Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Endocannabinoid System as a Biomarker for Diagnostic and Therapeutic Applications in Depression and Anxiety

Author(s): Jocelyne Alcaraz-Silva, Daniel Feingold, Gerardo Viana-Torre, Henning Budde, Claudio Imperatori, Sérgio Machado and Eric Murillo-Rodríguez*

Volume 22, Issue 3, 2023

Published on: 15 June, 2022

Page: [417 - 430] Pages: 14

DOI: 10.2174/1871527321666220405114402

Price: $65

Abstract

Background: Depression and anxiety belong to a family of mental disturbances that have increased significantly in recent years. The etiology of both disorders comprises multiple and complex factors, from genetic background to environmental influence. Since depression and anxiety present severe symptoms, they represent a greater clinical burden and greater therapeutic difficulty. Currently, standardized diagnostic procedures for depression and anxiety allow for the addition of further treatments, including psychotherapy and/or pharmacological intervention, with effective outcomes. However, further steps should be considered with regard to consideration of the endocannabinoid system’s role in depression and anxiety.

Objective: This study aimed to review the evidence from animal research and clinical studies on the role of cannabinoid receptors, the major endocannabinoids -anandamide (AEA) and 2-arachidonoylglycerol (2-AG)- and the enzymes related to the synthesis and degradation of these chemicals as putative biomarkers for diagnostic and therapeutic elements of depression and anxiety.

Methods: This review included the online search, identification, and analysis of articles (basic and clinical trials) published in English in PubMed linked to the role of cannabinoid receptors, AEA, 2- AG, and the enzymes associated with the synthesis and degradation of these endocannabinoids in depression and anxiety.

Results: The neurobiological relevance of the endocannabinoid system offers genetic or pharmacological manipulation of this system as a potential strategy for the diagnostic and clinical management of mood disorders, including depression and anxiety.

Conclusion: Although the described approach in this review is promising, no solid evidence is yet available, and along with additional experiments using animal models that mimic human depression and anxiety, clinical trials are needed to explore the role of the endocannabinoid system’s elements as well as the anandamide membrane transporter, none of which have been adequately studied in depression and anxiety.

Keywords: 2-Arachidonoylglycerol, anandamide membrane transporter, cannabinoid receptors, depression, diacylglycerol lipase, fatty acid amide hydrolase, monoacylglycerol lipase.

[1]
Abate KH, Abebe Z, Abil OZ, et al. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1789-858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[2]
Richter D, Wall A, Bruen A, Whittington R. Is the global prevalence rate of adult mental illness increasing? Systematic review and meta-analysis. Acta Psychiatr Scand 2019; 140(5): 393-407.
[http://dx.doi.org/10.1111/acps.13083] [PMID: 31393996]
[3]
Steel Z, Marnane C, Iranpour C, et al. The global prevalence of common mental disorders: A systematic review and meta-analysis 1980-2013. Int J Epidemiol 2014; 43(2): 476-93.
[http://dx.doi.org/10.1093/ije/dyu038] [PMID: 24648481]
[4]
Schürmann J, Margraf J. Age of anxiety and depression revisited: A meta-analysis of two European community samples (1964-2015). Int J Clin Psychol 2018; 18(2): 102-12.
[http://dx.doi.org/10.1016/j.ijchp.2018.02.002] [PMID: 30487915]
[5]
Fusar-Poli P, Davies C, Solmi M, et al. Preventive treatments for psychosis: Umbrella review (just the evidence). Front Psychiatry 2019; 10: 764.
[http://dx.doi.org/10.3389/fpsyt.2019.00764] [PMID: 31920732]
[6]
Brown JVE, Walton N, Meader N, et al. Pharmacy-based management for depression in adults. Cochrane Database Syst Rev 2019; 12: CD013299.
[http://dx.doi.org/10.1002/14651858.CD013299.pub2] [PMID: 31868236]
[7]
Chen P. Optimized treatment strategy for depressive disorder. Adv Exp Med Biol 2019; 1180: 201-17.
[http://dx.doi.org/10.1007/978-981-32-9271-0_11] [PMID: 31784965]
[8]
Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia: Review. JAMA 2019; 322(16): 1589-99.
[http://dx.doi.org/10.1001/jama.2019.4782] [PMID: 31638686]
[9]
Russo EB, Marcu J. Cannabis pharmacology: The usual suspects and a few promising leads. Adv Pharmacol 2017; 80: 67-134.
[http://dx.doi.org/10.1016/bs.apha.2017.03.004] [PMID: 28826544]
[10]
Freeman AM, Petrilli K, Lees R, et al. How does cannabidiol (CBD) influence the acute effects of delta-9-tetrahydrocannabinol (THC) in humans? A systematic review. Neurosci Biobehav Rev 2019; 107: 696-712.
[http://dx.doi.org/10.1016/j.neubiorev.2019.09.036] [PMID: 31580839]
[11]
Di Marzo V, Piscitelli F. The endocannabinoid system and its modulation by phytocannabinoids. Neurother 2015; 12(4): 692-8.
[http://dx.doi.org/10.1007/s13311-015-0374-6] [PMID: 26271952]
[12]
Murillo-Rodríguez E, Budde H, Veras AB, et al. The endocannabinoid system may modulate sleep disorders in aging. Curr Neuropharmacol 2020; 18(2): 97-108.
[http://dx.doi.org/10.2174/1570159X17666190801155922] [PMID: 31368874]
[13]
Petrunich-Rutherford ML, Calik MW. Effects of cannabinoid agonists and antagonists on sleep in laboratory animals. Adv Exp Med Biol 2021; 1297: 97-109.
[http://dx.doi.org/10.1007/978-3-030-61663-2_7] [PMID: 33537939]
[14]
Kesner AJ, Lovinger DM. Cannabinoids, endocannabinoids and sleep. Front Mol Neurosci 2020; 13: 125.
[http://dx.doi.org/10.3389/fnmol.2020.00125] [PMID: 32774241]
[15]
Lutz B. Neurobiology of cannabinoid receptor signaling Dialogues Clin Neurosci 2020; 22(3): 207-22.
[http://dx.doi.org/10.31887/DCNS.2020.22.3/blutz] [PMID: 33162764]
[16]
Shahbazi F, Grandi V, Banerjee A, Trant JF. Cannabinoids and cannabinoid receptors: The story so far. iScience 2020; 23(7): 101301.
[http://dx.doi.org/10.1016/j.isci.2020.101301] [PMID: 32629422]
[17]
Biernacki M, Skrzydlewska E. Metabolism of endocannabinoids. Postepy Hig Med Dosw 2016; 70: 830-43.
[http://dx.doi.org/10.5604/17322693.1213898] [PMID: 27516570]
[18]
Tsuboi K, Uyama T, Okamoto Y, Ueda N. Endocannabinoids and related N-acylethanolamines: Biological activities and metabolism. Inflamm Regen 2018; 38(1): 28.
[http://dx.doi.org/10.1186/s41232-018-0086-5] [PMID: 30288203]
[19]
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2018; 21(10): 695-714.
[http://dx.doi.org/10.1080/1028415X.2017.1347373] [PMID: 28686542]
[20]
Gil-Ordóñez A, Martín-Fontecha M, Ortega-Gutiérrez S, López-Rodríguez ML. Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem Pharmacol 2018; 157: 18-32.
[http://dx.doi.org/10.1016/j.bcp.2018.07.036] [PMID: 30059673]
[21]
Toczek M, Malinowska B. Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204: 20-45.
[http://dx.doi.org/10.1016/j.lfs.2018.04.054] [PMID: 29729263]
[22]
Fagundo AB, de la Torre R, Jiménez-Murcia S, et al. Modulation of the endocannabinoids N-arachidonoylethanolamine (aea) and 2-arachidonoylglycerol (2-ag) on executive functions in humans. PLoS One 2013; 8(6): e66387.
[http://dx.doi.org/10.1371/journal.pone.0066387] [PMID: 23840456]
[23]
Hu SS, Mackie K. Distribution of the endocannabinoid system in the central nervous system. Handb Exp Pharmacol 2015; 231: 59-93.
[http://dx.doi.org/10.1007/978-3-319-20825-1_3] [PMID: 26408158]
[24]
Hillard CJ. The endocannabinoid signaling system in the CNS: A primer. Int Rev Neurobiol 2015; 125: 1-47.
[http://dx.doi.org/10.1016/bs.irn.2015.10.001] [PMID: 26638763]
[25]
Bisogno T, Berrendero F, Ambrosino G, et al. Brain regional distribution of endocannabinoids: Implications for their biosynthesis and biological function. Biochem Biophys Res Commun 1999; 256(2): 377-80.
[http://dx.doi.org/10.1006/bbrc.1999.0254] [PMID: 10079192]
[26]
Kendall DA, Yudowski GA. Cannabinoid receptors in the central nervous system: Their signaling and roles in disease. Front Cell Neurosci 2017; 10: 294.
[http://dx.doi.org/10.3389/fncel.2016.00294] [PMID: 28101004]
[27]
Shenglong Z, Kumar U. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int J Mol Sci 2018; 19(3): 833.
[http://dx.doi.org/10.3390/ijms19030833]
[28]
Biegon A, Kerman IA. Autoradiographic study of pre- and postnatal distribution of cannabinoid receptors in human brain. Neuroimage 2001; 14(6): 1463-8.
[http://dx.doi.org/10.1006/nimg.2001.0939] [PMID: 11707102]
[29]
Rusjan PM, Wilson AA, Mizrahi R, et al. Mapping human brain fatty acid amide hydrolase activity with PET. J Cereb Blood Flow Metab 2013; 33(3): 407-14.
[http://dx.doi.org/10.1038/jcbfm.2012.180] [PMID: 23211960]
[30]
Clapper JR, Henry CL, Niphakis MJ, et al. Monoacylglycerol lipase inhibition in human and rodent systems supports clinical evaluation of endocannabinoid modulators. J Pharmacol Exp Ther 2018; 367(3): 494-508.
[http://dx.doi.org/10.1124/jpet.118.252296] [PMID: 30305428]
[31]
Vecchini Rodríguez CM, Escalona Meléndez Y, Flores-Otero J. Cannabinoid receptors and ligands: Lessons from CNS disorders and the quest for novel treatment venues. Adv Exp Med Biol 2021; 1297: 43-64.
[http://dx.doi.org/10.1007/978-3-030-61663-2_4] [PMID: 33537936]
[32]
Redlich C, Dlugos A, Hill MN, et al. The endocannabinoid system in humans: Significant associations between anandamide, brain function during reward feedback and a personality measure of] reward dependence. Neuropsychopharmacology 2021; 46(5): 1020-7.
[http://dx.doi.org/10.1038/s41386-020-00870-x] [PMID: 33007775]
[33]
Bobrich M, Schwarz R, Ramer R, Borchert P, Hinz B. A simple LC-MS/MS method for the simultaneous quantification of endocannabinoids in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1161: 122371.
[http://dx.doi.org/10.1016/j.jchromb.2020.122371] [PMID: 33246277]
[34]
Garani R, Watts JJ, Mizrahi R. Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106: 110096.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110096] [PMID: 32898588]
[35]
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, et al. Endocannabinoid system components as potential biomarkers in psychiatry. Front Psychiatry 2020; 11: 315.
[http://dx.doi.org/10.3389/fpsyt.2020.00315] [PMID: 32395111]
[36]
Bortolato M, Campolongo P, Mangieri RA, et al. Anxiolytic-like properties of the anandamide transport inhibitor AM404. Neuropsychopharmacology 2006; 31(12): 2652-9.
[http://dx.doi.org/10.1038/sj.npp.1301061] [PMID: 16541083]
[37]
Wang Y, Gu N, Duan T, et al. Monoacylglycerol lipase inhibitors produce pro- or antidepressant responses via hippocampal CA1 GABAergic synapses. Mol Psychiatry 2017; 22(2): 215-26.
[http://dx.doi.org/10.1038/mp.2016.22] [PMID: 27001616]
[38]
Kolla NJ, Mizrahi R, Karas K, et al. Elevated fatty acid amide hydrolase in the prefrontal cortex of borderline personality disorder: A [11C]CURB positron emission tomography study. Neuropsychopharmacology 2020; 45(11): 1834-41.
[http://dx.doi.org/10.1038/s41386-020-0731-y] [PMID: 32521537]
[39]
Schmidt ME, Liebowitz MR, Stein MB, et al. The effects of inhibition of fatty acid amide hydrolase (FAAH) by JNJ-42165279 in social anxiety disorder: A double-blind, randomized, placebo-controlled proof-of-concept study. Neuropsychopharmacology 2020.
[http://dx.doi.org/10.1038/s41386-020-00888-1] [PMID: 33070154]
[40]
Joshi N, Onaivi ES. Psychiatric disorders and cannabinoid receptors. Adv Exp Med Biol 2021; 1264: 131-53.
[http://dx.doi.org/10.1007/978-3-030-57369-0_9] [PMID: 33332008]
[41]
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: Am. Psychiatr Publ. 2013. Available from: https://www.psychiatry.org/psychiatrists/practice/dsm
[42]
International classification of diseases 11th revision. World health organization. https://icd.who.int/en
[43]
Kessler RC, Demler O, Frank RG, et al. Prevalence and treatment of mental disorders, 1990 to 2003. N Engl J Med 2005; 352(24): 2515-23.
[http://dx.doi.org/10.1056/NEJMsa043266] [PMID: 15958807]
[44]
Krueger RF. The structure of common mental disorders. Arch Gen Psychiatry 1999; 56(10): 921-6.
[http://dx.doi.org/10.1001/archpsyc.56.10.921] [PMID: 10530634]
[45]
Rehm J, Shield KD. Global burden of disease and the impact of mental and addictive disorders. Curr Psychiatry Rep 2019; 21(2): 10.
[http://dx.doi.org/10.1007/s11920-019-0997-0] [PMID: 30729322]
[46]
Whiteford HA, Degenhardt L, Rehm J, et al. Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet 2013; 382(9904): 1575-86.
[http://dx.doi.org/10.1016/S0140-6736(13)61611-6] [PMID: 23993280]
[47]
Publishing O. OECD glossary of statistical terms Paris OECD Obs 2008. Available from:https://www.oecd-ilibrary.org/economics/oecd-glossary-of-statistical-terms_9789264055087-en
[http://dx.doi.org/10.1787/9789264055087-en]
[48]
Lajoie J. Understanding the measurement of global burden of disease/. Winnipeg, Manitoba: National Collaborating Centre for Infectious Diseases 2015. Available from: https://nccid.ca/publications/understanding-the-measurement-of-global-burden-ofdisease
[49]
Trautmann S, Rehm J, Wittchen HU. The economic costs of mental disorders: Do our societies react appropriately to the burden of mental disorders? EMBO Rep 2016; 17(9): 1245-9.
[http://dx.doi.org/10.15252/embr.201642951] [PMID: 27491723]
[50]
Wittchen HU, Jacobi F, Rehm J, et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 2011; 21(9): 655-79.
[http://dx.doi.org/10.1016/j.euroneuro.2011.07.018] [PMID: 21896369]
[51]
Andrews G, Sanderson K, Slade T, Issakidis C. Why does the burden of disease persist? Relating the burden of anxiety and depression to effectiveness of treatment. Bull World Health Organ 2000; 78(4): 446-54.
[PMID: 10885163]
[52]
Gorman JM. Comorbid depression and anxiety spectrum disorders. Depress Anxiety 1996-1997; 4(4): 160-8.
[http://dx.doi.org/10.1002/(SICI)1520-6394(1996)4:4<160::AID-DA2>3.0.CO;2-J] [PMID: 9166648]
[53]
Saha S, Lim CCW, Cannon DL, et al. Co-morbidity between mood and anxiety disorders: A systematic review and meta-analysis. Depress Anxiety 2021; 38(3): 286-306.
[http://dx.doi.org/10.1002/da.23113] [PMID: 33225514]
[54]
Bernstein GA. Comorbidity and severity of anxiety and depressive disorders in a clinic sample. J Am Acad Child Adolesc Psychiatry 1991; 30(1): 43-50.
[http://dx.doi.org/10.1097/00004583-199101000-00007] [PMID: 2005063]
[55]
Lewinsohn PM, Gotlib IH, Seeley JR. Adolescent psychopathology: IV. Specificity of psychosocial risk factors for depression and substance abuse in older adolescents. J Am Acad Child Adolesc Psychiatry 1995; 34(9): 1221-9.
[http://dx.doi.org/10.1097/00004583-199509000-00021] [PMID: 7559318]
[56]
Lewinsohn PM, Rohde P, Seeley JR. The Clinical Consequences of Comorbidity. Adolescent psychopathology: III. The clinical consequences of comorbidity. J Am Acad Child Adolesc Psychiatry 1995; 34(4): 510-9.
[http://dx.doi.org/10.1097/00004583-199504000-00018] [PMID: 7751265]
[57]
Rubino T, Zamberletti E, Parolaro D. Endocannabinoids and mental disorders. Handb Exp Pharmacol 2015; 231: 261-83.
[http://dx.doi.org/10.1007/978-3-319-20825-1_9] [PMID: 26408164]
[58]
Aran A, Eylon M, Harel M, et al. Lower circulating endocannabinoid levels in children with autism spectrum disorder. Mol Autism 2019; 10(1): 2.
[http://dx.doi.org/10.1186/s13229-019-0256-6] [PMID: 30728928]
[59]
Romero-Sanchiz P, Nogueira-Arjona R, Pastor A, et al. Plasma concentrations of oleoylethanolamide in a primary care sample of depressed patients are increased in those treated with selective serotonin reuptake inhibitor-type antidepressants. Neuropharmacology 2019; 149: 212-20.
[http://dx.doi.org/10.1016/j.neuropharm.2019.02.026] [PMID: 30822499]
[60]
Borgan F, Kokkinou M, Howes O. The cannabinoid CB1 receptor in schizophrenia. Biol Psychiatry Cogn Neurosci Neuroimaging 2020; S2451-9022(20): 30173-7.
[http://dx.doi.org/10.1016/j.bpsc.2020.06.018]
[61]
Arjmand S, Behzadi M, Kohlmeier KA, Mazhari S, Sabahi A, Shabani M. Bipolar disorder and the endocannabinoid system. Acta Neuropsychiatr 2019; 31(4): 193-201.
[http://dx.doi.org/10.1017/neu.2019.21] [PMID: 31159897]
[62]
Chadwick VL, Rohleder C, Koethe D, Leweke FM. Cannabinoids and the endocannabinoid system in anxiety, depression, and dysregulation of emotion in humans. Curr Opin Psychiatry 2020; 33(1): 20-42.
[http://dx.doi.org/10.1097/YCO.0000000000000562] [PMID: 31714262]
[63]
Kruk-Slomka M, Michalak A, Biala G. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: Mechanism of action and possible interactions with cholinergic system. Behav Brain Res 2015; 284: 24-36.
[http://dx.doi.org/10.1016/j.bbr.2015.01.051] [PMID: 25660201]
[64]
Penn A. Cannabinoids and mental health, part 1: The endocannabinoid system and exogenous cannabinoids. J Psychosoc Nurs Ment Health Serv 2019; 57(9): 7-10.
[http://dx.doi.org/10.3928/02793695-20190813-01] [PMID: 31461513]
[65]
Wośko S, Serefko A, Szopa A, et al. CB1 cannabinoid receptor ligands augment the antidepressant-like activity of biometals (magnesium and zinc) in the behavioural tests. J Pharm Pharmacol 2018; 70(4): 566-75.
[http://dx.doi.org/10.1111/jphp.12880] [PMID: 29380383]
[66]
Aso E, Ozaita A, Serra MÀ, Maldonado R. Genes differentially expressed in CB1 knockout mice: Involvement in the depressive-like phenotype. Eur Neuropsychopharmacol 2011; 21(1): 11-22.
[http://dx.doi.org/10.1016/j.euroneuro.2010.06.007] [PMID: 20692131]
[67]
Valverde O, Torrens M. CB1 receptor-deficient mice as a model for depression. Neuroscience 2012; 204: 193-206.
[http://dx.doi.org/10.1016/j.neuroscience.2011.09.031] [PMID: 21964469]
[68]
Moreira FA, Grieb M, Lutz B. Central side-effects of therapies based on CB1 cannabinoid receptor agonists and antagonists: Focus on anxiety and depression. Best Pract Res Clin Endocrinol Metab 2009; 23(1): 133-44.
[http://dx.doi.org/10.1016/j.beem.2008.09.003] [PMID: 19285266]
[69]
Beyer CE, Dwyer JM, Piesla MJ, et al. Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol Dis 2010; 39(2): 148-55.
[http://dx.doi.org/10.1016/j.nbd.2010.03.020] [PMID: 20381618]
[70]
Hill MN, Miller GE, Ho WS, Gorzalka BB, Hillard CJ. Serum endocannabinoid content is altered in females with depressive disorders: A preliminary report. Pharmacopsychiatry 2008; 41(2): 48-53.
[http://dx.doi.org/10.1055/s-2007-993211] [PMID: 18311684]
[71]
Hill MN, Miller GE, Carrier EJ, Gorzalka BB, Hillard CJ. Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 2009; 34(8): 1257-62.
[http://dx.doi.org/10.1016/j.psyneuen.2009.03.013] [PMID: 19394765]
[72]
Pertwee RG. Targeting the endocannabinoid system with cannabinoid receptor agonists: Pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond B Biol Sci 2012; 367(1607): 3353-63.
[http://dx.doi.org/10.1098/rstb.2011.0381] [PMID: 23108552]
[73]
Coccaro EF, Hill MN, Robinson L, Lee RJ. Circulating endocannabinoids and affect regulation in human subjects. Psychoneuroendocrinology 2018; 92: 66-71.
[http://dx.doi.org/10.1016/j.psyneuen.2018.03.009] [PMID: 29627714]
[74]
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The endocannabinoid system: A potential target for the treatment of various diseases. Int J Mol Sci 2021; 22(17): 9472.
[http://dx.doi.org/10.3390/ijms22179472] [PMID: 34502379]
[75]
Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2020; 16(1): 9-29.
[http://dx.doi.org/10.1038/s41582-019-0284-z] [PMID: 31831863]
[76]
Bedse G, Hill MN, Patel S. 2-Arachidonoylglycerol modulation of anxiety and stress adaptation: From grass roots to novel therapeutics. Biol Psychiatry 2020; 88(7): 520-30.
[http://dx.doi.org/10.1016/j.biopsych.2020.01.015] [PMID: 32197779]
[77]
Jenniches I, Ternes S, Albayram O, et al. Anxiety, stress, and fear response in mice with reduced endocannabinoid levels. Biol Psychiatry 2016; 79(10): 858-68.
[http://dx.doi.org/10.1016/j.biopsych.2015.03.033] [PMID: 25981172]
[78]
Smaga I, Jastrzębska J, Zaniewska M, et al. Changes in the brain endocannabinoid system in rat models of depression. Neurotox Res 2017; 31(3): 421-35.
[http://dx.doi.org/10.1007/s12640-017-9708-y] [PMID: 28247204]
[79]
Silveira KM, Wegener G, Joca SRL. Targeting 2-arachidonoylglycerol signalling in the neurobiology and treatment of depression. Basic Clin Pharmacol Toxicol 2021; 129(1): 3-14.
[http://dx.doi.org/10.1111/bcpt.13595] [PMID: 33905617]
[80]
Bouter Y, Brzózka MM, Rygula R, et al. Chronic psychosocial stress causes increased anxiety-like behavior and alters endocannabinoid levels in the brain of C57Bl/6J mice. Cannabis Cannabinoid Res 2020; 5(1): 51-61.
[http://dx.doi.org/10.1089/can.2019.0041] [PMID: 32322676]
[81]
Witkin JM, Tzavara ET, Davis RJ, Li X, Nomikos GG. A therapeutic role for cannabinoid CB1 receptor antagonists in major depressive disorders. Trends Pharmacol Sci 2005; 26(12): 609-17.
[http://dx.doi.org/10.1016/j.tips.2005.10.006] [PMID: 16260047]
[82]
Rana T, Behl T, Sehgal A, et al. Integrating endocannabinoid signalling in depression. J Mol Neurosci 2021; 71(10): 2022-34.
[http://dx.doi.org/10.1007/s12031-020-01774-7] [PMID: 33471311]
[83]
Ganon-Elazar E, Akirav I. Cannabinoid receptor activation in the basolateral amygdala blocks the effects of stress on the conditioning and extinction of inhibitory avoidance. J Neurosci 2009; 29(36): 11078-88.
[http://dx.doi.org/10.1523/JNEUROSCI.1223-09.2009] [PMID: 19741114]
[84]
Shoshan N, Segev A, Abush H, Mizrachi Zer-Aviv T, Akirav I. Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity. Hippocampus 2017; 27(10): 1093-109.
[http://dx.doi.org/10.1002/hipo.22755] [PMID: 28667676]
[85]
Robledo P, Martín-García E, Aso E, Maldonado R. Genetically modified mice as tools to understand the neurobiological substrates of depression. Curr Pharm Des 2014; 20(23): 3718-37.
[http://dx.doi.org/10.2174/13816128113196660741] [PMID: 24180392]
[86]
Soriano D, Brusco A, Caltana L. Further evidence of anxiety- and depression-like behavior for total genetic ablation of cannabinoid receptor type 1. Behav Brain Res 2021; 400: 113007.
[87]
Eggan SM, Stoyak SR, Verrico CD, Lewis DA. Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: Comparison of schizophrenia and major depressive disorder. Neuropsychopharmacology 2010; 35(10): 2060-71.
[http://dx.doi.org/10.1038/npp.2010.75] [PMID: 20555313]
[88]
Salort G, Hernández-Hernández E, García-Fuster MJ, García-Sevilla JA. Regulation of cannabinoid CB1 and CB2 receptors, neuroprotective mTOR and pro-apoptotic JNK1/2 kinases in postmortem prefrontal cortex of subjects with major depressive disorder. J Affect Disord 2020; 276: 626-35.
[http://dx.doi.org/10.1016/j.jad.2020.07.074] [PMID: 32871695]
[89]
Neumeister A, Normandin MD, Pietrzak RH, et al. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: A positron emission tomography study. Mol Psychiatry 2013; 18(9): 1034-40.
[http://dx.doi.org/10.1038/mp.2013.61] [PMID: 23670490]
[90]
Ranganathan M, D’Souza DC. Alterations in the endocannabinoid system in schizophrenia. Biol Psychiatry 2020; 88(9): 675-7.
[http://dx.doi.org/10.1016/j.biopsych.2020.08.019] [PMID: 33032694]
[91]
Sloan ME, Grant CW, Gowin JL, Ramchandani VA, Le Foll B. Endocannabinoid signaling in psychiatric disorders: A review of positron emission tomography studies. Acta Pharmacol 2019; 40(3): 342-50.
[http://dx.doi.org/10.1038/s41401-018-0081-z] [PMID: 30166624]
[92]
Varlow C, Boileau I, Wey HY, Liang SH, Vasdev N. Classics in neuroimaging: Imaging the endocannabinoid pathway with PET. ACS Chem Neurosci 2020; 11(13): 1855-62.
[http://dx.doi.org/10.1021/acschemneuro.0c00305] [PMID: 32559067]
[93]
Ye L, Cao Z, Wang W, Zhou N. New insights in cannabinoid receptor structure and signaling. Curr Mol Pharmacol 2019; 12(3): 239-48.
[http://dx.doi.org/10.2174/1874467212666190215112036] [PMID: 30767756]
[94]
Koethe D, Pahlisch F, Hellmich M, et al. Familial abnormalities of endocannabinoid signaling in schizophrenia. World J Biol Psychiatry 2019; 20(2): 117-25.
[http://dx.doi.org/10.1080/15622975.2018.1449966] [PMID: 29521179]
[95]
Rodríguez-Muñoz M, Sánchez-Blázquez P, Callado LF, Meana JJ, Garzón-Niño J. Schizophrenia and depression, two poles of endocannabinoid system deregulation. Transl Psychiatry 2017; 7(12): 1291.
[http://dx.doi.org/10.1038/s41398-017-0029-y] [PMID: 29249810]
[96]
Ibarra-Lecue I, Pilar-Cuéllar F, Muguruza C, et al. The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem Pharmacol 2018; 157: 97-107.
[http://dx.doi.org/10.1016/j.bcp.2018.07.009] [PMID: 30026022]
[97]
Vinod KY, Xie S, Psychoyos D, Hungund BL, Cooper TB, Tejani-Butt SM. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats. PLoS One 2012; 7(5): e36743.
[http://dx.doi.org/10.1371/journal.pone.0036743] [PMID: 22606285]
[98]
Harfmann EJ, McAuliffe TL, Larson ER, et al. Circulating endocannabinoid concentrations in grieving adults. Psychoneuroendocrinology 2020; 120: 104801.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104801] [PMID: 32682172]
[99]
Bambico FR, Cassano T, Dominguez-Lopez S, et al. Genetic deletion of fatty acid amide hydrolase alters emotional behavior and serotonergic transmission in the dorsal raphe, prefrontal cortex, and hippocampus. Neuropsychopharmacology 2010; 35(10): 2083-100.
[http://dx.doi.org/10.1038/npp.2010.80] [PMID: 20571484]
[100]
Rafiei D, Kolla NJ. Elevated brain fatty acid amide hydrolase induces depressive-like phenotypes in rodent models: A review. Int J Mol Sci 2021; 22(3): 1047.
[http://dx.doi.org/10.3390/ijms22031047] [PMID: 33494322]
[101]
Naidu PS, Varvel SA, Ahn K, Cravatt BF, Martin BR, Lichtman AH. Evaluation of fatty acid amide hydrolase inhibition in murine models of emotionality. Psychopharmacology (Berl) 2007; 192(1): 61-70.
[http://dx.doi.org/10.1007/s00213-006-0689-4] [PMID: 17279376]
[102]
Ferber SG, Roth TL, Weller A. Epigenetic fragility of the endocannabinoid system under stress: Risk for mood disorders and pharmacogenomic implications. Epigenomics 2020; 12(8): 657-60.
[http://dx.doi.org/10.2217/epi-2020-0037] [PMID: 32396405]
[103]
Monteleone P, Bifulco M, Maina G, et al. Investigation of CNR1 and FAAH endocannabinoid gene polymorphisms in bipolar disorder and major depression. Pharmacol Res 2010; 61(5): 400-4.
[http://dx.doi.org/10.1016/j.phrs.2010.01.002] [PMID: 20080186]
[104]
Lazary J, Eszlari N, Juhasz G, Bagdy G. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. Eur Neuropsychopharmacol 2016; 26(6): 1020-8.
[http://dx.doi.org/10.1016/j.euroneuro.2016.03.003] [PMID: 27005594]
[105]
Maldonado R, Cabañero D, Martín-García E. The endocannabinoid system in modulating fear, anxiety, and stress Dialogues Clin Neurosci 2020; 22(3): 229-39.
[http://dx.doi.org/10.31887/DCNS.2020.22.3/rmaldonado] [PMID: 33162766]
[106]
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76(Pt A): 56-66.
[http://dx.doi.org/10.1016/j.neubiorev.2016.12.033] [PMID: 28434588]
[107]
Bedse G, Bluett RJ, Patrick TA, et al. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: Comparative profiling of FAAH, MAGL and dual inhibitors. Transl Psychiatry 2018; 8(1): 92-14.
[http://dx.doi.org/10.1038/s41398-018-0141-7] [PMID: 29695817]
[108]
Hou L, Rong J, Haider A, et al. Positron emission tomography imaging of the endocannabinoid system: Opportunities and challenges in radiotracer development. J Med Chem 2021; 64(1): 123-49.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01459] [PMID: 33379862]
[109]
Bersani G, Pacitti F, Iannitelli A, et al. Inverse correlation between plasma 2-arachidonoylglycerol levels and subjective severity of depression. Hum Psychopharmacol 2021; 36(4): e2779.
[http://dx.doi.org/10.1002/hup.2779] [PMID: 33559925]
[110]
Domschke K, Dannlowski U, Ohrmann P, et al. Cannabinoid receptor 1 (CNR1) gene: Impact on antidepressant treatment response and emotion processing in major depression. Eur Neuropsychopharmacol 2008; 18(10): 751-9.
[http://dx.doi.org/10.1016/j.euroneuro.2008.05.003] [PMID: 18579347]
[111]
Neumeister A. The endocannabinoid system provides an avenue for evidence-based treatment development for PTSD. Depress Anxiety 2013; 30(2): 93-6.
[http://dx.doi.org/10.1002/da.22031] [PMID: 23225490]
[112]
Tan H, Lauzon NM, Bishop SF, Bechard MA, Laviolette SR. Integrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding. Cereb Cortex 2010; 20(6): 1486-96.
[http://dx.doi.org/10.1093/cercor/bhp210] [PMID: 19880592]
[113]
Ramikie TS, Patel S. Endocannabinoid signaling in the amygdala: Anatomy, synaptic signaling, behavior, and adaptations to stress. Neuroscience 2012; 204: 38-52.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.037] [PMID: 21884761]
[114]
Kuhnert S, Meyer C, Koch M. Involvement of cannabinoid receptors in the amygdala and prefrontal cortex of rats in fear learning, consolidation, retrieval and extinction. Behav Brain Res 2013; 250: 274-84.
[http://dx.doi.org/10.1016/j.bbr.2013.05.002] [PMID: 23702112]
[115]
Bossong MG, van Hell HH, Jager G, Kahn RS, Ramsey NF, Jansma JM. The endocannabinoid system and emotional processing: A pharmacological fMRI study with Δ9-tetrahydrocannabinol. Eur Neuropsychopharmacol 2013; 23(12): 1687-97.
[http://dx.doi.org/10.1016/j.euroneuro.2013.06.009] [PMID: 23928295]
[116]
Gorka SM, Fitzgerald DA, de Wit H, Phan KL. Cannabinoid modulation of amygdala subregion functional connectivity to social signals of threat. Int J Neuropsychopharmacol 2014; 18(3): pyu104.
[http://dx.doi.org/10.1093/ijnp/pyu104] [PMID: 25548107]
[117]
Ceccarini J, Kuepper R, Kemels D, van Os J, Henquet C, Van Laere K. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addict Biol 2015; 20(2): 357-67.
[http://dx.doi.org/10.1111/adb.12116] [PMID: 24373053]
[118]
Weinstein A, Livny A, Weizman A. Brain imaging studies on the cognitive, pharmacological and neurobiological effects of cannabis in humans: Evidence from studies of adult users. Curr Pharm Des 2016; 22(42): 6366-79.
[http://dx.doi.org/10.2174/1381612822666160822151323] [PMID: 27549374]
[119]
Bhattacharyya S, Egerton A, Kim E, et al. Acute induction of anxiety in humans by delta-9-tetrahydrocannabinol related to amygdalar cannabinoid-1 (CB1) receptors. Sci Rep 2017; 7(1): 15025.
[http://dx.doi.org/10.1038/s41598-017-14203-4] [PMID: 29101333]
[120]
Ren SY, Wang ZZ, Zhang Y, Chen NH. Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin 2020; 41(10): 1263-71.
[http://dx.doi.org/10.1038/s41401-020-0385-7] [PMID: 32203086]
[121]
Alteba S, Mizrachi Zer-Aviv T, Tenenhaus A, et al. Antidepressant-like effects of URB597 and JZL184 in male and female rats exposed to early life stress. Eur Neuropsychopharmacol 2020; 39: 70-86.
[http://dx.doi.org/10.1016/j.euroneuro.2020.08.005] [PMID: 32891517]
[122]
Dong B, Shilpa BM, Shah R, et al. Dual pharmacological inhibitor of endocannabinoid degrading enzymes reduces depressive-like behavior in female rats. J Psychiatr Res 2020; 120: 103-12.
[http://dx.doi.org/10.1016/j.jpsychires.2019.10.010] [PMID: 31654971]
[123]
Pavón FJ, Polis IY, Stouffer DG, et al. Selective inhibition of monoacylglycerol lipase is associated with passive coping behavior and attenuation of stress-induced dopamine release in the medial prefrontal cortex. Neurobiol Stress 2021; 14: 100293.
[http://dx.doi.org/10.1016/j.ynstr.2021.100293] [PMID: 33490317]
[124]
Paulus MP, Stein MB, Simmons AN, Risbrough VB, Halter R, Chaplan SR. The effects of FAAH inhibition on the neural basis of anxiety-related processing in healthy male subjects: A randomized clinical trial. Neuropsychopharmacology 2021; 46(5): 1011-9.
[http://dx.doi.org/10.1038/s41386-020-00936-w] [PMID: 33335310]
[125]
Gärtner A, Dörfel D, Diers K, et al. Impact of FAAH genetic variation on fronto-amygdala function during emotional processing. Eur Arch Psychiatry Clin Neurosci 2019; 269(2): 209-21.
[http://dx.doi.org/10.1007/s00406-018-0944-9] [PMID: 30291441]
[126]
Mayo LM, Asratian A, Lindé J, et al. Elevated anandamide, enhanced recall of fear extinction, and attenuated stress responses following inhibition of fatty acid amide hydrolase: A randomized, controlled experimental medicine trial. Biol Psychiatry 2020; 87(6): 538-47.
[http://dx.doi.org/10.1016/j.biopsych.2019.07.034] [PMID: 31590924]
[127]
Morena M, Aukema RJ, Leitl KD, et al. Upregulation of anandamide hydrolysis in the basolateral complex of amygdala reduces fear memory expression and indices of stress and anxiety. J Neurosci 2019; 39(7): 1275-92.
[http://dx.doi.org/10.1523/JNEUROSCI.2251-18.2018] [PMID: 30573646]
[128]
Kaczocha M, Glaser ST, Deutsch DG, Lennarz WJ. Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci USA 2009; 106(15): 6375-80.
[http://dx.doi.org/10.1073/pnas.0901515106] [PMID: 19307565]
[129]
Khasabova IA, Holman M, Morse T, et al. Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain. Neurobiol Dis 2013; 58: 19-28.
[http://dx.doi.org/10.1016/j.nbd.2013.04.018] [PMID: 23644187]
[130]
Adamczyk P, Gołda A, McCreary AC, Filip M, Przegaliński E. Activation of endocannabinoid transmission induces antidepressant-like effects in rats. J Physiol Pharmacol 2008; 59(2): 217-28.
[PMID: 18622041]
[131]
Deutsch DG. A personal retrospective: Elevating anandamide (AEA) by targeting fatty acid amide hydrolase (FAAH) and the fatty acid binding proteins (FABPs). Front Pharmacol 2016; 7: 370.
[http://dx.doi.org/10.3389/fphar.2016.00370] [PMID: 27790143]
[132]
Nazıroğlu M, Taner AN, Balbay E, Çiğ B. Inhibitions of anandamide transport and FAAH synthesis decrease apoptosis and oxidative stress through inhibition of TRPV1 channel in an in vitro seizure model. Mol Cell Biochem 2019; 453(1-2): 143-55.
[http://dx.doi.org/10.1007/s11010-018-3439-0] [PMID: 30159798]
[133]
Wang YT, Liu CH, Zhu HL. Fatty acid binding protein (FABP) inhibitors: A patent review (2012-2015). Expert Opin Ther Pat 2016; 26(7): 767-76.
[http://dx.doi.org/10.1080/13543776.2016.1182500] [PMID: 27109571]
[134]
Abdul Bari A B, Samuel P J. Road toward universal COVID-19 testing method - A review. J J Immunoassay Immunochem 2021; 42(4): 335-46.
[http://dx.doi.org/10.1080/15321819.2021.1895214]
[135]
Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Res Sq 2021.
[http://dx.doi.org/10.21203/rs.3.rs-266574/v1]
[136]
Krishnan A, Hamilton JP, Alqahtani SA, Woreta TA. COVID-19: An overview and a clinical update. World J Clin Cases 2021; 9(1): 8-23.
[http://dx.doi.org/10.12998/wjcc.v9.i1.8] [PMID: 33511168]
[137]
Beig Parikhani A, Bazaz M, Bamehr H, et al. The inclusive review on SARS-CoV-2 biology, epidemiology, diagnosis, and potential management options. Curr Microbiol 2021; 78(4): 1099-114.
[http://dx.doi.org/10.1007/s00284-021-02396-x] [PMID: 33638671]
[138]
Rolla G, Brussino L, Badiu I, Castells MC, Phillips EJ. Maintaining Safety with SARS-CoV-2 Vaccines. N Engl J Med 2021; 384(10): e37.
[http://dx.doi.org/10.1056/NEJMc2100766] [PMID: 33567189]
[139]
Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2021; 21(2): 73-82.
[http://dx.doi.org/10.1038/s41577-020-00480-0] [PMID: 33340022]
[140]
Remmel A. COVID vaccines and safety: What the research says. Nature 2021; 590(7847): 538-40.
[http://dx.doi.org/10.1038/d41586-021-00290-x] [PMID: 33597779]
[141]
López-Bueno R, López-Sánchez GF, Casajús JA, Calatayud J, Tully MA, Smith L. Potential health-related behaviors for pre-school and school-aged children during COVID-19 lockdown: A narrative review. Prev Med 2021; 143: 106349.
[http://dx.doi.org/10.1016/j.ypmed.2020.106349] [PMID: 33271236]
[142]
Joffe AR. COVID-19: Rethinking the lockdown groupthink. Front Public Health 2021; 9: 625778.
[http://dx.doi.org/10.3389/fpubh.2021.625778] [PMID: 33718322]
[143]
Tsamakis K, Tsiptsios D, Ouranidis A, et al. COVID-19 and its consequences on mental health (Review). Exp Ther Med 2021; 21(3): 244.
[http://dx.doi.org/10.3892/etm.2021.9675] [PMID: 33603852]
[144]
Imperatori C, Dakanalis A, Farina B, et al. Global storm of stress-related psychopathological symptoms: A brief overview on the usefulness of virtual reality in facing the mental health impact of COVID-19. Cyberpsychol Behav Soc Netw 2020; 23(11): 782-8.
[http://dx.doi.org/10.1089/cyber.2020.0339] [PMID: 32640852]
[145]
Yamamoto T, Uchiumi C, Suzuki N, Yoshimoto J, Murillo-Rodriguez E. The psychological impact of ‘mild lockdown’ in japan during the covid-19 pandemic: A nationwide survey under a declared state of emergency. Int J Environ Res Public Health 2020; 17(24): 9382.
[http://dx.doi.org/10.3390/ijerph17249382] [PMID: 33333893]
[146]
Yan T, Zhizhong W, Jianzhong Z, et al. Depressive and anxiety symptoms among people under quarantine during the COVID-19 epidemic in China: A cross-sectional study. Front Psychiatry 2021; 12: 566241.
[http://dx.doi.org/10.3389/fpsyt.2021.566241] [PMID: 33658949]
[147]
Li X, Lyu H. Epidemic risk perception, perceived stress, and mental health during COVID-19 pandemic: A moderated mediating model. Front Psychol 2021; 11: 563741.
[http://dx.doi.org/10.3389/fpsyg.2020.563741] [PMID: 33643107]
[148]
Kahlon MK, Aksan N, Aubrey R, et al. Effect of layperson-delivered, empathy-focused program of telephone calls on loneliness, depression, and anxiety among adults during the COVID-19 pandemic: A randomized clinical trial. JAMA Psychiatry 2021; 78(6): 616-22.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.0113] [PMID: 33620417]
[149]
Gullo S, Misici I, Teti A, Liuzzi M, Chiara E. Going through the lockdown: A longitudinal study on the psychological consequences of the coronavirus pandemic. Res Psychother 2021; 23(3): 494.
[http://dx.doi.org/10.4081/ripppo.2020.494] [PMID: 33585300]
[150]
Panno A, Carbone GA, Massullo C, Farina B, Imperatori C. COVID-19 related distress is associated with alcohol problems, social media and food addiction symptoms: Insights from the Italian experience during the lockdown. Front Psychiatry 2020; 11: 577135.
[http://dx.doi.org/10.3389/fpsyt.2020.577135] [PMID: 33324256]
[151]
Gao W, Walther A, Wekenborg M, Penz M, Kirschbaum C. Determination of endocannabinoids and N-acylethanolamines in human hair with LC-MS/MS and their relation to symptoms of depression, burnout, and anxiety. Talanta 2020; 217: 121006.
[http://dx.doi.org/10.1016/j.talanta.2020.121006] [PMID: 32498885]
[152]
Estrada JA, Contreras I. Endocannabinoid receptors in the CNS: Potential drug targets for the prevention and treatment of neurologic and psychiatric disorders. Curr Neuropharmacol 2020; 18(8): 769-87.
[http://dx.doi.org/10.2174/1570159X18666200217140255] [PMID: 32065105]
[153]
Dow-Edwards D. Sex differences in the interactive effects of early life stress and the endocannabinoid system. Neurotoxicol Teratol 2020; 80: 106893.
[http://dx.doi.org/10.1016/j.ntt.2020.106893] [PMID: 32437941]
[154]
Pinna G. Endocannabinoids and precision medicine for mood disorders and suicide. Front Psychiatry 2021; 12: 658433.
[http://dx.doi.org/10.3389/fpsyt.2021.658433] [PMID: 34093274]
[155]
Lazary J, Eszlari N, Kriko E, et al. Genetic analyses of the endocannabinoid pathway in association with affective phenotypic variants. Neurosci Lett 2021; 744: 135600.
[http://dx.doi.org/10.1016/j.neulet.2020.135600] [PMID: 33421489]
[156]
Alteba S, Portugalov A, Hillard CJ, Akirav I. Inhibition of Fatty Acid Amide Hydrolase (FAAH) during adolescence and exposure to early life stress may exacerbate depression-like behaviors in male and female rats. Neuroscience 2021; 455: 89-106.
[http://dx.doi.org/10.1016/j.neuroscience.2020.12.022] [PMID: 33359656]
[157]
Brellenthin AG, Crombie KM, Hillard CJ, Koltyn KF. Endocannabinoid and mood responses to exercise in adults with varying activity levels. Med Sci Sports Exerc 2017; 49(8): 1688-96.
[http://dx.doi.org/10.1249/MSS.0000000000001276] [PMID: 28319590]
[158]
Meyer JD, Crombie KM, Cook DB, Hillard CJ, Koltyn KF. Serum endocannabinoid and mood changes after exercise in major depressive disorder. Med Sci Sports Exerc 2019; 51(9): 1909-17.
[http://dx.doi.org/10.1249/MSS.0000000000002006] [PMID: 30973483]
[159]
Amatriain-Fernández S, Budde H, Gronwald T, et al. The endocannabinoid system as modulator of exercise benefits in mental health. Curr Neuropharmacol 2021; 19(8): 1304-22.
[http://dx.doi.org/10.2174/1570159X19666201218112748] [PMID: 33342414]
[160]
Yarrington JS, Lasser J, Garcia D, et al. Impact of the COVID-19 pandemic on mental health among 157,213 Americans. J Affect Disord 2021; 286: 64-70.
[http://dx.doi.org/10.1016/j.jad.2021.02.056] [PMID: 33677184]
[161]
Brenner MH, Bhugra D. Acceleration of anxiety, depression, and suicide: Secondary effects of economic disruption related to COVID-19. Front Psychiatry 2020; 11: 592467.
[http://dx.doi.org/10.3389/fpsyt.2020.592467] [PMID: 33384627]
[162]
Fruehwirth JC, Biswas S, Perreira KM. The Covid-19 pandemic and mental health of first-year college students: Examining the effect of Covid-19 stressors using longitudinal data. PLoS One 2021; 16(3): e0247999.
[http://dx.doi.org/10.1371/journal.pone.0247999] [PMID: 33667243]
[163]
Moayed MS, Vahedian-Azimi A, Mirmomeni G, et al. Depression, anxiety, and stress among patients with COVID-19: A cross-sectional study. Adv Exp Med Biol 2021; 1321: 229-36.
[http://dx.doi.org/10.1007/978-3-030-59261-5_19] [PMID: 33656727]
[164]
Kingstone T, Taylor AK, O’Donnell CA, Atherton H, Blane DN, Chew-Graham CA. Finding the ‘right’ GP: A qualitative study of the experiences of people with long-COVID. BJGP Open 2020; 4(5): bjgpopen20X101143.
[http://dx.doi.org/10.3399/bjgpopen20X101143] [PMID: 33051223]
[165]
Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med 2021; 27(4): 626-31.
[http://dx.doi.org/10.1038/s41591-021-01292-y] [PMID: 33692530]
[166]
Rubin R. Collecting data about COVID-19-related brain symptoms. JAMA 2021; 325(8): 712.
[http://dx.doi.org/10.1001/jama.2021.0791] [PMID: 33620387]
[167]
Sher L. Post-COVID syndrome and suicide risk. QJM 2021; 114(2): 95-8.
[http://dx.doi.org/10.1093/qjmed/hcab007] [PMID: 33486531]
[168]
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med 2021; 27(4): 601-15.
[http://dx.doi.org/10.1038/s41591-021-01283-z] [PMID: 33753937]
[169]
Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: Consequences of acute versus chronic social isolation. Cell 2021; 184(6): 1500-16.
[http://dx.doi.org/10.1016/j.cell.2021.02.028] [PMID: 33691140]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy