Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Mini-Review Article

Platinum-based Cancer Chemotherapeutics: Recent Trends and Future Perspectives

Author(s): Shazia Parveen*

Volume 2, Issue 4, 2022

Published on: 18 May, 2022

Page: [275 - 293] Pages: 19

DOI: 10.2174/2210298102666220404102936

Abstract

Platinum-based drugs have been proved to be one of the prevalent successes in the field of inorganic medicinal chemistry. So far, three generations of platinum-based drugs are on the market and are recognized to play critical roles in the treatment of various types of tumors. The most commonly used anticancer chemotherapeutics worldwide are cisplatin, oxaliplatin, and carboplatin. They are known to exhibit prominent and interesting chemo-therapeutic effects. Nevertheless, Pt chemotherapy can be limited in transformative clinical implementation owing to the severe side effects triggered by off-target activity and lowered efficacy because of acquired/intrinsic resistance in some cancer types. Incidentally, monofunctional Pt complexes, those bearing one labile ligand, initially studied in the late 1980s, are again enticing renewed attention. In comparison to the bifunctional anticancer complex bearing two labile ligands, viz., cisplatin (which creates a distortion in the DNA strands by forming inter-and intrastrand crosslinks), monofunctional Pt(II) complexes were found to exclusively bind to DNA via a solo coordination site revealed by the one leaving chloride group. However, to date, no other non-platinum metal-based anticancer drug has been able to efficaciously pass all stages of clinical trials. Hence, the hunt for novel Pt-based anticancer drugs is being pursued vigorously for the reason that they still play a principal role in the chemotherapeutic profiles of almost 50% of all cancer patients. Meanwhile, the major significant goal in the search for new Pt chemotherapeutic drugs is to focus on the following: a) exploiting their potential, b) averting the undesirable side effects, c) curing resistant tumors, and d) refining the cellular pharmacokinetic regimes. This mini-review highlights the numerous continuing efforts to produce the next generation of Pt anticancer drugs.

Keywords: Cisplatin, Pt(II)/(IV) complexes, SAR, anticancer activity, IC50, chemotherapeutics..

Graphical Abstract
[2]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[3]
Dilruba, S.; Kalayda, G.V. Platinum-based drugs: Past, present and future. Cancer Chemother. Pharmacol., 2016, 77(6), 1103-1124.
[http://dx.doi.org/10.1007/s00280-016-2976-z] [PMID: 26886018]
[4]
Chi, N.T.T.; Pham, V.T.; Huynh, H.V. Mixed Arylolefin/NHC Complexes of Platinum(II): Syntheses, characterizations, and in vitro cyto-toxicities. Organometallics, 2020, 39(19), 3505-3513.
[http://dx.doi.org/10.1021/acs.organomet.0c00450]
[5]
Jung, Y.; Lippard, S.J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev., 2007, 107(5), 1387-1407.
[http://dx.doi.org/10.1021/cr068207j] [PMID: 17455916]
[6]
Kartalou, M.; Essigmann, J.M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res., 2001, 478(1-2), 1-21.
[http://dx.doi.org/10.1016/S0027-5107(01)00142-7] [PMID: 11406166]
[7]
Backman-Blanco, G.; Valdés, H.; Ramírez-Apan, M.T.; Cano-Sanchez, P.; Hernandez-Ortega, S.; Orjuela, A.L.; Alí-Torres, J.; Flores-Gaspar, A.; Reyes-Martínez, R.; Morales-Morales, D. Synthesis of Pt(II) complexes of the type [Pt(1,10-phenanthroline)(SArFn)2] (SArFn = SC6H3-3,4-F2; SC6F4-4-H; SC6F5). Preliminary evaluation of their in vitro anticancer activity. J. Inorg. Biochem., 2020, 211, 111206.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111206] [PMID: 32801098]
[8]
Zhou, J.; Kang, Y.; Chen, L.; Wang, H.; Liu, J.; Zeng, S.; Yu, L. The drug-resistance mechanisms of five platinum-based antitumor agents. Front. Pharmacol., 2020, 11, 343.
[http://dx.doi.org/10.3389/fphar.2020.00343] [PMID: 32265714]
[9]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: Targeted Pt(II) Agents, nanoparticle delivery, and Pt(IV). Prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[10]
Englinger, B.; Pirker, C.; Heffeter, P.; Terenzi, A.; Kowol, C.R.; Keppler, B.K.; Berger, W. Metal drugs and the anticancer immune re-sponse. Chem. Rev., 2019, 119(2), 1519-1624.
[http://dx.doi.org/10.1021/acs.chemrev.8b00396] [PMID: 30489072]
[11]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[12]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[13]
Johnstone, T.C.; Park, G.Y.; Lippard, S.J. Understanding and improving platinum anticancer drugs--phenanthriplatin. Anticancer Res., 2014, 34(1), 471-476.
[PMID: 24403503]
[14]
Babak, M.V.; Zhi, Y.; Czarny, B.; Toh, T.B.; Hooi, L.; Chow, E.K.; Ang, W.H.; Gibson, D.; Pastorin, G. Dual-Targeting Dual-Action Plati-num(IV) platform for enhanced anticancer activity and reduced nephrotoxicity. Angew. Chem. Int. Ed. Engl., 2019, 58(24), 8109-8114.
[http://dx.doi.org/10.1002/anie.201903112] [PMID: 30945417]
[15]
Wang, K.; Lu, J.; Li, R. The events that occur when cisplatin encounters cells. Coord. Chem. Rev., 1996, 151, 53-88.
[http://dx.doi.org/10.1016/S0010-8545(96)90195-2]
[16]
Jamieson, E.R.; Lippard, S.J. Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev., 1999, 99(9), 2467-2498.
[http://dx.doi.org/10.1021/cr980421n] [PMID: 11749487]
[17]
Guo, Z.; Sadler, P.J. Medicinal Inorganic Chemistry. In:; Eldik, R.; Colin, D.H.(Eds.); Advances in Inorganic Chemistry, Science Direct, 1999, pp. 183-306.
[http://dx.doi.org/10.1016/S0898-8838(08)60271-8]
[18]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. Third row transition metals for the treatment of cancer. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2015, 373(2037), 20140185.
[http://dx.doi.org/10.1098/rsta.2014.0185] [PMID: 25666060]
[19]
Rabik, C.A.; Dolan, M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev., 2007, 33(1), 9-23.
[http://dx.doi.org/10.1016/j.ctrv.2006.09.006] [PMID: 17084534]
[20]
Argyriou, A.A.; Polychronopoulos, P.; Iconomou, G.; Chroni, E.; Kalofonos, H.P. A review on oxaliplatin-induced peripheral nerve dam-age. Cancer Treat. Rev., 2008, 34(4), 368-377.
[http://dx.doi.org/10.1016/j.ctrv.2008.01.003] [PMID: 18281158]
[21]
McWhinney, S.R.; Goldberg, R.M.; McLeod, H.L. Platinum neurotoxicity pharmacogenetics. Mol. Cancer Ther., 2009, 8(1), 10-16.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0840] [PMID: 19139108]
[22]
Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Cisplatin nephrotoxicity: A review. Am. J. Med. Sci., 2007, 334(2), 115-124.
[http://dx.doi.org/10.1097/MAJ.0b013e31812dfe1e] [PMID: 17700201]
[23]
Oberoi, H.S.; Nukolova, N.V.; Kabanov, A.V.; Bronich, T.K. Nanocarriers for delivery of platinum anticancer drugs. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1667-1685.
[http://dx.doi.org/10.1016/j.addr.2013.09.014] [PMID: 24113520]
[24]
Cabral, H.; Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release, 2014, 190, 465-476.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.042] [PMID: 24993430]
[25]
Callari, M.; Aldrich-Wright, J.R.; De Souza, P.L.; Stenzel, M.H. Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog. Polym. Sci., 2014, 39(9), 1614-1643.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.05.002]
[26]
Khoury, A.; Deo, K.M.; Aldrich-Wright, J.R. Recent advances in platinum-based chemotherapeutics that exhibit inhibitory and targeted mechanisms of action. J. Inorg. Biochem., 2020, 207, 111070.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111070] [PMID: 32299045]
[27]
Ramírez-Rave, S.; Ramírez-Apan, M.T.; Tlahuext, H.; Morales-Morales, D.; Toscano, R.A.; Grévy, J.M. Non-Symmetric CNS-Pt(II) pincer complexes including thioether functionalized iminophosphoranes. evaluation of their in vitro anticancer activity. J. Organomet. Chem., 2016, 814, 16-24.
[http://dx.doi.org/10.1016/j.jorganchem.2016.04.022]
[28]
Şahin, Ö; Özdemir, Ü.Ö; Seferoğlu, N; Genc, Z.K; Kaya, K; Aydıner, B; Tekin, S; Seferoğlu, Z New platinum (II) and palladium (II) complexes of coumarin-thiazole Schiff base with a fluorescent chemosensor properties: Synthesis, spectroscopic characterization, X-ray structure determination, in vitro anticancer activity on various human carcinoma cell lines and computational studies J. Photochem. Photobiol. B, 2018, 178, 428-439.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.030] [PMID: 29216566]
[29]
Annunziata, A.; Amoresano, A.; Cucciolito, M.E.; Esposito, R.; Ferraro, G.; Iacobucci, I.; Imbimbo, P.; Lucignano, R.; Melchiorre, M.; Monti, M.; Scognamiglio, C.; Tuzi, A.; Monti, D.M.; Merlino, A.; Ruffo, F. Pt(II) versus Pt(IV) in carbene glycoconjugate antitumor agents: Minimal structural variations and great performance changes. Inorg. Chem., 2020, 59(6), 4002-4014.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03683] [PMID: 32129608]
[30]
Mbugua, S.N.; Sibuyi, N.R.S.; Njenga, L.W.; Odhiambo, R.A.; Wandiga, S.O.; Meyer, M.; Lalancette, R.A.; Onani, M.O. New Palladium(II) and Platinum(II) complexes based on pyrrole schiff bases: Synthesis, characterization, x-ray structure, and anticancer activity. ACS Omega, 2020, 5(25), 14942-14954.
[http://dx.doi.org/10.1021/acsomega.0c00360] [PMID: 32637768]
[31]
Lozada, I.B.; Huang, B.; Stilgenbauer, M.; Beach, T.; Qiu, Z.; Zheng, Y.; Herbert, D.E. Monofunctional platinum(ii) anticancer complexes based on multidentate phenanthridine-containing ligand frameworks. Dalton Trans., 2020, 49(20), 6557-6560.
[http://dx.doi.org/10.1039/D0DT01275K] [PMID: 32342084]
[32]
Chen, Y.; Wang, Q.; Li, Z.; Liu, Z.; Zhao, Y.; Zhang, J.; Liu, M.; Wang, Z.; Li, D.; Han, J. Naproxen platinum(Iv) hybrids inhibiting cy-cloxygenases and matrix metalloproteinases and causing DNA damage: Synthesis and biological evaluation as antitumor agents: in vitro and in vivo. Dalton Trans., 2020, 49, 5192-5204.
[33]
Wang, Q.; Chen, Y.; Li, G.; Zhao, Y.; Liu, Z.; Zhang, R.; Liu, M.; Li, D.; Han, J. A potent aminonaphthalimide platinum(IV) complex with effective antitumor activities in vitro and in vivo displaying dual DNA damage effects on tumor cells. Bioorg. Med. Chem. Lett., 2019, 29(20), 126670.
[http://dx.doi.org/10.1016/j.bmcl.2019.126670] [PMID: 31500997]
[34]
Samper, K.G.; Marker, S.C.; Bayón, P.; MacMillan, S.N.; Keresztes, I.; Palacios, Ò.; Wilson, J.J. Anticancer activity of hydroxy- and sul-fonamide-azobenzene platinum(II) complexes in cisplatin-resistant ovarian cancer cells. J. Inorg. Biochem., 2017, 174, 102-110.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.06.003] [PMID: 28651169]
[35]
Qin, Q.P.; Wang, S.L.; Tan, M.X.; Wang, Z.F.; Luo, D.M.; Zou, B.Q.; Liu, Y.C.; Yao, P.F.; Liang, H. Novel tacrine platinum(II) complexes display high anticancer activity via inhibition of telomerase activity, dysfunction of mitochondria, and activation of the p53 signaling pathway. Eur. J. Med. Chem., 2018, 158, 106-122.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.008] [PMID: 30205260]
[36]
Li, S.; Zhao, J.; Yuan, B.; Wang, X.; Zhang, J.; Yue, L.; Hou, H.; Hu, J.; Chen, S. Crystal structure, DNA interaction and in vitro anticancer activity of Cu(II) and Pt(II) compounds based on benzimidazole-quinoline derivative. Polyhedron, 2020, 179, 114369.
[http://dx.doi.org/10.1016/j.poly.2020.114369]
[37]
Živković M.D.; Kljun, J.; Ilic-Tomic, T.; Pavic, A.; Veselinović A.; Manojlović D.D.; Nikodinovic-Runic, J.; Turel, I. A new class of platinum(II) complexes with the phosphine ligand pta which show potent anticancer activity. Inorg. Chem. Front., 2018, 5(1), 39-53.
[http://dx.doi.org/10.1039/C7QI00299H]
[38]
Zhou, W.; Almeqdadi, M.; Xifaras, M.E.; Riddell, I.A.; Yilmaz, Ö.H.; Lippard, S.J. The effect of geometric isomerism on the anticancer activity of the monofunctional platinum complex trans-[Pt(NH3)2(phenanthridine)Cl]NO3. Chem. Commun. (Camb.), 2018, 54(22), 2788-2791.
[http://dx.doi.org/10.1039/C8CC00393A] [PMID: 29484327]
[39]
Akhmetova, V.R.; Akhmadiev, N.S.; Abdullin, M.F.; Dzhemileva, L.U.; D’Yakonov, V.A. Synthesis of new: N, N ′-Pd(Pt) complexes based on sulfanyl pyrazoles, and investigation of their in vitro anticancer activity. RSC Advances, 2020, 10(26), 15116-15123.
[http://dx.doi.org/10.1039/C9RA09783J]
[40]
Huang, G.B.; Chen, S.; Qin, Q.P.; Luo, J.R.; Tan, M.X.; Wang, Z.F.; Zou, B.Q.; Liang, H. In vitro and in vivo activity of novel platinum(Ii) complexes with naphthalene imide derivatives inhibiting human non-small cell lung cancer cells. New J. Chem., 2019, 43(21), 8146-8152.
[http://dx.doi.org/10.1039/C9NJ01076A]
[41]
Kutlu, E.; Emen, F.M.; Kismali, G. Kınaytürk, N.K.; Kılıç, D.; Karacolak, A.I.; Demirdogen, R.E. Pyridine derivative platinum complexes: Synthesis, molecular structure, DFT and initial anticancer activity studies. J. Mol. Struct., 2021, 1234, 130191.
[http://dx.doi.org/10.1016/j.molstruc.2021.130191]
[42]
Pan, A.; Mitra, I.; Mukherjee, S.; Ghosh, S.; Chatterji, U.; Moi, S.C. Development of anticancer activity of the Pt(II) Complex with N-Heterocyclic Amine: Its in vitro Pharmacokinetics with Thiol and Thio-Ethers, DNA and BSA binding, and cell cycle arrest. ACS Appl. Bio Mater., 2021, 4(1), 853-868.
[http://dx.doi.org/10.1021/acsabm.0c01374]
[43]
Sari, O.; Schüttler, A.; Lönnecke, P. BeDNArski, P.J.; Hey-Hawkins, E.; Karakus, M. Synthesis, structure and in vitro anticancer activity of ruthenium(II) and Platinum(II) complexes with chiral aminophosphine ligands. Trans. Met. Chem. (Weinh.), 2021, 46(4), 299-305.
[http://dx.doi.org/10.1007/s11243-020-00446-0]
[44]
Sankarganesh, M.; Vijay Solomon, R.; Dhaveethu Raja, J. Platinum complex with pyrimidine- and morpholine-based ligand: Synthesis, spectroscopic, DFT, TDDFT, catalytic reduction, in vitro anticancer, antioxidant, antimicrobial, DNA binding and molecular modeling studies. J. Biomol. Struct. Dyn., 2021, 39(3), 1055-1067.
[http://dx.doi.org/10.1080/07391102.2020.1727364] [PMID: 32036758]
[45]
Bhaduri, R.; Mukherjee, S.; Mitra, I.; Ghosh, S.; Chatterji, U.; Dodda, S.R.; Moi, S.C. Anticancer activity and cell death mechanism of Pt(II) complexes: Their in vitro bio-transformation to Pt(II)-DNA adduct formation and BSA binding study by spectroscopic method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 262, 120096.
[http://dx.doi.org/10.1016/j.saa.2021.120096] [PMID: 34214741]
[46]
Niu, L.; Ren, G.; Hou, T.; Shen, X.; Zhu, D. Synthesis, structure and anticancer activity of three platinum(II) complexes with 2-phenylpyridine derivatives. Inorg. Chem. Commun., 2021, 130, 108737.
[http://dx.doi.org/10.1016/j.inoche.2021.108737]
[47]
Qin, L.Q.; Wei, Z.Z.; Yang, L.; Qin, Q.P.; Zeng, J.J.; Tan, M.X.; Liang, H. Strong in vitro and in vivo cytotoxic effects of two platinum(II) complexes with cryptolepine derivatives. Med. Chem. Res., 2021, 30(7), 1419-1426.
[http://dx.doi.org/10.1007/s00044-021-02739-0]
[48]
Al-Janabi, A.S.M.; Al-Jumaili, W.A.; Saeed, T.S.; Abd, O.A.; Sinn, E. Pd(II) and Pt(II) Complexes with N-(1,3-Benzothiazol-2-Yl)acetamide ligands, spectroscopic characterization, DFT computational and in-vitro cytotoxicity studies. Mater. Today Proc., 2020, 43, 977-985.
[http://dx.doi.org/10.1016/j.matpr.2020.07.602]
[49]
Doğan, U.; Özcan, Ö.; Alaca, G.; Arı A.; Günnaz, S.; Yalçın, H.T.; Şahin, O.; İrişli, S. Novel Benzimidazole-Platinum(II) complexes: Syn-thesis, characterization, antimicrobial and anticancer activity. J. Mol. Struct., 2021, 1229, 129785.
[http://dx.doi.org/10.1016/j.molstruc.2020.129785]
[50]
Eslami Moghadam, M.; Jafari, A.; Kiani Khashandaragh, R.; Divsalar, A.; Ghasemzadeh, M. Three anticancer pt complexes with glycine derivatives: Synthesis, bioactivity on mcf-7 cell line, adme prediction, DFT, MEP, and molecular docking. J. Iran. Chem. Soc., 2021, 18(8), 1927-1939.
[http://dx.doi.org/10.1007/s13738-021-02154-7]
[51]
Wang, J.; Li, X.; Yuan, C.; Su, F.; Wu, Y.B.; Lu, L.; Zhu, M.; Xing, S.; Fu, X. Syntheses, crystal structures, and biological evaluations of new dinuclear platinum(ii) complexes with 1,2,4-triazole derivatives as bridging ligands. Dalton Trans., 2021, 50(13), 4527-4538.
[http://dx.doi.org/10.1039/D0DT03285A] [PMID: 33725030]
[52]
Qi, F.; Yuan, H.; Chen, Y.; Guo, Y.; Zhang, S.; Liu, Z.; He, W.; Guo, Z. BODIPY-based monofunctional Pt (II) complexes for specific photocytotoxicity against cancer cells. J. Inorg. Biochem., 2021, 218, 111394.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111394] [PMID: 33647541]
[53]
Gibson, D. Platinum(IV) anticancer agents; are we en route to the holy grail or to a dead end? J. Inorg. Biochem., 2021, 217, 111353.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111353] [PMID: 33477089]
[54]
Parveen, S.; Arjmand, F.; Tabassum, S. Clinical developments of antitumor polymer therapeutics. RSC Advances, 2019, 9(43), 24699-24721.
[http://dx.doi.org/10.1039/C9RA04358F]
[55]
Johnstone, T.C.; Alexander, S.M.; Wilson, J.J.; Lippard, S.J. Oxidative halogenation of cisplatin and carboplatin: Synthesis, spectroscopy, and crystal and molecular structures of Pt(IV) prodrugs. Dalton Trans., 2015, 44(1), 119-129.
[http://dx.doi.org/10.1039/C4DT02627F] [PMID: 25367395]
[56]
Graham, J.; Mushin, M.; Kirkpatrick, P. Oxaliplatin. Nat. Rev. Drug Discov., 2004, 3(1), 11-12.
[http://dx.doi.org/10.1038/nrd1287] [PMID: 14756144]
[57]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[58]
McKeage, M.J. Lobaplatin: A new antitumour platinum drug. Expert Opin. Investig. Drugs, 2001, 10(1), 119-128.
[http://dx.doi.org/10.1517/13543784.10.1.119] [PMID: 11116285]

© 2024 Bentham Science Publishers | Privacy Policy