Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Recent Progress of Bioactivities, Mechanisms of Action, Total Synthesis, Structural Modifications and Structure-activity Relationships of Indole Derivatives: A Review

Author(s): Tianze Li and Hui Xu*

Volume 22, Issue 21, 2022

Published on: 31 May, 2022

Page: [2702 - 2725] Pages: 24

DOI: 10.2174/1389557522666220330123538

Price: $65

conference banner
Abstract

Indole (2,3-benzopyrrole) containing a pyrrolyl ring possesses the characteristic of electron- rich aromatic compounds. Indole occurs in the oil of jasmine and cloves and coal tar. Additionally, it is also present as a putrefaction product from animals' intestines. Notably, indole and its derivatives exhibit a wide range of biological properties, such as anti-Alzheimer’s disease, anti-cancer, antibacterial, anti-inflammatory, anti-human immunodeficiency virus (HIV), anti-diabetic, antituberculosis, anti-oxidant, anti-coronavirus, and antifungal activities. In this mini-review, recent advances in biological activities, mechanisms of action, total synthesis, structural modifications, and structure-activity relationships of indole and its derivatives from 2018 to 2020 are described. We hope the present paper can pave the way for future design, development, and application of indole derivatives as potent drugs.

Keywords: Indole, indole derivatives, biological activity, mechanism of action, total synthesis, structural modification, structural- activity relationship.

Graphical Abstract
[1]
Ji, Y.A.; Hou, Y.C.; Ren, S.H.; Niu, M.G.; Yao, C.F.; Wu, W.Z. Efficient extraction of indole from wash oil by quaternary ammonium salts via forming deep eutectic solvents. Fuel, 2018, 215, 330-338.
[http://dx.doi.org/10.1016/j.fuel.2017.10.057]
[2]
Jiao, T.T.; Zhuang, X.L.; He, H.Y.; Zhao, L.H.; Li, C.S.; Chen, H.N.; Zhang, S.J. An ionic liquid extraction process for the separation of indole from wash oil. Green Chem., 2015, 17(7), 3783-3790.
[http://dx.doi.org/10.1039/C5GC00081E]
[3]
Belmer, A.; Maroteaux, L. Regulation of raphe serotonin neurons by serotonin 1A and 2B receptors. Neuropsychopharmacology, 2019, 44(1), 218-219.
[http://dx.doi.org/10.1038/s41386-018-0214-6] [PMID: 30254293]
[4]
Wang, T.C.; Wei, J.Z.; Guo, C.S.; Zhang, H.B.; Fan, H.X. Design, synthesis and anti-proliferative studies of a novel series of indirubin derivatives. Chin. Chem. Lett., 2010, 21(12), 1407-1410.
[http://dx.doi.org/10.1016/j.cclet.2010.05.026]
[5]
Walter, T.; Veldmann, K.H.; Götker, S.; Busche, T.; Rückert, C.; Kashkooli, A.B.; Paulus, J.; Cankar, K.; Wendisch, V.F. Physiological response of corynebacterium glutamicum to indole. Microorganisms, 2020, 8(12), 1945.
[http://dx.doi.org/10.3390/microorganisms8121945] [PMID: 33302489]
[6]
Huang, Z.; Yin, L.; Guan, L.; Li, Z.; Tan, C. Novel piperazine-2,5-dione analogs bearing 1H-indole: Synthesis and biological effects. Bioorg. Med. Chem. Lett., 2020, 30(24), 127654.
[http://dx.doi.org/10.1016/j.bmcl.2020.127654] [PMID: 33144244]
[7]
Wei, C.; Zhang, J.; Shi, J.; Gan, X.; Hu, D.; Song, B. Synthesis, antiviral activity, and induction of plant resistance of indole analogues bearing dithioacetal moiety. J. Agric. Food Chem., 2019, 67(50), 13882-13891.
[http://dx.doi.org/10.1021/acs.jafc.9b05357] [PMID: 31721582]
[8]
Dong, J.; Wang, T.L.; Lu, J.; Ding, C.Z.; Hu, L.; Hu, G.; He, H.; Zeng, X.; Li, X.; Sun, D.; Zhu, Y.; Shen, L.; Gu, Q.; Chan, C.C.; Xia, Y.; Li, J.; Chen, S. Design, syntheses and evaluations of novel indole derivatives as orally selective estrogen receptor degraders (SERD). Bioorg. Med. Chem. Lett., 2020, 30(22), 127601.
[http://dx.doi.org/10.1016/j.bmcl.2020.127601] [PMID: 33035677]
[9]
Gummidi, L.; Kerru, N.; Awolade, P.; Raza, A.; Sharma, A.K.; Singh, P. Synthesis of indole-tethered [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids as anti-pancreatic cancer agents. Bioorg. Med. Chem. Lett., 2020, 30(22), 127544.
[http://dx.doi.org/10.1016/j.bmcl.2020.127544] [PMID: 32920143]
[10]
Siddiqui, S.K. SahayaSheela, V.J.; Kolluru, S.; Pandian, G.N.; Santhoshkumar, T.R.; Dan, V.M.; Ramana, C.V. Discovery of 3-(benzofuran-2-ylmethyl)-1H-indole derivatives as potential autophagy inducers in cervical cancer cells. Bioorg. Med. Chem. Lett., 2020, 30(19), 127431.
[http://dx.doi.org/10.1016/j.bmcl.2020.127431] [PMID: 32769048]
[11]
Hawash, M.; Kahraman, D.C.; Olgac, A.; Ergun, S.G.; Hamel, E.; Cetin-Atalay, R.; Baytas, S.N. Design and synthesis of novel substituted indole-acrylamide derivatives and evaluation of their anti-cancer activity as potential tubulin-targeting agents. J. Mol. Struct., 2022, 1254, 132345.
[http://dx.doi.org/10.1016/j.molstruc.2022.132345]
[12]
Kulkarni, A.; Soni, I.; Kelkar, D.S.; Dharmaraja, A.T.; Sankar, R.K.; Beniwal, G.; Rajendran, A.; Tamhankar, S.; Chopra, S.; Kamat, S.S.; Chakrapani, H. Chemoproteomics of an indole-based quinone epoxide identifies druggable vulnerabilities in vancomycin-resistant staphylococcus aureus. J. Med. Chem., 2019, 62(14), 6785-6795.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00774] [PMID: 31241934]
[13]
Salem, M.A.; Ragab, A.; Askar, A.A.; El-Khalafawy, A.; Makhlouf, A.H. One-pot synthesis and molecular docking of some new spiropyranindol-2-one derivatives as immunomodulatory agents and in vitro antimicrobial potential with DNA gyrase inhibitor. Eur. J. Med. Chem., 2020, 188, 111977.
[http://dx.doi.org/10.1016/j.ejmech.2019.111977] [PMID: 31927313]
[14]
Sahin, K. Investigation of novel indole-based HIV-1 protease inhibitors using virtual screening and text mining. J. Biomol. Struct. Dyn., 2021, 39(10), 3638-3648.
[http://dx.doi.org/10.1080/07391102.2020.1775121] [PMID: 32496942]
[15]
Martínez-Gualda, B.; Sun, L.; Martí-Marí, O.; Noppen, S.; Abdelnabi, R.; Bator, C.M.; Quesada, E.; Delang, L.; Mirabelli, C.; Lee, H.; Schols, D.; Neyts, J.; Hafenstein, S.; Camarasa, M.J.; Gago, F.; San-Félix, A. Scaffold simplification strategy leads to a novel generation of dual human immunodeficiency virus and enterovirus-A71 entry inhibitors. J. Med. Chem., 2020, 63(1), 349-368.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01737] [PMID: 31809045]
[16]
Zhao, T.; Meng, Q.; Kang, D.; Ji, J.; De Clercq, E.; Pannecouque, C.; Liu, X.; Zhan, P. Discovery of novel indolylarylsulfones as potent HIV-1 NNRTIs via structure-guided scaffold morphing. Eur. J. Med. Chem., 2019, 182, 111619.
[http://dx.doi.org/10.1016/j.ejmech.2019.111619] [PMID: 31434039]
[17]
Zhou, G.; Chu, S.; Nemati, A.; Huang, C.; Snyder, B.A.; Ptak, R.G.; Gochin, M. Investigation of the molecular characteristics of bisindole inhibitors as HIV-1 glycoprotein-41 fusion inhibitors. Eur. J. Med. Chem., 2019, 161, 533-542.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.048] [PMID: 30390441]
[18]
Miao, G.X.; Wang, Y.D.; Yan, Z.W.; Zhang, L.Y. Synthesis, in vitro ADME profiling and in vivo pharmacological evaluation of novel glycogen phosphorylase inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(14), 127117.
[http://dx.doi.org/10.1016/j.bmcl.2020.127117] [PMID: 32527535]
[19]
Eeda, V.; Wu, D.; Lim, H.Y.; Wang, W. Design, synthesis, and evaluation of potent novel peroxisome proliferator-activated receptor γ indole partial agonists. Bioorg. Med. Chem. Lett., 2019, 29(22), 126664.
[http://dx.doi.org/10.1016/j.bmcl.2019.126664] [PMID: 31591015]
[20]
Zhou, J.; Bie, J.; Wang, X.; Liu, Q.; Li, R.; Chen, H.; Hu, J.; Cao, H.; Ji, W.; Li, Y.; Liu, S.; Shen, Z.; Xu, B. Discovery of N-arylsulfonyl-indole-2-carboxamide derivatives as potent, selective, and orally bioavailable fructose-1,6-bisphosphatase inhibitors-design, synthesis, in vivo glucose lowering effects, and X-ray crystal complex analysis. J. Med. Chem., 2020, 63(18), 10307-10329.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00726] [PMID: 32820629]
[21]
Darwish, K.M.; Salama, I.; Mostafa, S.; Gomaa, M.S.; Khafagy, E.S.; Helal, M.A. Synthesis, biological evaluation, and molecular docking investigation of benzhydrol- and indole-based dual PPAR-γ/FFAR1 agonists. Bioorg. Med. Chem. Lett., 2018, 28(9), 1595-1602.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.051] [PMID: 29615345]
[22]
Nandini, H.S.; Naik, P.R. Antidiabetic, antihyperlipidemic and antioxidant effect of Vincamine, in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 2019, 843, 233-239.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.034] [PMID: 30496743]
[23]
Hou, S.; Yang, X.; Tong, Y.; Yang, Y.; Chen, Q.; Wan, B.; Wei, R.; Wang, Y.; Zhang, Y.; Kong, B.; Huang, J.; Chen, Y.; Lu, T.; Hu, Q.; Du, D. Structure-based discovery of 1H-indole-2-carboxamide derivatives as potent ASK1 inhibitors for potential treatment of ulcerative colitis. Eur. J. Med. Chem., 2021, 211, 113114.
[http://dx.doi.org/10.1016/j.ejmech.2020.113114] [PMID: 33360793]
[24]
Xia, Q.; Bao, X.; Sun, C.; Wu, D.; Rong, X.; Liu, Z.; Gu, Y.; Zhou, J.; Liang, G. Design, synthesis and biological evaluation of novel 2-sulfonylindoles as potential anti-inflammatory therapeutic agents for treatment of acute lung injury. Eur. J. Med. Chem., 2018, 160, 120-132.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.014] [PMID: 30326372]
[25]
Moir, M.; Lane, S.; Lai, F.; Connor, M.; Hibbs, D.E.; Kassiou, M. Strategies to develop selective CB2 receptor agonists from indole carboxamide synthetic cannabinoids. Eur. J. Med. Chem., 2019, 180, 291-309.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.036] [PMID: 31319265]
[26]
Ju, Z.; Su, M.; Hong, J.; La Kim, E.; Moon, H.R.; Chung, H.Y.; Kim, S.; Jung, J.H. Design of balanced COX inhibitors based on anti-inflammatory and/or COX-2 inhibitory ascidian metabolites. Eur. J. Med. Chem., 2019, 180, 86-98.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.016] [PMID: 31301566]
[27]
Huang, Y.; Zhang, B.; Li, J.; Liu, H.; Zhang, Y.; Yang, Z.; Liu, W. Design, synthesis, biological evaluation and docking study of novel indole-2-amide as anti-inflammatory agents with dual inhibition of COX and 5-LOX. Eur. J. Med. Chem., 2019, 180, 41-50.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.004] [PMID: 31299586]
[28]
Song, Z.; Zhou, Y.; Zhang, W.; Zhan, L.; Yu, Y.; Chen, Y.; Jia, W.; Liu, Z.; Qian, J.; Zhang, Y.; Li, C.; Liang, G. Base promoted synthesis of novel indole-dithiocarbamate compounds as potential anti-inflammatory therapeutic agents for treatment of acute lung injury. Eur. J. Med. Chem., 2019, 171, 54-65.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.022] [PMID: 30909020]
[29]
Zhang, X.; Dong, G.; Li, H.; Chen, W.; Li, J.; Feng, C.; Gu, Z.; Zhu, F.; Zhang, R.; Li, M.; Tang, W.; Liu, H.; Xu, Y. Structure-aided identification and optimization of tetrahydro-isoquinolines as novel PDE4 inhibitors leading to discovery of an effective antipsoriasis agent. J. Med. Chem., 2019, 62(11), 5579-5593.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00518] [PMID: 31099559]
[30]
Tu, J.; Li, Z.; Jiang, Y.; Ji, C.; Han, G.; Wang, Y.; Liu, N.; Sheng, C. Discovery of carboline derivatives as potent antifungal agents for the treatment of cryptococcal meningitis. J. Med. Chem., 2019, 62(5), 2376-2389.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01598] [PMID: 30753074]
[31]
Bolous, M.; Arumugam, N.; Almansour, A.I.; Suresh Kumar, R.; Maruoka, K.; Antharam, V.C.; Thangamani, S. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens. Bioorg. Med. Chem. Lett., 2019, 29(16), 2059-2063.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.022] [PMID: 31320146]
[32]
Bai, H.; Cui, P.; Zang, C.; Li, S. Enantioselective total synthesis, divergent optimization and preliminary biological evaluation of (indole-N-alkyl)-diketopiperazines. Bioorg. Med. Chem. Lett., 2019, 29(23), 126718.
[http://dx.doi.org/10.1016/j.bmcl.2019.126718] [PMID: 31678005]
[33]
Mishra, S.; Kaur, M.; Chander, S.; Murugesan, S.; Nim, L.; Arora, D.S.; Singh, P. Rational modification of a lead molecule: Improving the antifungal activity of indole - triazole - amino acid conjugates. Eur. J. Med. Chem., 2018, 155, 658-669.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.039] [PMID: 29936353]
[34]
Zhang, Z.J.; Jiang, Z.Y.; Zhu, Q.; Zhong, G.H. Discovery of beta-carboline oxadiazole derivatives as fungicidal agents against rice sheath blight. J. Agric. Food Chem., 2018, 66(37), 9598-9607.
[http://dx.doi.org/10.1021/acs.jafc.8b02124] [PMID: 30134651]
[35]
Kang, J.; Gao, Y.; Zhang, M.; Ding, X.; Wang, Z.; Ma, D.; Wang, Q. Streptindole and its derivatives as novel antiviral and anti-phytopathogenic fungus agents. J. Agric. Food Chem., 2020, 68(30), 7839-7849.
[http://dx.doi.org/10.1021/acs.jafc.0c03994] [PMID: 32649198]
[36]
Vijayakumar, B.G.; Ramesh, D.; Joji, A.; Jayachandra Prakasan, J.; Kannan, T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J. Pharmacol., 2020, 886, 173448.
[http://dx.doi.org/10.1016/j.ejphar.2020.173448] [PMID: 32768503]
[37]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[38]
Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem., 2018, 18(1), 9-25.
[http://dx.doi.org/10.2174/1389557517666170807123201] [PMID: 28782480]
[39]
Taliani, S.; Da Settimo, F.; Martini, C.; Laneri, S.; Novellino, E.; Greco, G. Exploiting the indole scaffold to design compounds binding to different pharmacological targets. Molecules, 2020, 25(10), 2331.
[http://dx.doi.org/10.3390/molecules25102331] [PMID: 32429433]
[40]
Jia, Y.; Wen, X.; Gong, Y.; Wang, X. Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. Eur. J. Med. Chem., 2020, 200, 112359.
[http://dx.doi.org/10.1016/j.ejmech.2020.112359] [PMID: 32531682]
[41]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691.
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[42]
Garg, V.; Maurya, R.K.; Thanikachalam, P.V.; Bansal, G.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem., 2019, 180, 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[43]
Hoffman, R.L.; Kania, R.S.; Brothers, M.A.; Davies, J.F.; Ferre, R.A.; Gajiwala, K.S.; He, M.; Hogan, R.J.; Kozminski, K.; Li, L.Y.; Lockner, J.W.; Lou, J.; Marra, M.T.; Mitchell, L.J., Jr; Murray, B.W.; Nieman, J.A.; Noell, S.; Planken, S.P.; Rowe, T.; Ryan, K.; Smith, G.J., III; Solowiej, J.E.; Steppan, C.M.; Taggart, B. Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. J. Med. Chem., 2020, 63(21), 12725-12747.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01063] [PMID: 33054210]
[44]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[45]
Li, Y.; Zhao, J.; Gutgesell, L.M.; Shen, Z.; Ratia, K.; Dye, K.; Dubrovskyi, O.; Zhao, H.; Huang, F.; Tonetti, D.A.; Thatcher, G.R.J.; Xiong, R. Novel pyrrolopyridone bromodomain and extra-terminal motif (BET) inhibitors effective in endocrine-resistant ER+ breast cancer with acquired resistance to fulvestrant and palbociclib. J. Med. Chem., 2020, 63(13), 7186-7210.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00456] [PMID: 32453591]
[46]
Zhao, Y.; Zhou, B.; Bai, L.; Liu, L.; Yang, C.Y.; Meagher, J.L.; Stuckey, J.A.; McEachern, D.; Przybranowski, S.; Wang, M.; Ran, X.; Aguilar, A.; Hu, Y.; Kampf, J.W.; Li, X.; Zhao, T.; Li, S.; Wen, B.; Sun, D.; Wang, S. Structure-based discovery of CF53 as a potent and orally bioavailable bromodomain and extra-terminal (BET) bromodomain inhibitor. J. Med. Chem., 2018, 61(14), 6110-6120.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00483] [PMID: 30015487]
[47]
Palanivel, S.; Murugesan, A.; Subramanian, K.; Yli-Harja, O.; Kandhavelu, M. Antiproliferative and apoptotic effects of indole derivative, N-(2-hydroxy-5-nitrophenyl (4′-methylphenyl) methyl) indoline in breast cancer cells. Eur. J. Pharmacol., 2020, 881, 173195.
[http://dx.doi.org/10.1016/j.ejphar.2020.173195] [PMID: 32446710]
[48]
Sbenati, R.M.; Zaraei, S.O.; El-Gamal, M.I.; Anbar, H.S.; Tarazi, H.; Zoghbor, M.M.; Mohamood, N.A.; Khakpour, M.M.; Zaher, D.M.; Omar, H.A.; Alach, N.N.; Shehata, M.K.; El-Gamal, R. Design, synthesis, biological evaluation, and modeling studies of novel conformationally-restricted analogues of sorafenib as selective kinase-inhibitory antiproliferative agents against hepatocellular carcinoma cells. Eur. J. Med. Chem., 2021, 210, 113081.
[http://dx.doi.org/10.1016/j.ejmech.2020.113081] [PMID: 33310290]
[49]
Li, B.; Yao, J.; Guo, K.; He, F.; Chen, K.; Lin, Z.; Liu, S.; Huang, J.; Wu, Q.; Fang, M.; Zeng, J.; Wu, Z. Design, synthesis, and biological evaluation of 5-((8-methoxy-2-methylquinolin-4-yl)amino)-1H-indole-2-carbohydrazide derivatives as novel Nur77 modulators. Eur. J. Med. Chem., 2020, 204, 112608.
[http://dx.doi.org/10.1016/j.ejmech.2020.112608] [PMID: 32717483]
[50]
Zhou, Q.; Zhu, J.; Chen, J.; Ji, P.; Qiao, C. N-Arylsulfonylsubstituted-1H indole derivatives as small molecule dual inhibitors of signal transducer and activator of transcription 3 (STAT3) and tubulin. Bioorg. Med. Chem., 2018, 26(1), 96-106.
[http://dx.doi.org/10.1016/j.bmc.2017.11.023] [PMID: 29174507]
[51]
Sreenivasulu, R.; Reddy, K.T.; Sujitha, P.; Kumar, C.G.; Raju, R.R. Synthesis, antiproliferative and apoptosis induction potential activities of novel bis(indolyl)hydrazide-hydrazone derivatives. Bioorg. Med. Chem., 2019, 27(6), 1043-1055.
[http://dx.doi.org/10.1016/j.bmc.2019.02.002] [PMID: 30773423]
[52]
Diao, P.C.; Jian, X.E.; Chen, P.; Huang, C.; Yin, J.; Huang, J.C.; Li, J.S.; Zhao, P.L. Design, synthesis and biological evaluation of novel indole-based oxalamide and aminoacetamide derivatives as tubulin polymerization inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(2), 126816.
[http://dx.doi.org/10.1016/j.bmcl.2019.126816] [PMID: 31753698]
[53]
Li, W.; Shuai, W.; Sun, H.; Xu, F.; Bi, Y.; Xu, J.; Ma, C.; Yao, H.; Zhu, Z.; Xu, S. Design, synthesis and biological evaluation of quinoline-indole derivatives as anti-tubulin agents targeting the colchicine binding site. Eur. J. Med. Chem., 2019, 163, 428-442.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.070] [PMID: 30530194]
[54]
Taha, M.; Shah, S.A.A.; Afifi, M.; Imran, S.; Sultan, S.; Rahim, F.; Khan, K.M. Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorg. Chem., 2018, 77, 586-592.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.033] [PMID: 29477126]
[55]
Solangi, M. Kanwal; Mohammed Khan, K.; Saleem, F.; Hameed, S.; Iqbal, J.; Shafique, Z.; Qureshi, U.; Ul-Haq, Z.; Taha, M.; Perveen, S. Indole acrylonitriles as potential anti-hyperglycemic agents: Synthesis, α-glucosidase inhibitory activity and molecular docking studies. Bioorg. Med. Chem., 2020, 28(21), 115605.
[http://dx.doi.org/10.1016/j.bmc.2020.115605] [PMID: 33065441]
[56]
Méndez, M.; Matter, H.; Defossa, E.; Kurz, M.; Lebreton, S.; Li, Z.; Lohmann, M.; Löhn, M.; Mors, H.; Podeschwa, M.; Rackelmann, N.; Riedel, J.; Safar, P.; Thorpe, D.S.; Schäfer, M.; Weitz, D.; Breitschopf, K. Design, synthesis, and pharmacological evaluation of potent positive allosteric modulators of the glucagon-like peptide-1 receptor (GLP-1R). J. Med. Chem., 2020, 63(5), 2292-2307.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01071] [PMID: 31596080]
[57]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397, 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4]
[58]
Purgatorio, R.; de Candia, M.; Catto, M.; Carrieri, A.; Pisani, L.; De Palma, A.; Toma, M.; Ivanova, O.A.; Voskressensky, L.G.; Altomare, C.D. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer’s disease. Eur. J. Med. Chem., 2019, 177, 414-424.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.062] [PMID: 31158754]
[59]
Wang, Z.; Hu, J.; Yang, X.; Feng, X.; Li, X.; Huang, L.; Chan, A.S.C. Design, synthesis, and evaluation of orally bioavailable quinoline-indole derivatives as innovative multitarget-directed ligands: Promotion of cell proliferation in the adult murine hippocampus for the treatment of Alzheimer’s disease. J. Med. Chem., 2018, 61(5), 1871-1894.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01417] [PMID: 29420891]
[60]
Sharma, K.; Tanwar, O.; Deora, G.S.; Ali, S.; Alam, M.M.; Zaman, M.S.; Krishna, V.S.; Sriram, D.; Akhter, M. Expansion of a novel lead targeting M. tuberculosis DHFR as antitubercular agents. Bioorg. Med. Chem., 2019, 27(7), 1421-1429.
[http://dx.doi.org/10.1016/j.bmc.2019.02.053] [PMID: 30827867]
[61]
Ramesh, D.; Joji, A.; Vijayakumar, B.G.; Sethumadhavan, A.; Mani, M.; Kannan, T. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. Eur. J. Med. Chem., 2020, 198, 112358.
[http://dx.doi.org/10.1016/j.ejmech.2020.112358] [PMID: 32361610]
[62]
Liu, W.; Wang, H.; Li, X.; Xu, Y.; Zhang, J.; Wang, W.; Gong, Q.; Qiu, X.; Zhu, J.; Mao, F.; Zhang, H.; Li, J. Design, synthesis and evaluation of vilazodone-tacrine hybrids as multitarget-directed ligands against depression with cognitive impairment. Bioorg. Med. Chem., 2018, 26(12), 3117-3125.
[http://dx.doi.org/10.1016/j.bmc.2018.04.037] [PMID: 29729987]
[63]
Kondej, M.; Wróbel, T.M.; Silva, A.G.; Stępnicki, P.; Koszła, O.; Kędzierska, E.; Bartyzel, A.; Biała, G.; Matosiuk, D.; Loza, M.I.; Castro, M.; Kaczor, A.A. Synthesis, pharmacological and structural studies of 5-substituted-3-(1-arylmethyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles as multi-target ligands of aminergic GPCRs. Eur. J. Med. Chem., 2019, 180, 673-689.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.050] [PMID: 31357129]
[64]
ElBordiny, H.S.; El-Miligy, M.M.; Kassab, S.E.; Daabees, H.; Mohamed Ali, W.A.; Abdelhamid Mohamed El-Hawash, S. Design, synthesis, biological evaluation and docking studies of new 3-(4,5-dihydro-1H-pyrazol/isoxazol-5-yl)-2-phenyl-1H-indole derivatives as potent antioxidants and 15-lipoxygenase inhibitors. Eur. J. Med. Chem., 2018, 145, 594-605.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.026] [PMID: 29339254]
[65]
Siebenbuerger, L.; Hernandez-Olmos, V.; Abdelsamie, A.S.; Frotscher, M.; van Koppen, C.J.; Marchais-Oberwinkler, S.; Scheuer, C.; Laschke, M.W.; Menger, M.D.; Boerger, C.; Hartmann, R.W. Highly potent 17beta-HSD2 inhibitors with a promising pharmacokinetic profile for targeted osteoporosis therapy. J. Med. Chem., 2018, 61(23), 10724-10738.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01373] [PMID: 30480443]
[66]
Spadoni, G.; Bedini, A.; Furiassi, L.; Mari, M.; Mor, M.; Scalvini, L.; Lodola, A.; Ghidini, A.; Lucini, V.; Dugnani, S.; Scaglione, F.; Piomelli, D.; Jung, K.M.; Supuran, C.T.; Lucarini, L.; Durante, M.; Sgambellone, S.; Masini, E.; Rivara, S. Identification of bivalent ligands with melatonin receptor agonist and fatty acid amide hydrolase (FAAH) inhibitory activity that exhibit ocular hypotensive effect in the rabbit. J. Med. Chem., 2018, 61(17), 7902-7916.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00893] [PMID: 30126274]
[67]
Lei, H.; Guo, M.; Li, X.; Jia, F.; Li, C.; Yang, Y.; Cao, M.; Jiang, N.; Ma, E.; Zhai, X. Discovery of novel indole-based allosteric highly potent ATX inhibitors with great in vivo efficacy in a mouse lung fibrosis model. J. Med. Chem., 2020, 63(13), 7326-7346.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00506] [PMID: 32479084]
[68]
Findlay, A.D.; Foot, J.S.; Buson, A.; Deodhar, M.; Jarnicki, A.G.; Hansbro, P.M.; Liu, G.; Schilter, H.; Turner, C.I.; Zhou, W.; Jarolimek, W. Identification and optimization of mechanism-based fluoroallylamine inhibitors of lysyl oxidase-like 2/3. J. Med. Chem., 2019, 62(21), 9874-9889.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01283] [PMID: 31580073]
[69]
Boubia, B.; Poupardin, O.; Barth, M.; Binet, J.; Peralba, P.; Mounier, L.; Jacquier, E.; Gauthier, E.; Lepais, V.; Chatar, M.; Ferry, S.; Thourigny, A.; Guillier, F.; Llacer, J.; Amaudrut, J.; Dodey, P.; Lacombe, O.; Masson, P.; Montalbetti, C.; Wettstein, G.; Luccarini, J.M.; Legendre, C.; Junien, J.L.; Broqua, P. Design, synthesis, and evaluation of a novel series of indole sulfonamide peroxisome proliferator activated receptor (PPAR) alpha/gamma/delta triple activators: Discovery of lanifibranor, a new antifibrotic clinical candidate. J. Med. Chem., 2018, 61(6), 2246-2265.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01285] [PMID: 29446942]
[70]
Watterson, S.H.; Liu, Q.; Beaudoin Bertrand, M.; Batt, D.G.; Li, L.; Pattoli, M.A.; Skala, S.; Cheng, L.; Obermeier, M.T.; Moore, R.; Yang, Z.; Vickery, R.; Elzinga, P.A.; Discenza, L.; D’Arienzo, C.; Gillooly, K.M.; Taylor, T.L.; Pulicicchio, C.; Zhang, Y.; Heimrich, E.; McIntyre, K.W.; Ruan, Q.; Westhouse, R.A.; Catlett, I.M.; Zheng, N.; Chaudhry, C.; Dai, J.; Galella, M.A.; Tebben, A.J.; Pokross, M.; Li, J.; Zhao, R.; Smith, D.; Rampulla, R.; Allentoff, A.; Wallace, M.A.; Mathur, A.; Salter-Cid, L.; Macor, J.E.; Carter, P.H.; Fura, A.; Burke, J.R.; Tino, J.A. Discovery of branebrutinib (BMS-986195): A strategy for identifying a highly potent and selective covalent inhibitor providing rapid in vivo inactivation of bruton’s tyrosine kinase (BTK). J. Med. Chem., 2019, 62(7), 3228-3250.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00167] [PMID: 30893553]
[71]
Rajan, S.; Puri, S.; Kumar, D.; Babu, M.H.; Shankar, K.; Varshney, S.; Srivastava, A.; Gupta, A.; Reddy, M.S.; Gaikwad, A.N. Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway. Eur. J. Med. Chem., 2018, 143, 1345-1360.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.034] [PMID: 29153558]
[72]
Marecki, J.C.; Aarattuthodiyil, S.; Byrd, A.K.; Penthala, N.R.; Crooks, P.A.; Raney, K.D. N-Naphthoyl-substituted indole thio-barbituric acid analogs inhibit the helicase activity of the hepatitis C virus NS3. Bioorg. Med. Chem. Lett., 2019, 29(3), 430-434.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.026] [PMID: 30578035]
[73]
Guo, D.; Kong, S.; Chu, X.; Li, X.; Pan, H. De novo biosynthesis of indole-3-acetic acid in engineered Escherichia coli. J. Agric. Food Chem., 2019, 67(29), 8186-8190.
[http://dx.doi.org/10.1021/acs.jafc.9b02048] [PMID: 31272146]
[74]
Fan, L.; Hao, J.; Yu, J.; Ma, X.; Liu, J.; Luan, X. Hydroxylamines as bifunctional single-nitrogen sources for the rapid assembly of diverse tricyclic indole scaffolds. J. Am. Chem. Soc., 2020, 142(14), 6698-6707.
[http://dx.doi.org/10.1021/jacs.0c00403] [PMID: 32182059]
[75]
Asako, S.; Ishihara, S.; Hirata, K.; Takai, K. Deoxygenative insertion of carbonyl carbon into a C(sp3)-H Bond: Synthesis of indolines and indoles. J. Am. Chem. Soc., 2019, 141(25), 9832-9836.
[http://dx.doi.org/10.1021/jacs.9b05428] [PMID: 31184481]
[76]
Wang, Z.S.; Chen, Y.B.; Zhang, H.W.; Sun, Z.; Zhu, C.; Ye, L.W. Ynamide smiles rearrangement triggered by visible-light-mediated regioselective ketyl-ynamide coupling: Rapid access to functionalized indoles and isoquinolines. J. Am. Chem. Soc., 2020, 142(7), 3636-3644.
[http://dx.doi.org/10.1021/jacs.9b13975] [PMID: 32003986]
[77]
Li, Y.W.; Zheng, H.X.; Yang, B.; Shan, X.H.; Qu, J.P.; Kang, Y.B. tBuOK-promoted cyclization of imines with aryl halides. Org. Lett., 2020, 22(11), 4553-4556.
[http://dx.doi.org/10.1021/acs.orglett.0c01615] [PMID: 32437166]
[78]
Mamedov, A.; Mamedova, V.L.; Syakaev, V.V.; Khikmatova, G.Z.; Korshin, D.E.; Kushatov, T.A.; Latypov, S.K. A new and efficient method for the synthesis of 3-(2-nitrophenyl) pyruvic acid derivatives and indoles based on the Reissert reaction. Tetrahedron Lett., 2018, 59(44), 3923-3925.
[http://dx.doi.org/10.1016/j.tetlet.2018.09.039]
[79]
Zhang, S.Y.; Sun, S.G.; Guo, Y.S.; Lu, X.F.; Guo, D.S. An efficient synthesis of indoles via a CuMgAl-LDH-catalyzed cyclization of 2-alkynylsulfonanilides. Tetrahedron Lett., 2018, 59(41), 3719-3723.
[http://dx.doi.org/10.1016/j.tetlet.2018.09.009]
[80]
Pike, R.A.S.; Sapkota, R.R.; Shrestha, B.; Dhungana, R.K.; Kc, S.; Dickie, D.A.; Giri, R.K. 2CO3-catalyzed synthesis of 2,5-dialkyl-4,6,7-tricyano-decorated indoles via carbon−carbon bond cleavage. Org. Lett., 2020, 22(8), 3268-3272.
[http://dx.doi.org/10.1021/acs.orglett.0c01057] [PMID: 32237752]
[81]
Zhang, J.; Han, F.S. A total synthesis of (±)-Leuconodines D and E. J. Org. Chem., 2019, 84(21), 13890-13896.
[http://dx.doi.org/10.1021/acs.joc.9b02054] [PMID: 31535552]
[82]
Čarný, T.; Markovič, M.; Gracza, T.; Koóš, P. One-step synthesis of isoindolo[2,1-a]indol-6-ones via tandem Pd-catalyzed aminocarbonylation and C-H activation. J. Org. Chem., 2019, 84(19), 12499-12507.
[http://dx.doi.org/10.1021/acs.joc.9b02008] [PMID: 31507186]
[83]
Zeng, L.; Sajiki, H.; Cui, S. Multicomponent ugi reaction of indole-N-carboxylic acids: Expeditious access to indole carboxamide amino amides. Org. Lett., 2019, 21(13), 5269-5272.
[http://dx.doi.org/10.1021/acs.orglett.9b01871] [PMID: 31247803]
[84]
Liu, Y.; Chen, Z.; Wang, Q.L.; Chen, P.; Xie, J.; Xiong, B.Q.; Zhang, P.L.; Tang, K.W. Visible light-catalyzed cascade radical cyclization of N-propargylindoles with acyl chlorides for the synthesis of 2-acyl-9H-pyrrolo[1,2-α]indoles. J. Org. Chem., 2020, 85(4), 2385-2394.
[http://dx.doi.org/10.1021/acs.joc.9b03090] [PMID: 31927897]
[85]
Li, Z.; Zhang, H.; Yu, S. NaClO-promoted atroposelective couplings of 3-substituted indoles with amino acid derivatives. Org. Lett., 2019, 21(12), 4754-4758.
[http://dx.doi.org/10.1021/acs.orglett.9b01638] [PMID: 31179703]
[86]
Cui, H.L.; Liu, S.W.; Xiao, X. Synthesis of tetrahydroindolizino[8,7-b]indole derivatives in the presence of Fe(OTf)3 or CF3SO3H through intramolecular dearomatization of indole. J. Org. Chem., 2020, 85(23), 15382-15395.
[http://dx.doi.org/10.1021/acs.joc.0c02188] [PMID: 33124816]
[87]
Zhou, L.J.; Wang, K.; Guan, H.R.; Zheng, A.Q.; Yang, H.T.; Miao, C.B. Cu(OAc)2-promoted oxidative cross-dehydrogenative coupling reaction of α-acylmethyl malonates with indole derivatives to access 3-functionalized indoles and polycyclic indoles. J. Org. Chem., 2020, 85(12), 7925-7938.
[http://dx.doi.org/10.1021/acs.joc.0c00624] [PMID: 32453567]
[88]
Hikawa, H.; Kotaki, F.; Kikkawa, S.; Azumaya, I. Gold(III)-catalyzed decarboxylative C3-benzylation of indole-3-carboxylic acids with benzylic alcohols in water. J. Org. Chem., 2019, 84(4), 1972-1979.
[http://dx.doi.org/10.1021/acs.joc.8b02947] [PMID: 30672696]
[89]
Sar, S.; Tripathi, A.; Dubey, K.D.; Sen, S. Iodine-catalyzed aerobic diazenylation-amination of indole derivatives. J. Org. Chem., 2020, 85(5), 3748-3756.
[http://dx.doi.org/10.1021/acs.joc.9b03392] [PMID: 32019297]
[90]
Kona, C.N.; Nishii, Y.; Miura, M. Thioether-directed C4-selective C-H acylmethylation of indoles using alpha-carbonyl sulfoxonium ylides. Org. Lett., 2020, 22(12), 4806-4811.
[http://dx.doi.org/10.1021/acs.orglett.0c01617] [PMID: 32476423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy