V.; Kaler, M.; Figueroa, D.M.; Karkowsky, W.B.; Gordon, E.M.; Gao, M.; Fergusson, M.M.; Qu, X.; Liu, P.; Li, Y.; Seifuddin, F.; Pirooznia, M.; Levine, S.J. Apolipoprotein E signals via TLR4 to induce CXCL5 secretion by asthmatic airway epithelial cells. Am. J. Respir. Cell Mol. Biol., 2020, 63(2), 185-197.
[http://dx.doi.org/10.1165/rcmb.2019-0209OC] [PMID: 32338995]
[33]
Li, Z.; Mao, X.; Liu, Q.; Song, H.; He, B.; Shi, P.; Zhang, Q.; Li, X.; Wang, J. Functional variations of the TLR4 gene in as-sociation with chronic obstructive pulmonary disease and pulmonary tuberculosis. BMC Pulm. Med., 2019, 19(1), 184.
[http://dx.doi.org/10.1186/s12890-019-0939-y] [PMID: 31640653]
[34]
Finlay, G.A.; O’Driscoll, L.R.; Russell, K.J.; D’Arcy, E.M.; Masterson, J.B.; FitzGerald, M.X.; O’Connor, C.M. Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am. J. Respir. Crit. Care Med., 1997, 156(1), 240-247.
[http://dx.doi.org/10.1164/ajrccm.156.1.9612018] [PMID: 9230755]
[35]
Singh, S.; Kubler, A.; Singh, U.K.; Singh, A.; Gardiner, H.; Prasad, R.; Elkington, P.T.; Friedland, J.S. Antimycobacterial drugs modulate immunopathogenic matrix metalloproteinases in a cellular model of pulmonary tuberculosis. Antimicrob. Agents Chemother., 2014, 58(8), 4657-4665.
[http://dx.doi.org/10.1128/AAC.02141-13] [PMID: 24890593]
[36]
Patrick, G.; Abdoulaye, J.D.; D’Armiento, J. TLR4 protein contributes to cigarette smoke-induced matrix metalloprotein-ase-1 (MMP-1) expression in chronic obstructive pulmonary disease. J. Biol. Chem., 2011, 286(34), 30211-30218.
[37]
Wedzicha, J.A.; Brill, S.E.; Allinson, J.P.; Donaldson, G.C. Mechanisms and impact of the frequent exacerbator pheno-type in chronic obstructive pulmonary disease. BMC Med., 2013, 11(1), 181.
[38]
Viniol, C.; Vogelmeier, C.F. Exacerbations of COPD. Eur. Respir. Rev., 2018, 27(147), 170103.
[http://dx.doi.org/10.1183/16000617.0103-2017] [PMID: 29540496]
[39]
Titova, E.; Christensen, A.; Henriksen, A.H.; Steinshamn, S.; Åsberg, A. Comparison of procalcitonin, C-reactive protein, white blood cell count and clinical status in diagnosing pneu-monia in patients hospitalized with acute exacerbations of COPD: A prospective observational study. Chron. Respir. Dis., 2019, 16, 1479972318769762.
[http://dx.doi.org/10.1177/1479972318769762] [PMID: 29848051]
[40]
Hillas, G.; Perlikos, F.; Tzanakis, N. Acute exacerbation of COPD: Is it the “stroke of the lungs”? Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 1579-1586.
[http://dx.doi.org/10.2147/COPD.S106160] [PMID: 27471380]
[41]
Hurst, J.R.; Vestbo, J.; Anzueto, A.; Locantore, N.; Müllerova, H.; Tal-Singer, R.; Miller, B.; Lomas, D.A.; Agusti, A.; Mac-nee, W.; Calverley, P.; Rennard, S.; Wouters, E.F.; Wedzicha, J.A. Evaluation of COPD longitudinally to identify predictive surrogate endpoints (ECLIPSE) investigators. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N. Engl. J. Med., 2010, 363(12), 1128-1138.
[http://dx.doi.org/10.1056/NEJMoa0909883] [PMID: 20843247]

© 2024 Bentham Science Publishers | Privacy Policy