Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

Alterations of the Subchondral Bone in Osteoarthritis: Complying with Wolff’s Law

Author(s): Ran Ding, Nianfei Zhang*, Qi Wang and Weiguo Wang

Volume 18, Issue 3, 2022

Published on: 08 June, 2022

Page: [178 - 185] Pages: 8

DOI: 10.2174/1573397118666220401104428

Price: $65

Open Access Journals Promotions 2
Abstract

Osteoarthritis (OA) is a whole joint disease that is significantly related to abnormal mechanical loads. Subchondral bone alterations, during the evolution course of OA, are considered a reflection of the adaptation of the bone tissue to mechanical loads. However, some of these alterations are taken as a detriment and paradoxical. What are these structure, composition, and mechanical property alterations or mechanical functions for are not quite clear. In this review, we discuss the possibility that these alterations are used for maintaining the joint function. With taking excessive load as a risk factor and under conditions of articular cartilage gradually lose its thickness and its function of evenly distributing the load on the subchondral bone plate, and applying Poroelasticity to bone mechanics; moreover, Boussinesq’s pressure bulb theory and bone optimal design principles are utilized. We found that each subchondral bone alteration has its unique mechanical function in resisting loads and maintaining the joint function, and these alterations comply with both bone optimal design principles and Wolff’s law within a proper range.

Keywords: Osteoarthritis, subchondral bone, poroelasticity, boussinesq’s pressure bulb, wolff’s law, bone optimal design principles.

Graphical Abstract
[1]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis Lancet 2019; 393: 1745-59.
[2]
Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012; 8(11): 665-73.
[http://dx.doi.org/10.1038/nrrheum.2012.130] [PMID: 22868925]
[3]
Mathavan N, Kennedy OD. Skeletal changes associated with osteoarthritis. Clin Rev Bone Miner Metab 2019; 17(3-4): 123-37.
[http://dx.doi.org/10.1007/s12018-019-09264-0]
[4]
Goldring SR. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis 2012; 4(4): 249-58.
[http://dx.doi.org/10.1177/1759720X12437353] [PMID: 22859924]
[5]
Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 2016; 12(11): 632-44.
[http://dx.doi.org/10.1038/nrrheum.2016.148] [PMID: 27652499]
[6]
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum 2012; 64(6): 1697-707.
[http://dx.doi.org/10.1002/art.34453] [PMID: 22392533]
[7]
Donell S. Subchondral bone remodelling in osteoarthritis. EFORT Open Rev 2019; 4(6): 221-9.
[http://dx.doi.org/10.1302/2058-5241.4.180102] [PMID: 31210964]
[8]
Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis. Nat Rev Dis Primers 2016; 2(1): 16072.
[http://dx.doi.org/10.1038/nrdp.2016.72] [PMID: 27734845]
[9]
Marks R. Osteoarthritis and articular cartilage: Biomechanics and novel treatment paradigms. Adv Aging Res 2014; 3(4): 297-309.
[http://dx.doi.org/10.4236/aar.2014.34039]
[10]
Ruff C, Holt B, Trinkaus E. Who's afraid of the big bad Wolff?: “Wolff's law” and bone functional adaptation. Am J Phy Anthropol 2006; 129: 484-98.
[11]
Wolff J. The law of bone remodeling. Berlin Heidelberg New York: Springer 1986.
[http://dx.doi.org/10.1007/978-3-642-71031-5]
[12]
Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 1977; 59(7): 954-62.
[http://dx.doi.org/10.2106/00004623-197759070-00021] [PMID: 561786]
[13]
Cowin SC. Bone poroelasticity. J Biomech 1999; 32(3): 217-38.
[http://dx.doi.org/10.1016/S0021-9290(98)00161-4] [PMID: 10093022]
[14]
Detournay E, Cheng AH-D. Fundamentals of poroelasticity. In: Fairhurst C, Ed. Comprehensive rock engineering: Principles, practice and projects. Pergamon Press 1993; II: pp. 113-71.
[15]
Schepers W, Savidis S, Kausel E. Dynamic stresses in an elastic half-space. Soil Dyn Earthquake Eng 2010; 30(9): 833-43.
[http://dx.doi.org/10.1016/j.soildyn.2009.11.004]
[16]
Fung YC. Bone and cartilage. In: Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer Science Business Media 1993; pp. 500-45.
[17]
Seeman E. Bone’s material and structural strength. Curr Opin Orthop 2007; 18(5): 494-8.
[http://dx.doi.org/10.1097/BCO.0b013e3282a9c162]
[18]
Currey JD. The structure and mechanics of bone. J Mater Sci 2012; 47(1): 41-54.
[http://dx.doi.org/10.1007/s10853-011-5914-9]
[19]
Huiskes R. If bone is the answer, then what is the question? J Anat 2000; 197(Pt 2): 145-56.
[http://dx.doi.org/10.1046/j.1469-7580.2000.19720145.x] [PMID: 11005707]
[20]
Madry H, van Dijk CN, Mueller-Gerbl M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 2010; 18(4): 419-33.
[http://dx.doi.org/10.1007/s00167-010-1054-z] [PMID: 20119671]
[21]
Simkin PA. Marrow fat may distribute the energy of impact loading throughout subchondral bone. Rheumatology (Oxford) 2018; 57(3): 414-8.
[http://dx.doi.org/10.1093/rheumatology/kex274] [PMID: 28977578]
[22]
Wilkes CH, Visscher MB. Some physiological aspects of bone marrow pressure. J Bone Joint Surg Am 1975; 57(1): 49-57.
[http://dx.doi.org/10.2106/00004623-197557010-00009] [PMID: 1123371]
[23]
Gurkan UA, Akkus O. The mechanical environment of bone marrow: A review. Ann Biomed Eng 2008; 36(12): 1978-91.
[http://dx.doi.org/10.1007/s10439-008-9577-x] [PMID: 18855142]
[24]
Simkin PA. Bone pain and pressure in osteoarthritic joints. Novartis Found Symp 2004; 260: 179-86.
[http://dx.doi.org/10.1002/0470867639.ch12] [PMID: 15283450]
[25]
Zhang P, Su M, Liu Y, Hsu A, Yokota H. Knee loading dynamically alters intramedullary pressure in mouse femora. Bone 2007; 40(2): 538-43.
[http://dx.doi.org/10.1016/j.bone.2006.09.018] [PMID: 17070127]
[26]
Kafka V. On hydraulic strengthening of bones. Biorheology 1983; 20(6): 789-93.
[http://dx.doi.org/10.3233/BIR-1983-20606] [PMID: 6661529]
[27]
Beverly M, Murray D, Urban J, Winlove P. The possible role of vasculo-mechanical factors in joint pathophysiology. Osteoarthritis Cartilage 2015; 23(Suppl. 2): A270.
[http://dx.doi.org/10.1016/j.joca.2015.02.493]
[28]
Aichroth P M, Scott R A, Nott M. Proceedings: Changes in bone marrow pressure on walking with patients with osteoarthritis of the hip. J Bone Joint Surg Br 1975; 57: 246-6.
[29]
Simkin PA. Hydraulically loaded trabeculae may serve as springs within the normal femoral head. Arthritis Rheum 2004; 50(10): 3068-75.
[http://dx.doi.org/10.1002/art.20563] [PMID: 15476250]
[30]
Ondrouch AS. Cyst formation in osteoarthritis. J Bone Joint Surg Br 1963; 45(4): 755-60.
[http://dx.doi.org/10.1302/0301-620X.45B4.755] [PMID: 14074329]
[31]
Dürr HD, Martin H, Pellengahr C, Schlemmer M, Maier M, Jansson V. The cause of subchondral bone cysts in osteoarthrosis: A finite element analysis. Acta Orthop Scand 2004; 75(5): 554-8.
[http://dx.doi.org/10.1080/00016470410001411] [PMID: 15513486]
[32]
Bhosale AM, Richardson JB. Articular cartilage: Structure, injuries and review of management. Br Med Bull 2008; 87(1): 77-95.
[http://dx.doi.org/10.1093/bmb/ldn025] [PMID: 18676397]
[33]
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009; 1(6): 461-8.
[http://dx.doi.org/10.1177/1941738109350438] [PMID: 23015907]
[34]
Weinans H. Periarticular bone changes in osteoarthritis. HSS J 2012; 8(1): 10-2.
[http://dx.doi.org/10.1007/s11420-011-9257-5] [PMID: 22423223]
[35]
Mahjoub M, Berenbaum F, Houard X. Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis. Osteoporos Int 2012; 23(S8): S841-6.
[http://dx.doi.org/10.1007/s00198-012-2161-0] [PMID: 23179566]
[36]
Sniekers YH, Intema F, Lafeber FP, et al. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BMC Musculoskelet Disord 2008; 9(1): 20.
[http://dx.doi.org/10.1186/1471-2474-9-20] [PMID: 18269731]
[37]
Bellido M, Lugo L, Roman-Blas JA, et al. Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther 2010; 12(4): R152.
[http://dx.doi.org/10.1186/ar3103] [PMID: 20678201]
[38]
Pauly HM, Larson BE, Coatney GA, et al. Assessment of cortical and trabecular bone changes in two models of post-traumatic osteoarthritis. J Orthop Res 2015; 33(12): 1835-45.
[http://dx.doi.org/10.1002/jor.22975] [PMID: 26147652]
[39]
Radin EL, Paul IL, Lowy M. A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. J Bone Joint Surg Am 1970; 52(3): 444-56.
[http://dx.doi.org/10.2106/00004623-197052030-00004] [PMID: 5425639]
[40]
Brown TD, Radin EL, Martin RB, Burr DB. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech 1984; 17(1): 11-24.
[http://dx.doi.org/10.1016/0021-9290(84)90075-7] [PMID: 6715384]
[41]
Antons J, Marascio MGM, Nohava J, et al. Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J Mater Sci Mater Med 2018; 29(5): 57.
[http://dx.doi.org/10.1007/s10856-018-6066-0] [PMID: 29728770]
[42]
Holst DC, Dennis DA. Pearls: Early removal of posterior osteophytes in TKA. Clin Orthop Relat Res 2018; 476(4): 684-6.
[http://dx.doi.org/10.1007/s11999.0000000000000015] [PMID: 29419635]
[43]
van der Kraan PM, van den Berg WB. Osteophytes: Relevance and biology. Osteoarthritis Cartilage 2007; 15(3): 237-44.
[http://dx.doi.org/10.1016/j.joca.2006.11.006] [PMID: 17204437]
[44]
Menkes CJ, Lane NE. Are osteophytes good or bad? Osteoarthritis Cartilage 2004; 12(Suppl. A): S53-4.
[http://dx.doi.org/10.1016/j.joca.2003.09.003] [PMID: 14698643]
[45]
Goldring SR. Role of bone in osteoarthritis pathogenesis. Med Clin North Am 2009; 93(1): 25-35. xv.
[http://dx.doi.org/10.1016/j.mcna.2008.09.006] [PMID: 19059019]
[46]
Pottenger LA, Phillips FM, Draganich LF. The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees. Arthritis Rheum 1990; 33(6): 853-8.
[http://dx.doi.org/10.1002/art.1780330612] [PMID: 2363739]
[47]
Bennell KL, Creaby MW, Wrigley TV, et al. Bone marrow lesions are related to dynamic knee loading in medial knee osteoarthritis. Ann Rheum Dis 2010; 69(6): 1151-4.
[http://dx.doi.org/10.1136/ard.2009.118182] [PMID: 19910299]
[48]
Paushter DM, Modic MT, Borkowski GP, Weinstein MA, Zeman RK. Magnetic resonance. Principles and applications. Med Clin North Am 1984; 68(6): 1393-421.
[http://dx.doi.org/10.1016/S0025-7125(16)31069-0] [PMID: 6392770]
[49]
Iida S, Harada Y, Shimizu K, et al. Correlation between bone marrow edema and collapse of the femoral head in steroid-induced osteone-crosis. AJR Am J Roentgenol 2000; 174(3): 735-43.
[http://dx.doi.org/10.2214/ajr.174.3.1740735] [PMID: 10701618]
[50]
Ching K, Houard X, Berenbaum F, Wen C. Hypertension meets osteoarthritis - revisiting the vascular aetiology hypothesis. Nat Rev Rheumatol 2021; 17(9): 533-49.
[http://dx.doi.org/10.1038/s41584-021-00650-x] [PMID: 34316066]
[51]
Klement MR, Sharkey PF. The significance of osteoarthritis-associated bone marrow lesions in the knee. J Am Acad Orthop Surg 2019; 27(20): 752-9.
[http://dx.doi.org/10.5435/JAAOS-D-18-00267] [PMID: 30964755]
[52]
Hunter DJ, Gerstenfeld L, Bishop G, et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized. Arthritis Res Ther 2009; 11(1): R11.
[http://dx.doi.org/10.1186/ar2601] [PMID: 19171047]
[53]
Krampla W, Mayrhofer R, Malcher J, et al. MR imaging of the knee in marathon runners before and after competition. Skelet Radiol 2001; 30: 72-6.
[http://dx.doi.org/10.1007/s002560000296]
[54]
Wang W, Ding R, Zhang N, Hernigou P. Subchondral bone cysts regress after correction of malalignment in knee osteoarthritis: Comply with Wolff’s law. Int Orthop 2021; 45(2): 445-51.
[http://dx.doi.org/10.1007/s00264-020-04809-1] [PMID: 32940749]
[55]
Plews LW. Osteoarthritis of the hip. Br J Surg 1940; 27: 682-95.
[56]
Forestier J, Robert P. X-Ray diagnosis in chronic arthritis: (Section of radiology). Proc R Soc Med 1940; 33(11): 707-24.
[http://dx.doi.org/10.1177/003591574003301103] [PMID: 19992290]
[57]
Crema MD, Roemer FW, Zhu Y, et al. Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: Detection with MR imaging-the MOST study. Radiology 2010; 256(3): 855-62.
[http://dx.doi.org/10.1148/radiol.10091467] [PMID: 20530753]
[58]
Bullough PG. The dysfunctional joint. In: Orthopaedic Pathology. Mosby, Inc., (An affiliate of Elsevier) Maryland 2010.
[59]
Landells JW. The bone cysts of osteoarthritis. J Bone Joint Surg Br 1953; 35: 643-9.
[60]
Crema MD, Roemer FW, Marra MD, et al. Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: The MOST study. Eur J Radiol 2010; 75(1): e92-6.
[http://dx.doi.org/10.1016/j.ejrad.2009.08.009] [PMID: 19767165]
[61]
Chen Y, Wang T, Guan M, et al. Bone turnover and articular cartilage differences localized to subchondral cysts in knees with advanced osteoarthritis. Osteoarthritis Cartilage 2015; 23(12): 2174-83.
[http://dx.doi.org/10.1016/j.joca.2015.07.012] [PMID: 26241776]
[62]
Neogi T, Felson D, Niu J, et al. Cartilage loss occurs in the same subregions as subchondral bone attrition: A within-knee subregion-matched approach from the Multicenter Osteoarthritis Study. Arthritis Rheum 2009; 61(11): 1539-44.
[http://dx.doi.org/10.1002/art.24824] [PMID: 19877101]
[63]
Neogi T, Nevitt M, Niu J, et al. Subchondral bone attrition may be a reflection of compartment-specific mechanical load: The MOST Study. Ann Rheum Dis 2010; 69(5): 841-4.
[http://dx.doi.org/10.1136/ard.2009.110114] [PMID: 19762366]
[64]
Freiberg AH. Wolff’s law and the functional pathogenesis of deformity. Am J Med Sci 1902; 124(6): 956-72.
[http://dx.doi.org/10.1097/00000441-190212000-00003]
[65]
Faulkner LL. Tissue Biomechanics. In: Huston RL, Ed. Principles of biomechanics. Oxfordshire, UK: Taylor & Francis Group, LLC. 2009; pp. 153-63.
[66]
Skedros JG, Brand RA. Biographical sketch: Georg Hermann von Meyer (1815-1892). Clin Orthop Relat Res 2011; 469(11): 3072-6.
[http://dx.doi.org/10.1007/s11999-011-2040-6] [PMID: 21901583]
[67]
Brand RA. Biographical sketch: Julius Wolff, 1836-1902. Clin Orthop Relat Res 2010; 468(4): 1047-9.
[http://dx.doi.org/10.1007/s11999-010-1258-z] [PMID: 20151232]
[68]
Burr DB. Anatomy and physiology of the mineralized tissues: Role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage 2004; 12(Suppl. A): S20-30.
[http://dx.doi.org/10.1016/j.joca.2003.09.016] [PMID: 14698637]
[69]
Day JS, Ding M, van der Linden JC, Hvid I, Sumner DR, Weinans H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res 2001; 19(5): 914-8.
[http://dx.doi.org/10.1016/S0736-0266(01)00012-2] [PMID: 11562141]
[70]
Frost HM. Wolff’s Law and bone’s structural adaptations to mechanical usage: An overview for clinicians. Angle Orthod 1994; 64(3): 175-88.
[PMID: 8060014]
[71]
Stock JT. Wolff’s law (bone functional adaptation) The International Encyclopedia of Biological Anthropology. Hoboken: John Wiley & Sons 2018; pp. 1-2.
[72]
Lane NE. Clinical practice. Osteoarthritis of the hip. N Engl J Med 2007; 357(14): 1413-21.
[http://dx.doi.org/10.1056/NEJMcp071112] [PMID: 17914042]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy