Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Developments in Multi-component Synthesis of Lawsone Derivatives

Author(s): Komal Chandrakar, Jeevan Lal Patel, Rajeswar Rao Vedula*, R. K. Virendra, Shayama Prasad Mahapatra, Santhosh Penta* and Rajender S. Varma*

Volume 20, Issue 3, 2023

Published on: 15 August, 2022

Page: [278 - 307] Pages: 30

DOI: 10.2174/1570179419666220401121714

Price: $65

conference banner
Abstract

Background: 2-Hydroxy-1,4-Naphthoquinone (HNQ; Lawsone) is one of the most useful and the simplest naturally occurring naphthoquinones and has stimulated a resurgence of interest in the past decades due to a wide range of pharmacological activities.

Introduction and Methods: This activity has led to the unusually large emphasis being placed on the design of more efficient multi-component reactions (MCRs) in the synthesis of bioactive lawsone derivatives.

Results and Conclusion: This review highlights the recent developments in multi-component synthesis of biologically relevant naphthoquinone linked and fused heterocyclic derivatives carried out from 2015 till now.

Keywords: Lawsone derived heterocycles, multi-component reactions, one-pot synthesis, nanocatalysis, ultrasound irradiation, microwave irradiation.

[1]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[2]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AIDANIE3168>3.0.CO;2-U] [PMID: 11028061]
[3]
Gaich, T.; Baran, P.S. Aiming for the ideal synthesis. J. Org. Chem., 2010, 75(14), 4657-4673.
[http://dx.doi.org/10.1021/jo1006812] [PMID: 20540516]
[4]
Ruijter, E.; Orru, R.V.A. Multicomponent reactions - opportunities for the pharmaceutical industry. Drug Discov. Today. Technol., 2013, 10(1), e15-e20.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.012] [PMID: 24050225]
[5]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[6]
Magedov, I.V.; Kornienko, A. Multicomponent reactions in alkaloid-based drug discovery. Chem. Heterocycl. Compd., 2012, 48(1), 33-38.
[http://dx.doi.org/10.1007/s10593-012-0965-7] [PMID: 27917001]
[7]
Slobbe, P.; Ruijter, E.; Orru, R.V. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3(10), 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[8]
Kalinski, C.; Umkehrer, M.; Weber, L.; Kolb, J.; Burdack, C.; Ross, G. On the industrial applications of MCRs: Molecular diversity in drug discovery and generic drug synthesis. Mol. Divers., 2010, 14(3), 513-522.
[http://dx.doi.org/10.1007/s11030-010-9225-x] [PMID: 20229364]
[9]
Akritopoulou-Zanze, I. Isocyanide-based multicomponent reactions in drug discovery. Curr. Opin. Chem. Biol., 2008, 12(3), 324-331.
[http://dx.doi.org/10.1016/j.cbpa.2008.02.004] [PMID: 18312861]
[10]
Simon, M-O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[11]
Moos, W.H.; Hurt, C.R.; Morales, G.A. Combinatorial chemistry: Oh what a decade or two can do. Mol. Divers., 2009, 13(2), 241-245.
[http://dx.doi.org/10.1007/s11030-009-9127-y] [PMID: 19255865]
[12]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[13]
Lamberth, C.; Jeanguenat, A.; Cederbaum, F.; De Mesmaeker, A.; Zeller, M.; Kempf, H.J.; Zeun, R. Multicomponent reactions in fungicide research: The discovery of mandipropamid. Bioorg. Med. Chem., 2008, 16(3), 1531-1545.
[http://dx.doi.org/10.1016/j.bmc.2007.10.019] [PMID: 17962029]
[14]
Kakuchi, R. Multicomponent reactions in polymer synthesis. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 46-48.
[http://dx.doi.org/10.1002/anie.201305538] [PMID: 24302633]
[15]
Samai, S.; Nandi, G.C.; Kumar, R.; Singh, M.S. Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno [1,2-b] pyridines. Tetrahedron Lett., 2009, 50(50), 7096-7098.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.022]
[16]
Costa, M.P.; Feitosa, A.C.; Oliveira, F.C.; Cavalcanti, B.C.; da Silva, E.N.; Dias, G.G.; Sales, F.A.; Sousa, B.L.; Barroso-Neto, I.L.; Pessoa, C.; Caetano, E.W.; Di Fiore, S.; Fischer, R.; Ladeira, L.O.; Freire, V.N. Controlled release of nor-β-lapachone by PLGA microparticles: A strategy for improving cytotoxicity against prostate cancer cells. Molecules, 2016, 21(7), 873.
[http://dx.doi.org/10.3390/molecules21070873] [PMID: 27384551]
[17]
(a) Mickevičienė, K.; Baranauskaitčienė, R.; Kantminienčienė, K.; Stasevych, M.; Komarovska-Porokhnyavets, O.; Novikov, V. Synthesis and antimicrobial activity of N-substituted-β-amino acid derivatives containing 2-hydroxyphenyl, benzo[b]phenoxazine and quinoxaline moieties. Molecules, 2015, 20(2), 3170-3189.
[http://dx.doi.org/10.3390/molecules20023170] [PMID: 25689642 ];
(b) Dabiri, M.; Tisseh, Z.N.; Bazgir, A. Synthesis of fluorescent hydroxyl naphthalene-1, 4-dione derivatives by a three-component reaction in water. Dyes Pigments, 2011, 89(1), 63-69.
[http://dx.doi.org/10.1016/j.dyepig.2010.09.004]
[18]
Delarmelina, M.; Daltoé, R.D.; Cerri, M.F.; Madeira, K.P.; Rangel, L.B.A.; Júnior, V.L.; Romão, W.; Tarantod, A.G.; Greco, S.J. Synthesis, antitumor activity and docking of 2, 3-(substituted)-1, 4-naphthoquinone derivatives containing nitrogen, oxygen and sulfur. J. Braz. Chem. Soc., 2015, 26, 1804.
[http://dx.doi.org/10.5935/0103-5053.20150157]
[19]
Oramas-Royo, S.; Torrejón, C.; Cuadrado, I.; Hernández-Molina, R.; Hortelano, S.; Estévez-Braun, A.; de Las Heras, B. Synthesis and cytotoxic activity of metallic complexes of lawsone. Bioorg. Med. Chem., 2013, 21(9), 2471-2477.
[http://dx.doi.org/10.1016/j.bmc.2013.03.002] [PMID: 23545136]
[20]
Ferreira, F.D.; Ferreira, S.B.; Araujo, A.J.; Marinho, J.D.B.; Pessoa, C.; Moraes, M.O.; Costa-Lotufo, L.V.; Montenegro, R.C.; da Silva, F.D.; Ferreira, V.F.; Da Costa, J.G. Arylated alpha-and beta-dihydrofuran naphthoquinones: Electrochemical parameters, evaluation of antitumor activity and their correlation. Electrochim. Acta, 2013, 110, 634-640.
[http://dx.doi.org/10.1016/j.electacta.2013.04.148]
[21]
da Silva, E.N., Jr; Cavalcanti, B.C.; Guimarães, T.T.; Pinto, M.C.; Cabral, I.O.; Pessoa, C.; Costa-Lotufo, L.V.; de Moraes, M.O.; de Andrade, C.K.; Dos Santos, M.R.; de Simone, C.A.; Goulart, M.O.; Pinto, A.V. Synthesis and evaluation of quinonoid compounds against tumor cell lines. Eur. J. Med. Chem., 2011, 46(1), 399-410.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.006] [PMID: 21115213]
[22]
Barange, D.K.; Kavala, V.; Raju, B.R.; Kuo, C.W.; Tseng, C.; Tu, Y.C.; Yao, C.F. Facile and highly efficient method for the C-alkylation of 2-hydroxy-1, 4-naphthoquinone to nitroalkenes under catalyst-free ‘on water’conditions. Tetrahedron Lett., 2009, 50(36), 5116-5119.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.107]
[23]
Bazgir, A.; Tisseh, Z.N.; Mirzaei, P. An efficient synthesis of spiro [dibenzo [b, i] xanthene-13, 3′-indoline]-pentaones and 5H-dibenzo [b, i] xanthene-tetraones. Tetrahedron Lett., 2008, 49(35), 5165-5168.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.077]
[24]
Jiménez-Alonso, S.; Orellana, H.C.; Estévez-Braun, A.; Ravelo, A.G.; Pérez-Sacau, E.; Machín, F. Design and synthesis of a novel series of pyranonaphthoquinones as topoisomerase II catalytic inhibitors. J. Med. Chem., 2008, 51(21), 6761-6772.
[http://dx.doi.org/10.1021/jm800499x] [PMID: 18816045]
[25]
Sharma, A.; Santos, I.O.; Gaur, P.; Ferreira, V.F.; Garcia, C.R.; da Rocha, D.R. Addition of thiols to o-quinone methide: New 2-hydroxy-3-phenylsulfanylmethyl[1,4]naphthoquinones and their activity against the human malaria parasite Plasmodium falciparum (3D7). Eur. J. Med. Chem., 2013, 59, 48-53.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.052] [PMID: 23202850]
[26]
Rezende, L.C.D.; Fumagalli, F.; Bortolin, M.S.; Oliverira, M.G.; Paula, M.H.; Neto, V.F.A.; Emery, F.S. In vivo antimalarial activity of novel 2-hydroxy-3-anilino-1, 4-naphthoquinones obtained by epoxide ring-opening reaction. Bioorg. Med. Chem. Lett., 2013, 23(458), 4583-4586.
[27]
Hussain, H.; Specht, S.; Sarite, S.R.; Hoerauf, A.; Krohn, K. New quinoline-5,8-dione and hydroxynaphthoquinone derivatives inhibit a chloroquine resistant Plasmodium falciparum strain. Eur. J. Med. Chem., 2012, 54, 936-942.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.046] [PMID: 22781704]
[28]
Yuan, X.; Miller, C.J.; Pham, A.N.; Waite, T.D. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone. Free Radic. Biol. Med., 2014, 71, 291-302.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.021] [PMID: 24681336]
[29]
Jali, B.R.; Kuang, Y.; Neamati, N.; Baruah, J.B. Selective binding of naphthoquinone derivatives to serum albumin proteins and their effects on cytotoxicity. Chem. Biol. Interact., 2014, 214, 10-17.
[http://dx.doi.org/10.1016/j.cbi.2014.01.014] [PMID: 24560625]
[30]
Spallarossa, A.; Rotolo, C.; Sissi, C.; Marson, G.; Greco, M.L.; Ranise, A.; La Colla, P.; Busonera, B.; Loddo, R. Further SAR studies on bicyclic basic merbarone analogues as potent antiproliferative agents. Bioorg. Med. Chem., 2013, 21(21), 6328-6336.
[http://dx.doi.org/10.1016/j.bmc.2013.08.056] [PMID: 24063907]
[31]
Li, Q.; Gao, W.; Cao, J.; Bi, X.; Chen, G.; Zhang, X.; Xia, X.; Zhao, Y. New cytotoxic compounds from flowers of Lawsonia inermis L. Fitoterapia, 2014, 94, 148-154.
[http://dx.doi.org/10.1016/j.fitote.2014.02.007] [PMID: 24565962]
[32]
Samant, B.S.; Chakaingesu, C. Novel naphthoquinone derivatives: Synthesis and activity against human African trypanosomiasis. Bioorg. Med. Chem. Lett., 2013, 23(5), 1420-1423.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.075] [PMID: 23337598]
[33]
Olímpio da Silva, A.; da Silva Lopes, R.; Vieira de Lima, R.; Santos Suniga Tozatti, C.; Marques, M.R.; de Albuquerque, S.; Beatriz, A.; Pires de Lima, D. Synthesis and biological activity against Trypanosoma cruzi of substituted 1,4-naphthoquinones. Eur. J. Med. Chem., 2013, 60, 51-56.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.034] [PMID: 23279867]
[34]
da Silva Júnior, E.N.; de Melo, I.M.; Diogo, E.B.; Costa, V.A.; de Souza Filho, J.D.; Valença, W.O.; Camara, C.A.; de Oliveira, R.N.; de Araujo, A.S.; Emery, F.S.; dos Santos, M.R.; de Simone, C.A.; Menna-Barreto, R.F.; de Castro, S.L. On the search for potential anti-Trypanosoma cruzi drugs: Synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur. J. Med. Chem., 2012, 52, 304-312.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.039] [PMID: 22483633]
[35]
Ferreira, S.B.; Salomão, K.; de Carvalho da Silva, F.; Pinto, A.V.; Kaiser, C.R.; Pinto, A.C.; Ferreira, V.F.; de Castro, S.L. Synthesis and anti-Trypanosoma cruzi activity of β-lapachone analogues. Eur. J. Med. Chem., 2011, 46(7), 3071-3077.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.012] [PMID: 21450374]
[36]
Neves, A.P.; Pereira, M.X.G.; Peterson, E.J.; Kipping, R.; Vargas, M.D.; Silva, F.P., Jr; Carneiro, J.W.M.; Farrell, N.P. Exploring the DNA binding/cleavage, cellular accumulation and topoisomerase inhibition of 2-hydroxy-3-(aminomethyl)-1,4-naphthoquinone Mannich bases and their platinum(II) complexes. J. Inorg. Biochem., 2013, 119, 54-64.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.10.007] [PMID: 23186648]
[37]
Mentese, M.Y.; Bayrak, H.; Uygun, Y.; Mermer, A.; Ulker, S.; Karaoglu, S.A.; Demirbas, N. Microwave assisted synthesis of some hybrid molecules derived from norfloxacin and investigation of their biological activities. Eur. J. Med. Chem., 2013, 67, 230-242.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.045] [PMID: 23871903]
[38]
Salunke-Gawali, S.; Kathawate, L.; Shinde, Y.; Puranik, V.G.; Weyhermüller, T. Single crystal X-ray structure of Lawsone anion: Evidence for coordination of alkali metal ions and formation of naphthosemiquinone radical in basic media. J. Mol. Struct., 2012, 1010, 38-45.
[http://dx.doi.org/10.1016/j.molstruc.2011.11.015]
[39]
Rahmoun, N.M.; Boucherit-Otmani, Z.; Boucherit, K.; Benabdallah, M.; Villemin, D.; Choukchou-Braham, N. Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives. Med. Mal. Infect., 2012, 42(6), 270-275.
[http://dx.doi.org/10.1016/j.medmal.2012.05.002] [PMID: 22682997]
[40]
Yusuf, M.; Ahmad, A.; Shahid, M.; Khan, M.I.; Khan, S.A.; Manzoor, N.; Mohammad, F. Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsoniainermis). J. Clean. Prod., 2012, 27, 42-50.
[http://dx.doi.org/10.1016/j.jclepro.2012.01.005]
[41]
Wang, X.; Liu, G.; Zhou, J.; Wang, J.; Jin, R.; Lv, H. Quinone-mediated reduction of selenite and tellurite by Escherichia coli. Bioresour. Technol., 2011, 102(3), 3268-3271.
[http://dx.doi.org/10.1016/j.biortech.2010.11.078] [PMID: 21145234]
[42]
Carneiro, P.F.; Pinto, M.C.; Coelho, T.S.; Cavalcanti, B.C.; Pessoa, C.; de Simone, C.A.; Nunes, I.K.; de Oliveira, N.M.; de Almeida, R.G.; Pinto, A.V.; de Moura, K.C.; da Silva, P.A.; da Silva Júnior, E.N. Quinonoid and phenazine compounds: Synthesis and evaluation against H37Rv, rifampicin and isoniazid-resistance strains of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2011, 46(9), 4521-4529.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.026] [PMID: 21820768]
[43]
Tran, N.C.; Le, M.T.; Nguyen, D.N.; Tran, T.D. Synthe-sis and biological evaluation of halogen substituted 1,4-naphthoquinones as potent antifungal agents 13rd International Elec-tronic Conference on Synthetic Organic Chemistry (ECSOC-13) 2000.
[44]
Salas, C.; Tapia, R.A.; Ciudad, K.; Armstrong, V.; Orellana, M.; Kemmerling, U.; Ferreira, J.; Maya, J.D.; Morello, A. Trypanosoma cruzi: Activities of lapachol and α and β-lapachone derivatives against epimastigote and trypomastigote forms. Bioorg. Med. Chem., 2008, 16(2), 668-674.
[http://dx.doi.org/10.1016/j.bmc.2007.10.038] [PMID: 18029184]
[45]
Ferreira, V.F.; Jorqueira, A.; Souza, A.M.; da Silva, M.N.; de Souza, M.C.; Gouvêa, R.M.; Rodrigues, C.R.; Pinto, A.V.; Castro, H.C.; Santos, D.O.; Araújo, H.P.; Bourguignon, S.C. Trypanocidal agents with low cytotoxicity to mammalian cell line: A comparison of the theoretical and biological features of lapachone derivatives. Bioorg. Med. Chem., 2006, 14(16), 5459-5466.
[http://dx.doi.org/10.1016/j.bmc.2006.04.046] [PMID: 16725327]
[46]
Jorqueira, A.; Gouvêa, R.M.; Ferreira, V.F.; da Silva, M.N.; de Souza, M.C.; Zuma, A.A.; Cavalcanti, D.F.; Araújo, H.P.; Santos, D.O.; Bourguignon, S.C. Oxyrane derivative of αlapachone is potent growth inhibitor of Trypanosoma cruzi epimastigote forms. Parasitol. Res., 2006, 99(4), 429-433.
[http://dx.doi.org/10.1007/s00436-006-0153-8] [PMID: 16596415]
[47]
da Silva, E.N., Jr; Menna-Barreto, R.F.; Pinto, M.C.; Silva, R.S.; Teixeira, D.V.; de Souza, M.C.B.; De Simone, C.A.; De Castro, S.L.; Ferreira, V.F.; Pinto, A.V. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. Eur. J. Med. Chem., 2008, 43(8), 1774-1780.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.015] [PMID: 18045742]
[48]
Chaudhary, A.; Khurana, M.J. 2-Hydroxy-1, 4-Naphthoquinone: A versatile synthon in organic synthesis. Curr. Org. Chem., 2016, 20(12), 1314-1344.
[http://dx.doi.org/10.2174/1385272820666151125231522]
[49]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[50]
Pink, J.J.; Planchon, S.M.; Tagliarino, C.; Varnes, M.E.; Siegel, D.; Boothman, D.A. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of β-lapachone cytotoxicity. J. Biol. Chem., 2000, 275(8), 5416-5424.
[http://dx.doi.org/10.1074/jbc.275.8.5416] [PMID: 10681517]
[51]
Fang, L.I.U.; Hai-Ping, H.A.O.; Guang-Ji, W.A.N.G. NQO1-mediated biotransformation determines the cytotoxicity of tanshinone IIA. Chin. J. Nat. Med., 2012, 10(5), 353-357.
[52]
Bian, J.; Xu, L.; Deng, B.; Qian, X.; Fan, J.; Yang, X.; Liu, F.; Xu, X.; Guo, X.; Li, X.; Sun, H.; You, Q.; Zhang, X. Synthesis and evaluation of (±)-dunnione and its ortho-quinone analogues as substrates for NAD(P)H:quinone oxidoreductase 1 (NQO1). Bioorg. Med. Chem. Lett., 2015, 25(6), 1244-1248.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.057] [PMID: 25677663]
[53]
Wu, L. Synthesis and biological evaluation of novel 1, 2-naphthoquinones possessing tetrazolo [1, 5-a] pyrimidine scaffolds as potent antitumor agents. RSC Advances, 2015, 5(32), 24960-24965.
[http://dx.doi.org/10.1039/C5RA00711A]
[54]
Rostkowska, H.; Nowak, M.J.; Lapinski, L.; Adamowicz, L. Molecular structure and infrared spectra of 2-hydroxy-1, 4-naphthoquinone; experimental matrix isolation and theoretical Hartree–Fock and post Hartree–Fock study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1998, 54(8), 1091-1103.
[http://dx.doi.org/10.1016/S1386-1425(98)00032-8]
[55]
Idriss, K.A.; Sedaira, H.; Hashem, E.Y.; Saleh, M.S.; Soliman, S.A. The visible absorbance maximum of 2-hydroxy-1, 4-naphthoquinone as a novel probe for the hydrogen bond donor abilities of solvents and solvent mixtures. Monatshefte für Chemie/Chemical Monthly, 1996, 127(1), 29-42.
[56]
Padhye, S.B.; Kulkarni, B.A. Hydrogen bonding interaction of some naturally occurring isomeric juglones with dioxane. J. Phys. Chem., 1975, 79(9), 927-928.
[http://dx.doi.org/10.1021/j100576a015]
[57]
Kongathip, N.; Siripang, P.; Sangman, C.; Luangkamin, S.; Niyomdecha, M.; Pattahapa, S.; Piyaviriyagnl, S.; Kongsaerre, P. Bioorg. Med. Chem., 2003, 11, 3179-3191.
[58]
Oliveira, C.G.; Miranda, F.F.; Ferreira, V.F.; Freitas, C.C.; Rabello, R.F.; Carballido, J.M.; Corrêa, L.C. Synthesis and antimicrobial evaluation of 3-hydrazino-naphthoquinones as analogs of lapachol. J. Braz. Chem. Soc., 2001, 12(3), 339-345.
[http://dx.doi.org/10.1590/S0103-50532001000300004]
[59]
Gouda, M.A.; Eldien, H.F.; Girges, M.M.; Berghot, M.A. Synthesis and antioxidant activity of novel series of naphthoquinone derivatives attached to benzothiophene moiety. Med. Chem., 2013, 3(2), 2228-2232.
[60]
Rao, M.S.; Rao, V.R.; Padmanabha Rao, T.V. Photohalogenation of lawsone and preparation of 3-substituted 5H-naphtho-[2, 3-e]-s-triazolo [3, 4-b][1, 3, 4] thiadiazine-6, 11-dione. Org. Prep. Proced. Int., 1986, 18(2), 104-108.
[http://dx.doi.org/10.1080/00304948609356829]
[61]
Jacobsen, N.; Torssell, K.; Lien, T.; Pilotti, Å.; Svensson, S.; Swahn, C-G. Synthesis of naturally occurring quinones. Acta Chem. Scand., 1973, 27(9), 3211-3216.
[http://dx.doi.org/10.3891/acta.chem.scand.27-3211]
[62]
Jacobsen, N. Free-radical alkylation of quinones-2-phenoxymethyl-1, 4-benzoquinone. Org. Synth., 1988, 50, 890-892.
[63]
Stagliano, K.W.; Malinakova, H.C. Regiospecific synthesis of unsymmetrical 2, 3-diarylquinones via stepwise Pd (0)-catalyzed couplings of aryl stannanes to doubly activated quinone equivalents. Tetrahedron Lett., 1997, 38(38), 6617-6620.
[http://dx.doi.org/10.1016/S0040-4039(97)01532-3]
[64]
Stagliano, K.W.; Malinakova, H.C. Regiospecific synthesis of 2, 3-bisnaphthopyranyl quinonesrelated to conocurvone. Effect of substituents on palladium-catalyzed cross-coupling of organostannanes to naphthopyranyl Hydroxyquinone Triflates. J. Org. Chem., 1999, 64(21), 8034-8040.
[http://dx.doi.org/10.1021/jo990785v]
[65]
Cassis, R.; Tapia, R.; Valderrama, J.A. Studies on quinones. XII. Cycloketalization of Michael adducts from hydroxyquinones. J. Heterocycl. Chem., 1984, 21(3), 865-868.
[http://dx.doi.org/10.1002/jhet.5570210345]
[66]
Perez, A.L.; Lamoureux, G.; Zhen-Wu, B.Y. Synthesis of 2-hydroxy-3-substituted naphthoquinones using the Heck reaction. Tetrahedron Lett., 2007, 48(23), 3995-3998.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.033]
[67]
Bieber, L.W.; Nelo, P.J.R.; Generino, R.M. Regioselective alkylation of substituted quinones by trialkylboranes. Tetrahedron Lett., 1999, 40(24), 4373-4476.
[http://dx.doi.org/10.1016/S0040-4039(99)00804-7]
[68]
Srinivas, V.; Rao, V.R. One-Pot Synthesis of 2-Amino-5, 10-dihydro-5, 10-dioxo-4-phenyl-4 H-benzo [g] chromene Derivatives Catalyzed by ZnCl2. Synth. Commun., 2011, 41(6), 806-811.
[http://dx.doi.org/10.1080/00397911003642666]
[69]
Shaabani, A.; Ghadari, R.; Sarvary, A.; Rezayan, A.H. Synthesis of highly functionalized bis(4H-chromene) and 4H-benzo[g]chromene derivatives via an isocyanide-based pseudo-five-component reaction. J. Org. Chem., 2009, 74(11), 4372-4374.
[http://dx.doi.org/10.1021/jo9005427] [PMID: 19397302]
[70]
Wei, P.; Zhang, X.; Tu, S.; Yan, S.; Ying, H.; Ouyang, P. New potential inhibitors of DNA topoisomerase. Part II: Design and synthesis of αlapachone derivatives under microwave irradiation. Bioorg. Med. Chem. Lett., 2009, 19(3), 828-830.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.006] [PMID: 19112020]
[71]
Sadeghia, A.; Rezayanb, A.H.; Farjtabara, A. Et3N as a catalyst for the synthesis of indeno[1,2-b]chromene derivatives via three-component condensation reaction. Iran. J. Catal, 2015, 5(4), 345-350.
[72]
Mansoor, S.S.; Ghashang, M. Synthesis of a novel series of 7-hydroxy-10-aryl-10 H-indeno [1, 2-b] chromen-11-ones, indeno [1, 2-b] naphtho [1, 2-e] pyran-12 (13 H)-one, and indeno [1, 2-b] naphtho [3, 2-e] pyran-5, 11, 13-trione catalyzed by reusable polyvinylpolypyrrolidone-supported triflic acid. Res. Chem. Intermed., 2015, 41(11), 9085-9100.
[http://dx.doi.org/10.1007/s11164-015-1949-x]
[73]
Patil, S.R.; Choudhary, A.S.; Patil, V.S.; Sekar, N. Synthesis, optical properties, dyeing study of dihydropyrimidones (DHPMs) skeleton: Green and regioselectivity of novel Biginelli scaffold from lawsone. Fibers Polym., 2015, 16(11), 2349-2358.
[http://dx.doi.org/10.1007/s12221-015-5233-x]
[74]
Allochio Filho, J.F.; Fiorot, R.G.; Lacerda, V., Jr; dos Santos, R.B.; Vanini, G.; Romão, W.; Greco, S.J. First synthesis of aminonaphthoquinones derived from lawsone in a colloidal dispersion system created by a Brønsted acid-surfactant-combined catalyst in water: An environmentally friendly protocol. Colloid Interface Sci. Commun., 2015, 4, 14-18.
[http://dx.doi.org/10.1016/j.colcom.2015.03.002]
[75]
Allochio Filho, J.F.; Fiorot, R.G.; Lacerda, V., Jr; dos Santos, R.B.; Vanini, G.; Romão, W.; Greco, S.J. Synthesis, in vitro antifungal activity and molecular modeling studies of new mannich bases derived from lawsone. J. Braz. Chem. Soc., 2016, 27(11), 2127-2140.
[76]
Itzel Lopez-Lopez, L.; Daniel Nery-Flores, S.; Sáenz-Galindo, A.; de Loera, D. Facile synthesis of aminonaphthoquinoneMannich bases by noncatalytic multicomponent reaction. Synth. Commun., 2017, 47(23), 2247-2253.
[http://dx.doi.org/10.1080/00397911.2017.1371760]
[77]
Shaabani, S.; Naimi-Jamal, M.R.; Maleki, A. Synthesis of 2-hydroxy-1, 4-naphthoquinone derivatives via a three-component reaction catalyzed by nanoporous MCM-41. Dyes Pigments, 2015, 122, 46-49.
[http://dx.doi.org/10.1016/j.dyepig.2015.06.013]
[78]
Golmakaniyoon, S.; Askari, V.R.; Abnous, K.; Zarghi, A.; Ghodsi, R. Synthesis, characterization and in-vitro evaluation of novel naphthoquinone derivatives and related imines: Identification of new anticancer leads. Iranian journal of pharmaceutical research. Iran. J. Pharm. Res., 2019, 18(1), 16-29.
[PMID: 31089340]
[79]
Jayashree, S.; Shivashankar, K. Montmorillonite K-10 catalyzed Mannich reaction: Synthesis of aminonaphthoquinone derivatives from Lawsone. Synth. Commun., 2018, 48(14), 1805-1815.
[http://dx.doi.org/10.1080/00397911.2018.1466334]
[80]
Arundhati, M.; Dipak, C.; Mithun, R. Synthesis and Antimalarial Activity of LawsoneMannich Base Derivatives. Indian Journal of Pharmaceutical Education and Research, 2018, 52(3), 472-479.
[http://dx.doi.org/10.5530/ijper.52.3.55]
[81]
Nariya, P.; Shukla, F.; Vyas, H.; Devkar, R.; Thakore, S. Synthesis and characterization of Mannich bases of lawsone and their anticancer activity. Synth. Commun., 2020, 50(11), 1-12.
[http://dx.doi.org/10.1080/00397911.2020.1755440]
[82]
Brahmachari, G. Sulfamic acid-catalyzed one-pot room temperature synthesis of biologically relevant bis-lawsone derivatives. ACS Sustain. Chem.& Eng., 2015, 3(9), 2058-2066.
[http://dx.doi.org/10.1021/acssuschemeng.5b00325]
[83]
Bharti, R.; Parvin, T. Diversity oriented synthesis of tri-substituted methane containing aminouracil and hydroxynaphthoquinone/hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium. RSC Advances, 2015, 5(82), 66833-66839.
[http://dx.doi.org/10.1039/C5RA13093J]
[84]
Bharti, R.; Parvin, T. Multicomponent synthesis of diverse pyrano-fused benzophenazines using bifunctional thiourea-based organocatalyst in aqueous medium. Mol. Divers., 2016, 20(4), 867-876.
[http://dx.doi.org/10.1007/s11030-016-9681-z] [PMID: 27317166]
[85]
Kumar, M.; Sribalan, R.; Padmini, V. Er(OTf)3 Assisted Efficient Synthesis of 3-Hydroxynaphthalene-1, 4-Dione Derivatives via Pseudo Four-Component Reactions and Their Biological Evaluation. ChemistrySelect, 2017, 2(1), 489-493.
[http://dx.doi.org/10.1002/slct.201601340]
[86]
Brahmachari, G.; Nayek, N. Catalyst-free one-pot three-component synthesis of diversely substituted 5-aryl-2-oxo-/thioxo-2, 3-dihydro-1 H-benzo [6, 7] chromeno [2, 3-d] pyrimidine-4, 6, 11 (5 H)-triones under ambient conditions. ACS Omega, 2017, 2(8), 5025-5035.
[http://dx.doi.org/10.1021/acsomega.7b00791] [PMID: 31457779]
[87]
Cardoso, M.F.; Forezi, L.S.; Cavalcante, V.G.; Juliani, C.S.; Resende, J.A.L.; Rocha, D.R.D.; Silva, F.C.D.; Ferreira, V.F. Synthesis of new xanthenes based on lawsone and coumarin via a tandem three-component reaction. J. Braz. Chem. Soc., 2017, 28(10), 1926-1936.
[http://dx.doi.org/10.21577/0103-5053.20170032]
[88]
Fatahpour, M.; Hazeri, N.; Maghsoodlou, M.T.; Sadeh, F.N.; Lshkari, M. One-pot multicomponent synthesis of piperidinium 3, 3′-(arylmethylene) bis (2-hydroxynaphthalene-1, 4-diones): NMR spectroscopic and X-ray~ structure characterization. Turk. J. Chem., 2018, 42(3), 908-917.
[89]
Khalafy, J.; Ilkhanizadeh, S.; Ranjbar, M.A. Green, organometallic catalyzed synthesis of a series of novel functionalized 4-Aroyl-4H-benzo [g] chromenes through one-pot, three component reaction. J. Heterocycl. Chem., 2018, 55(4), 951-956.
[http://dx.doi.org/10.1002/jhet.3124]
[90]
Ghodsi, R.; Safarnejad, M.; Malayeri, S.O.; Golmakanion, S. 3,3′-(Arylmethylene)bis(2-hydroxynaphthalene-1,4-dione) as the main product of the Mannich reaction of 2-hydroxy-1,4-naphthoquinone with 4H-1,2,4-triazol-4-amine and various aldehydes. J. Chem. Res., 2018, 42(4), 224-226.
[http://dx.doi.org/10.3184/174751918X15242406216491]
[91]
Zorzanelli, B.C.; de Queiroz, L.N.; Santos, R.M.; Menezes, L.M.; Gomes, F.C.; Ferreira, V.F.C. C da Silva, F.; Robbs, B.K. Potential cytotoxic and selective effect of new benzo[b]xanthenes against oral squamous cell carcinoma. Future Med. Chem., 2018, 10(10), 1141-1157.
[http://dx.doi.org/10.4155/fmc-2017-0205] [PMID: 29749745]
[92]
Wu, L.; Liu, Y.; Li, Y. Synthesis of spirooxindole-O-naphthoquinone-tetrazolo[1,5-a]pyrimidine hybrids as potential anticancer agents. Molecules, 2018, 23(9), 2330.
[http://dx.doi.org/10.3390/molecules23092330] [PMID: 30213123]
[93]
Nouri, A.; Poursattar Marjani, A.; Khalafy, J. An efficient synthesis of benzo [g] thiazolo [2, 3-b] quinazolin-4-ium and Benzo [g] benzo [4, 5] thiazolo [2, 3-b] quinazolin-14-ium Hydroxides by a one-pot, three-component reaction under green conditions. J. Heterocycl. Chem., 2019, 56(10), 2912-2921.
[http://dx.doi.org/10.1002/jhet.3685]
[94]
Rabêlo, W.F.; Echemendía, R. Synthesis of novel 1, 4 naphthoquinone-based molecules by an Ugi-type four-component reaction. Synth. Commun., 2019, 49(4), 515-521.
[http://dx.doi.org/10.1080/00397911.2018.1551548]
[95]
Zeng, F.L.; Chen, X.L.; He, S.Q.; Sun, K.; Liu, Y.; Fu, R.; Qu, L.B.; Zhao, Y.F.; Yu, B. Copper-catalyzed one-pot three-component thioamination of 1, 4-naphthoquinone. Org. Chem. Front., 2019, 6(9), 1476-1480.
[http://dx.doi.org/10.1039/C9QO00091G]
[96]
Daloee, T.S.; Behbahani, F.K. A green route for the synthesis of 2-Amino-5, 10-dioxo-4-aryl-5, 10-dihydro-4H-benzo [g] chromene-3-carbonitriles using L-proline as a basic organocatalyst. Polycycl. Aromat. Compd., 2020, 1-9.
[http://dx.doi.org/10.1080/10406638.2020.1749090]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy