Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Conjugated Porphyrin Materials for Solar Fuel Generation

Author(s): Yang Bai* and Reiner Sebastian Sprick*

Volume 26, Issue 6, 2022

Published on: 08 June, 2022

Page: [596 - 605] Pages: 10

DOI: 10.2174/1385272826666220330113959

Price: $65

conference banner
Abstract

Conjugated materials have emerged as a new class of photocatalysts for solar fuel generation, thus allowing for the Sun’s energy to be converted into a storable fuel that can be used without further emissions at the point of use. Many different building blocks have been used to make conjugated materials that act as photocatalysts allowing for efficient light absorption and tuing of photophysical properties. The porphyrin moiety is a very interesting building block for photocatalysts as the large π-conjugated system allows efficient light absorption. Metalation of porphyrins allows for further tuning of the materials’ properties, thus further expanding the property space that these materials can cover. This allows to design and better control over the properties of the materials, which is discussed in this review together with the state-of-the-art in porphyrin photocatalysts and hybrid systems.

Keywords: Solar fuels, hydrogen evolution, water splitting, conjugated materials, photocatalysts, hybrid systems.

Graphical Abstract
[1]
Crowley, T.J.; Berner, R.A. Paleoclimate. CO2 and climate change. Science, 2001, 292(5518), 870-872.
[http://dx.doi.org/10.1126/science.1061664] [PMID: 11341284]
[2]
Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global ener-gy ransformation. Energy Strateg. Rev., 2019, 24, 38-50.
[http://dx.doi.org/10.1016/j.esr.2019.01.006]
[3]
Gong, J.; Li, C.; Wasielewski, M.R. Advances in solar energy conversion. Chem. Soc. Rev., 2019, 48(7), 1862-1864.
[http://dx.doi.org/10.1039/C9CS90020A] [PMID: 30895987]
[4]
Grätzel, M. Photoelectrochemical cells. Nature, 2001, 414(6861), 338-344.
[http://dx.doi.org/10.1038/35104607] [PMID: 11713540]
[5]
Wang, Z.; Li, C.; Domen, K. Recent developments in hetero-geneous photocatalysts for solar-driven overall water split-ting. Chem. Soc. Rev., 2019, 48(7), 2109-2125.
[http://dx.doi.org/10.1039/C8CS00542G] [PMID: 30328438]
[6]
Pinaud, B.A.; Benck, J.D.; Seitz, L.C.; Forman, A.J.; Chen, Z.; Deutsch, T.G.; James, B.D.; Baum, K.N.; Baum, G.N.; Ardo, S.; Wang, H.; Miller, E.; Jaramillo, T.F. Technical and eco-nomic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci., 2013, 6(7), 1983.
[http://dx.doi.org/10.1039/c3ee40831k]
[7]
Joy, J.; Mathew, J.; George, S.C. Nanomaterials for photoelec-trochemical water splitting-review. Int. J. Hydrogen Energy, 2018, 43(10), 4804-4817.
[http://dx.doi.org/10.1016/j.ijhydene.2018.01.099]
[8]
Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev., 2020, 120(2), 919-985.
[http://dx.doi.org/10.1021/acs.chemrev.9b00201] [PMID: 31393702]
[9]
Krewald, V.; Retegan, M.; Pantazis, D.A. Principles of natural photosynthesis. Top. Curr. Chem., 2016, 371, 23-48.
[http://dx.doi.org/10.1007/128_2015_645] [PMID: 26099285]
[10]
Zhang, J.Z.; Reisner, E. Advancing photosystem II photoelec-trochemistry for semi-artificial photosynthesis. Nat. Rev. Chem., 2020, 4(1), 6-21.
[http://dx.doi.org/10.1038/s41570-019-0149-4]
[11]
Zhang, Y.; Ren, K.; Wang, L.; Wang, L.; Fan, Z. Porphyrin-based heterogeneous photocatalysts for solar energy conver-sion. Chin. Chem. Lett., 2022, 33(1), 33-60.
[http://dx.doi.org/10.1016/j.cclet.2021.06.013]
[12]
Wang, J.; Guo, L.; Xu, L.; Zeng, P.; Li, R.; Peng, T. Z-Scheme photocatalyst based on porphyrin derivative decorated few-layer BiVO4 nanosheets for efficient visible-light-driven over-all water splitting. Nano Res., 2021, 14(5), 1294-1304.
[http://dx.doi.org/10.1007/s12274-020-3145-6]
[13]
Wang, L.; Fan, H.; Bai, F. Porphyrin-based photocatalysts for hydrogen production. MRS Bull., 2020, 45(1), 49-56.
[http://dx.doi.org/10.1557/mrs.2019.294]
[14]
Joseph, M.; Haridas, S. Recent progresses in porphyrin as-sisted hydrogen evolution. Int. J. Hydrogen Energy, 2020, 45(21), 11954-11975.
[http://dx.doi.org/10.1016/j.ijhydene.2020.02.103]
[15]
Min Park, J.; Lee, J.H.; Jang, W-D.; Lee, J.H.; Jang, W.D. Ap-plications of porphyrins in emerging energy conversion tech-nologies. Coord. Chem. Rev., 2020, 407, 213157.
[http://dx.doi.org/10.1016/j.ccr.2019.213157]
[16]
Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Design and fabrica-tion of semiconductor photocatalyst for photocatalytic reduc-tion of CO2 to solar fuel. Sci. China Mater., 2014, 57(1), 70-100.
[http://dx.doi.org/10.1007/s40843-014-0003-1]
[17]
Bai, Y.; Hippalgaonkar, K.; Sprick, R.S. Organic materials as photocatalysts for water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(30), 121.
[http://dx.doi.org/10.1039/D1TA03710B]
[18]
Fang, Y.; Zheng, Y.; Fang, T.; Chen, Y.; Zhu, Y.; Liang, Q.; Sheng, H.; Li, Z.; Chen, C.; Wang, X. Photocatalysis: An overview of recent developments and technological advance-ments. Sci. China Chem., 2020, 63(2), 149-181.
[http://dx.doi.org/10.1007/s11426-019-9655-0]
[19]
Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D.J.; Hi-gashi, M.; Kong, D.; Abe, R.; Tang, J. Mimicking natural pho-tosynthesis: Solar to renewable h2 fuel synthesis by z-scheme water splitting systems. Chem. Rev., 2018, 118(10), 5201-5241.
[http://dx.doi.org/10.1021/acs.chemrev.7b00286] [PMID: 29676566]
[20]
Andrei, V.; Reuillard, B.; Reisner, E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with per-ovskite-BiVO4 tandems. Nat. Mater., 2020, 19(2), 189-194.
[http://dx.doi.org/10.1038/s41563-019-0501-6] [PMID: 31636423]
[21]
Lyu, H.; Hisatomi, T.; Goto, Y.; Yoshida, M.; Higashi, T.; Katayama, M.; Takata, T.; Minegishi, T.; Nishiyama, H.; Yamada, T.; Sakata, Y.; Asakura, K.; Domen, K. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall wa-ter splitting activity for over 1000 h of constant illumination. Chem. Sci. (Camb.), 2019, 10(11), 3196-3201.
[http://dx.doi.org/10.1039/C8SC05757E] [PMID: 30996901]
[22]
Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; Okunaka, S.; Shibata, N.; Takata, T.; Hisatomi, T.; Domen, K. Photocatalyt-ic solar hydrogen production from water on a 100-m2 scale. Nature, 2021, 598(7880), 304-307.
[http://dx.doi.org/10.1038/s41586-021-03907-3] [PMID: 34433207]
[23]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[24]
Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581(7809), 411-414.
[http://dx.doi.org/10.1038/s41586-020-2278-9] [PMID: 32461647]
[25]
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free poly-meric photocatalyst for hydrogen production from water un-der visible light. Nat. Mater., 2009, 8(1), 76-80.
[http://dx.doi.org/10.1038/nmat2317] [PMID: 18997776]
[26]
Wang, W-H.; Ting, L-Y.; Jayakumar, J.; Chang, C-L.; Lin, W-C.; Chung, C-C.; Elsayed, M.H.; Lu, C-Y.; Elewa, A.M.; Chou, H-H. Design and synthesis of phenylphosphine oxide-based polymer photocatalysts for highly efficient visible-light-driven hydrogen evolution. Sustain. Energy Fuels, 2020, 4(10), 5264-5270.
[http://dx.doi.org/10.1039/D0SE00928H]
[27]
Qian, Z.; Wang, Z.J.; Zhang, K.A.I. Covalent triazine frame-works as emerging heterogeneous photocatalysts. Chem. Mater., 2021, 33(6), 1909-1926.
[http://dx.doi.org/10.1021/acs.chemmater.0c04348]
[28]
Guiglion, P.; Butchosa, C.; Zwijnenburg, M.A. Polymeric watersplitting photocatalysts; a computational perspective on the water oxidation conundrum. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(30), 11996-12004.
[http://dx.doi.org/10.1039/C4TA02044H]
[29]
Bai, Y.; Wilbraham, L.; Gao, H.; Clowes, R.; Yang, H.; Zwijnenburg, M.; Cooper, A.; Sprick, R.S. Photocatalytic pol-ymers of intrinsic microporosity for hydrogen production from water. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(35), 121.
[http://dx.doi.org/10.1039/D1TA03098A]
[30]
Fu, Z.; Vogel, A.; Zwijnenburg, M.A.; Cooper, A.I.; Sprick, R.S. Photocatalytic syngas production using conjugated organ-ic polymers. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(7), 4291-4296.
[http://dx.doi.org/10.1039/D0TA09613J]
[31]
Wang, Q.; Warnan, J.; Rodríguez-Jiménez, S.; Leung, J.J.; Kalathil, S.; Andrei, V.; Domen, K.; Reisner, E. Molecularly engineered photocatalyst sheet for scalable solar formate pro-duction from carbon dioxide and water. Nat. Energy, 2020, 5(9), 703-710.
[http://dx.doi.org/10.1038/s41560-020-0678-6]
[32]
Sprick, R.S.; Chen, Z.; Cowan, A.J.; Bai, Y.; Aitchison, C.M.; Fang, Y.; Zwijnenburg, M.A.; Cooper, A.I.; Wang, X. Water oxidation with cobalt-loaded linear conjugated polymer pho-tocatalysts. Angew. Chem. Int. Ed., 2020, 59(42), 18695-18700.
[http://dx.doi.org/10.1002/anie.202008000] [PMID: 32596879]
[33]
Xie, J.; Shevlin, S.A.; Ruan, Q.; Moniz, S.J.A.; Liu, Y.; Liu, X.; Li, Y.; Lau, C.C.; Guo, Z.X.; Tang, J. Efficient visible light-driven water oxidation and proton reduction by an or-dered covalent triazine-based framework. Energy Environ. Sci., 2018, 11(6), 1617-1624.
[http://dx.doi.org/10.1039/C7EE02981K]
[34]
Aiga, N.; Jia, Q.; Watanabe, K.; Kudo, A.; Sugimoto, T.; Matsumoto, Y. Electron-phonon coupling dynamics at oxy-gen evolution sites of visible-light-driven photocatalyst: bis-muth vanadate. J. Phys. Chem. C, 2013, 117(19), 9881-9886.
[http://dx.doi.org/10.1021/jp4013027]
[35]
Pan, Z.; Hisatomi, T.; Wang, Q.; Nakabayashi, M.; Shibata, N.; Pan, C.; Takata, T.; Domen, K. Application of LaMg1/3Ta2/3O2N as a hydrogen evolution photocatalyst of a photocatalyst sheet for z-scheme water splitting. Appl. Catal. A Gen., 2016, 521, 26-33.
[http://dx.doi.org/10.1016/j.apcata.2015.10.034]
[36]
Sprick, R.S.; Bai, Y.; Guilbert, A.A.Y.; Zbiri, M.; Aitchison, C.M.; Wilbraham, L.; Yan, Y.; Woods, D.J.; Zwijnenburg, M.A.; Cooper, A.I. Photocatalytic hydrogen evolution from water using fluorene and dibenzothiophene sulfone-conjugated microporous and linear polymers. Chem. Mater., 2019, 31(2), 305-313.
[http://dx.doi.org/10.1021/acs.chemmater.8b02833]
[37]
Kosco, J.; Sachs, M.; Godin, R.; Kirkus, M.; Francas, L.; Bidwell, M.; Qureshi, M.; Anjum, D.; Durrant, J.R.; McCul-loch, I. The effect of residual palladium catalyst contamina-tion on the photocatalytic hydrogen evolution activity of con-jugated polymers. Adv. Energy Mater., 2018, 8(34), 1802181.
[http://dx.doi.org/10.1002/aenm.201802181]
[38]
Maeda, K. Z-Scheme water splitting using two different semi-conductor photocatalysts. ACS Catal., 2013, 3(7), 1486-1503.
[http://dx.doi.org/10.1021/cs4002089]
[39]
Sachs, M.; Sprick, R.S.; Pearce, D.; Hillman, S.A.J.; Monti, A.; Guilbert, A.A.Y.; Brownbill, N.J.; Dimitrov, S.; Shi, X.; Blanc, F.; Zwijnenburg, M.A.; Nelson, J.; Durrant, J.R.; Cooper, A.I. Understanding structure-activity relationships in linear poly-mer photocatalysts for hydrogen evolution. Nat. Commun., 2018, 9(1), 4968.
[http://dx.doi.org/10.1038/s41467-018-07420-6] [PMID: 30470759]
[40]
Vyas, V.S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B.V. A tunable azine covalent organic framework platform for visible light-induced hydrogen gener-ation. Nat. Commun., 2015, 6(1), 8508.
[http://dx.doi.org/10.1038/ncomms9508] [PMID: 26419805]
[41]
Goto, Y.; Hisatomi, T.; Wang, Q.; Higashi, T.; Ishikiriyama, K.; Maeda, T.; Sakata, Y.; Okunaka, S.; Tokudome, H.; Katayama, M.; Akiyama, S.; Nishiyama, H.; Inoue, Y.; Take-waki, T.; Setoyama, T.; Minegishi, T.; Takata, T.; Yamada, T.; Domen, K. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule, 2018, 2(3), 509-520.
[http://dx.doi.org/10.1016/j.joule.2017.12.009]
[42]
Sprick, R.S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N.J.; Slater, B.J.; Blanc, F.; Zwijnenburg, M.A.; Adams, D.J.; Cooper, A.I. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem. Int. Ed., 2016, 55(5), 1792-1796.
[http://dx.doi.org/10.1002/anie.201510542] [PMID: 26696450]
[43]
Woods, D.J.; Hillman, S.A.J.; Pearce, D.; Wilbraham, L.; Flagg, L.Q.; Duffy, W.; McCulloch, I.; Durrant, J.R.; Guilbert, A.A.Y.; Zwijnenburg, M.A.; Sprick, R.S.; Nelson, J.; Cooper, A.I. Side-Chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy Environ. Sci., 2020, 13(6), 1843-1855.
[http://dx.doi.org/10.1039/D0EE01213K]
[44]
Sachs, M.; Cha, H.; Kosco, J.; Aitchison, C.M.; Francàs, L.; Corby, S.; Chiang, C-L.; Wilson, A.A.; Godin, R.; Fahey-Williams, A.; Cooper, A.I.; Sprick, R.S.; McCulloch, I.; Dur-rant, J.R. Tracking charge transfer to residual metal clusters in conjugated polymers for photocatalytic hydrogen evolution. J. Am. Chem. Soc., 2020, 142(34), 14574-14587.
[http://dx.doi.org/10.1021/jacs.0c06104] [PMID: 32786800]
[45]
Sprick, R.S.; Cheetham, K.J.; Bai, Y.; Alves Fernandes, J.; Barnes, M.; Bradley, J.W.; Cooper, A.I. Polymer photocata-lysts with plasma-enhanced activity. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(15), 7125-7129.
[http://dx.doi.org/10.1039/D0TA01200A]
[46]
Vogel, A.; Forster, M.; Wilbraham, L.; Smith, C.L.; Cowan, A.J.; Zwijnenburg, M.A.; Sprick, R.S.; Cooper, A.I. Photocata-lytically active ladder polymers. Faraday Discuss., 2019, 215(0), 84-97.
[http://dx.doi.org/10.1039/C8FD00197A] [PMID: 30972395]
[47]
Sprick, R.S.; Jiang, J.X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M.A.; Adams, D.J.; Cooper, A.I. Tunable organic photocatalysts for visible-light-driven hydro-gen evolution. J. Am. Chem. Soc., 2015, 137(9), 3265-3270.
[http://dx.doi.org/10.1021/ja511552k] [PMID: 25643993]
[48]
Bai, Y.; Woods, D.J.; Wilbraham, L.; Aitchison, C.M.; Zwijnenburg, M.A.; Sprick, R.S.; Cooper, A.I. Hydrogen evo-lution from water using heteroatom substituted fluorene con-jugated co-polymers. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(17), 8700-8705.
[http://dx.doi.org/10.1039/D0TA02599B]
[49]
Wang, X.; Chen, L.; Chong, S.Y.; Little, M.A.; Wu, Y.; Zhu, W-H.; Clowes, R.; Yan, Y.; Zwijnenburg, M.A.; Sprick, R.S.; Cooper, A.I.; Sprick, R.S.; Cooper, A.I. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem., 2018, 10(12), 1180-1189.
[http://dx.doi.org/10.1038/s41557-018-0141-5] [PMID: 30275507]
[50]
Zhong, H.; Sa, R.; Lv, H.; Yang, S.; Yuan, D.; Wang, X.; Wang, R. Covalent organic framework hosting metalloporphy-rin-based carbon dots for visible-light-driven selective CO2 reduction. Adv. Funct. Mater., 2020, 30(35), 2002654.
[http://dx.doi.org/10.1002/adfm.202002654]
[51]
Aitchison, C.M.; Sachs, M.; Little, M.; Wilbraham, L.; Brownbill, N.J.; Kane, C.; Blanc, F.; Zwijnenburg, M.; Dur-rant, J.; Sprick, R.S.; Cooper, A.I. Structure-activity relation-ships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chem. Sci. (Camb.), 2020, 11(33), 8744-8756.
[http://dx.doi.org/10.1039/D0SC02675A]
[52]
Aitchison, C.M.; Kane, C.M.; McMahon, D.P.; Spackman, P.R.; Pulido, A.; Wang, X.; Wilbraham, L.; Chen, L.; Clowes, R.; Zwijnenburg, M.A.; Sprick, R.S.; Little, M.A.; Day, G.M.; Cooper, A.I. Photocatalytic proton reduction by a computa-tionally identified, molecular hydrogen-bonded framework. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(15), 7158-7170.
[http://dx.doi.org/10.1039/D0TA00219D]
[53]
Ladomenou, K.; Natali, M.; Iengo, E.; Charalampidis, G.; Scandola, F.; Coutsolelos, A.G. Photochemical hydrogen gen-eration with porphyrin-based systems. Coord. Chem. Rev., 2015, 304-305, 38-54.
[http://dx.doi.org/10.1016/j.ccr.2014.10.001]
[54]
Han, Y.; Wu, Y.; Lai, W.; Cao, R. Electrocatalytic water oxida-tion by a water-soluble nickel porphyrin complex at neutral ph with low overpotential. Inorg. Chem., 2015, 54(11), 5604-5613.
[http://dx.doi.org/10.1021/acs.inorgchem.5b00924] [PMID: 25985258]
[55]
Nakazono, T.; Parent, A.R.; Sakai, K. Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem. Commun. (Camb.), 2013, 49(56), 6325-6327.
[http://dx.doi.org/10.1039/c3cc43031f] [PMID: 23743719]
[56]
Latter, M.J.; Langford, S.J. Porphyrinic molecular devices: Towards nanoscaled processes. Int. J. Mol. Sci., 2010, 11(4), 1878-1887.
[http://dx.doi.org/10.3390/ijms11041878] [PMID: 20480048]
[57]
Cole, E.B.; Lakkaraju, P.S.; Rampulla, D.M.; Morris, A.J.; Abelev, E.; Bocarsly, A.B. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mecha-nistic, and structural insights. J. Am. Chem. Soc., 2010, 132(33), 11539-11551.
[http://dx.doi.org/10.1021/ja1023496] [PMID: 20666494]
[58]
Imran, M.; Ramzan, M.; Qureshi, A.K.; Khan, M.A.; Tariq, M. Emerging applications of porphyrins and metalloporphy-rins in biomedicine and diagnostic magnetic resonance imag-ing. Biosensors, 2018, 8(4), 1.
[http://dx.doi.org/10.3390/bios8040095] [PMID: 30347683]
[59]
Liu, Y.; Wang, L.; Feng, H.; Ren, X.; Ji, J.; Bai, F.; Fan, H. Microemulsion-Assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocata-lytic hydrogen evolution. Nano Lett., 2019, 19(4), 2614-2619.
[http://dx.doi.org/10.1021/acs.nanolett.9b00423] [PMID: 30848602]
[60]
Ranjeesh, K.C.; George, L.; Wakchaure, V.C.; Goudappagou-da, R.N.; Devi, R.N.; Babu, S.S. A squaraine-linked metal-loporphyrin two-dimensional polymer photocatalyst for hy-drogen and oxygen evolution reactions. Chem. Commun., 2019, 55(11), 1627-1630.
[http://dx.doi.org/10.1039/C8CC09132C] [PMID: 30657137]
[61]
Bai, Y.; Li, C.; Liu, L.; Yamaguchi, Y.; Mounib, B.; Yang, H.; Gardner, A.; Zwijnenburg, M.A.; Browning, N.; Cowan, A.J.; Kudo, A.; Cooper, A.I.; Sprick, R.S. Photocatalytic overall water splitting under visible light enabled by a particulate con-jugated polymer loaded with iridium. Angew. Chem. Int. Ed., 2020.
[http://dx.doi.org/10.1002/anie.202201299]
[62]
Zhang, Z.; Zhu, Y.; Chen, X.; Zhang, H.; Wang, J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv. Mater., 2019, 31(7), e1806626.
[http://dx.doi.org/10.1002/adma.201806626] [PMID: 30589130]
[63]
Jing, J.; Yang, J.; Zhang, Z.; Zhu, Y. Supramolecular zinc porphyrin photocatalyst with strong reduction ability and ro-bust built-in electric field for highly efficient hydrogen pro-duction. Adv. Energy Mater., 2021, 2101392, 1.
[64]
Sprick, R.S.; Wilbraham, L.; Bai, Y.; Guiglion, P.; Monti, A.; Clowes, R.; Cooper, A.I.; Zwijnenburg, M.A. Nitrogen con-taining linear poly(phenylene) derivatives for photo-catalytic hydrogen evolution from water. Chem. Mater., 2018, 30(16), 5733-5742.
[http://dx.doi.org/10.1021/acs.chemmater.8b02501]
[65]
Yang, X.; Hu, Z.; Yin, Q.; Shu, C.; Jiang, X.X.F.; Zhang, J.; Wang, X.; Jiang, J.X.; Huang, F.; Cao, Y.; Yin, Q.; Cao, Y. Water-soluble conjugated molecule for solar-driven hydrogen evolution from salt water. Adv. Funct. Mater., 2019, 29(13), 1.
[http://dx.doi.org/10.1002/adfm.201808156]
[66]
Aitchison, C.M.; Sprick, R.S.; Cooper, A.I. Emulsion polymerization derived organic photocatalysts for improved light-driven hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(6), 2490-2496.
[http://dx.doi.org/10.1039/C8TA11383A]
[67]
Zhao, X.; Zhang, X.; Liang, Y.; Hu, Z.; Huang, F. Porphyrin-based conjugated polyelectrolytes for efficient photocatalytic hydrogen evolution. Macromolecules, 2021, 54(10), 4902-4909.
[http://dx.doi.org/10.1021/acs.macromol.1c00489]
[68]
Chen, Z.; Wang, J.; Zhang, S.; Zhang, Y.; Zhang, J.; Li, R.; Peng, T. Porphyrin-based conjugated polymers as intrinsic semiconducting photocatalysts for robust h2 generation under visible light. ACS Appl. Energy Mater., 2019, 2(8), 5665-5676.
[http://dx.doi.org/10.1021/acsaem.9b00811]
[69]
Chen, R.; Wang, Y.; Ma, Y.; Mal, A.; Gao, X.Y.; Gao, L.; Qiao, L.; Li, X.B.; Wu, L.Z.; Wang, C. Rational design of isostructural 2D porphyrin-based covalent organic frame-works for tunable photocatalytic hydrogen evolution. Nat. Commun., 2021, 12(1), 1354.
[http://dx.doi.org/10.1038/s41467-021-21527-3] [PMID: 33649344]
[70]
Gottschling, K.; Savasci, G.; Vignolo-González, H.; Schmidt, S.; Mauker, P.; Banerjee, T.; Rovó, P.; Ochsenfeld, C.; Lotsch, B.V. Rational design of covalent cobaloxime-covalent organic framework hybrids for enhanced photocatalytic hydrogen evolution. J. Am. Chem. Soc., 2020, 142(28), 12146-12156.
[http://dx.doi.org/10.1021/jacs.0c02155] [PMID: 32564604]
[71]
Wang, K.; Jia, Z.; Bai, Y.; Wang, X.; Hodgkiss, S.E.; Chen, L.; Chong, S.Y.; Wang, X.; Yang, H.; Xu, Y.; Feng, F.; Ward, J.W.; Cooper, A.I. Synthesis of stable thiazole-linked covalent organic frameworks via a multicomponent reaction. J. Am. Chem. Soc., 2020, 142(25), 11131-11138.
[http://dx.doi.org/10.1021/jacs.0c03418] [PMID: 32475114]
[72]
Wang, Y.; Vogel, A.; Sachs, M.; Sprick, R.S.; Wilbraham, L.; Moniz, S.J.A.; Godin, R.; Zwijnenburg, M.A.; Durrant, J.R.; Cooper, A.I.; Tang, J. Current understanding and challenges of solar-driven hydrogen generation using polymeric photo-catalysts. Nat. Energy, 2019, 4(9), 746-760.
[http://dx.doi.org/10.1038/s41560-019-0456-5]
[73]
Li, L.; Cai, Z.; Wu, Q.; Lo, W.Y.; Zhang, N.; Chen, L.X.; Yu, L. Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J. Am. Chem. Soc., 2016, 138(24), 7681-7686.
[http://dx.doi.org/10.1021/jacs.6b03472] [PMID: 27254306]
[74]
Da Silva, E.S.; Moura, N.M.M.; Neves, M.G.P.M.S.; Coutinho, A.; Prieto, M.; Silva, C.G.; Faria, J.L. Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production. Appl. Catal. B, 2018, 221, 56-69.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.079]
[75]
Zhu, K.; Zhang, M.; Feng, X.; Qin, L.; Kang, S.Z.; Li, X. A novel copper-bridged graphitic carbon nitride/porphyrin nanocomposite with dramatically enhanced photocatalytic hy-drogen generation. Appl. Catal. B, 2020, 268, 118434.
[http://dx.doi.org/10.1016/j.apcatb.2019.118434]
[76]
Kosco, J.; Bidwell, M.; Cha, H.; Martin, T.; Howells, C.T.; Sachs, M.; Anjum, D.H.; Gonzalez Lopez, S.; Zou, L.; Wadsworth, A.; Zhang, W.; Zhang, L.; Tellam, J.; Sougrat, R.; Laquai, F.; DeLongchamp, D.M.; Durrant, J.R.; McCulloch, I. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater., 2020, 19(5), 559-565.
[http://dx.doi.org/10.1038/s41563-019-0591-1] [PMID: 32015530]
[77]
Zhang, G.; Li, G.; Lan, Z.A.; Lin, L.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X.; Antonietti, M. Optimizing optical ab-sorption, exciton dissociation, and charge transfer of a poly-meric carbon nitride with ultrahigh solar hydrogen production activity. Angew. Chem. Int. Ed. Engl., 2017, 56(43), 13445-13449.
[http://dx.doi.org/10.1002/anie.201706870] [PMID: 28845919]
[78]
Zhang, G.; Lin, L.; Li, G.; Zhang, Y.; Savateev, A.; Zafeiratos, S.; Wang, X.; Antonietti, M. Ionothermal synthesis of triazine-heptazine-based copolymers with apparent quantum yields of 60% at 420 nm for solar hydrogen production from “sea wa-ter”. Angew. Chem. Int. Ed. Engl., 2018, 57(30), 9372-9376.
[http://dx.doi.org/10.1002/anie.201804702] [PMID: 29852539]
[79]
Zhang, M.; Zhu, K.; Qin, L.; Kang, S.Z.; Li, X. Enhanced electron transfer and photocatalytic hydrogen production over the carbon nitride/porphyrin nanohybrid finely bridged by special copper. Catal. Sci. Technol., 2020, 10(6), 1640-1649.
[http://dx.doi.org/10.1039/C9CY02272D]
[80]
Kim, W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H-J.; Choi, W. Tin-porphyrin sensitized tio2 for the production of H2 un-der visible light. Energy Environ. Sci., 2010, 3(11), 1789.
[http://dx.doi.org/10.1039/c0ee00205d]
[81]
Malinka, E.A.; Kamalov, G.L.; Vodzinskii, S.V.; Melnik, V.I.; Zhilina, Z.I. Hydrogen production from water by visible light using zinc porphyrin-sensitized platinized titanium dioxide. J. Photochem. Photobiol. Chem., 1995, 90(2-3), 153-158.
[http://dx.doi.org/10.1016/1010-6030(95)04093-U]
[82]
Guo, X.; Li, X.; Qin, L.; Kang, S-Z.; Li, G. A highly active nano-micro hybrid derived from Cu-bridged TiO2/porphyrin for enhanced photocatalytic hydrogen production. Appl. Catal. B, 2019, 243, 1-9.
[http://dx.doi.org/10.1016/j.apcatb.2018.10.030]
[83]
Mukherjee, G.; Thote, J.; Aiyappa, H.B.; Kandambeth, S.; Banerjee, S.; Vanka, K.; Banerjee, R. A porous porphyrin or-ganic polymer (PPOP) for visible light triggered hydrogen production. Chem. Commun. (Camb.), 2017, 53(32), 4461-4464.
[http://dx.doi.org/10.1039/C7CC00879A] [PMID: 28379229]
[84]
Li, X.; Goto, T.; Nomura, K.; Zhu, M.; Sekino, T.; Osakada, Y. Synthesis of porphyrin nanodisks from COFs through me-chanical stirring and their photocatalytic activity. Appl. Surf. Sci., 2020, 513, 145720.
[http://dx.doi.org/10.1016/j.apsusc.2020.145720]
[85]
Yang, J.; Jing, J.; Zhu, Y. A full-spectrum porphyrin-fullerene D-A supramolecular photocatalyst with giant built-in electric field for efficient hydrogen production. Adv. Mater., 2021, 33(31), e2101026.
[http://dx.doi.org/10.1002/adma.202101026] [PMID: 34240482]
[86]
Pan, Z.; Zhang, G.; Wang, X. Polymeric carbon ni-tride/reduced graphene oxide/Fe2O3: All-solid-state z-scheme system for photocatalytic overall water splitting. Angew. Chem. Int. Ed. Engl., 2019, 58(21), 7102-7106.
[http://dx.doi.org/10.1002/anie.201902634] [PMID: 30920102]
[87]
Bai, Y.; Nakagawa, K.; Cowan, A.; Aitchison, C.M.; Yamagu-chi, Y.; Zwijnenburg, M.; Kudo, A.; Sprick, R.S.; Cooper, A. Photocatalyst z-scheme system composed of a linear conju-gated polymer and BIVO4 for overall water splitting under visible light. J. Mater. Chem. A Mater. Energy Sustain., 2020, 6(32), 4883.
[http://dx.doi.org/10.1039/D0TA04754F]
[88]
Wang, J.; Xu, L.; Wang, T.; Li, R.; Zhang, Y.; Zhang, J.; Peng, T. Porphyrin conjugated polymer grafted onto BIVO4 nanosheets for efficient z-scheme overall water splitting via cascade charge transfer and single-atom catalytic sites. Adv. Energy Mater., 2021, 11, 1.
[89]
Marianov, A.N.; Jiang, Y. Effect of manganese porphyrin covalent immobilization on electrocatalytic water oxidation and oxygen reduction reactions. ACS Sustain. Chem.& Eng., 2019, 7(4), 3838-3848.
[http://dx.doi.org/10.1021/acssuschemeng.8b04735]
[90]
Wang, D.; Groves, J.T. Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proc. Natl. Acad. Sci. USA, 2013, 110(39), 15579-15584.
[http://dx.doi.org/10.1073/pnas.1315383110] [PMID: 24019473]
[91]
Zhang, S.; Cheng, G.; Guo, L.; Wang, N.; Tan, B.; Jin, S. Strong-Base-Assisted synthesis of a crystalline covalent tria-zine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting. Angew. Chem. Int. Ed. Engl., 2020, 59(15), 6007-6014.
[http://dx.doi.org/10.1002/anie.201914424] [PMID: 31930618]
[92]
Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitaga-wa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol-formaldehyde resins as metal-free semiconductor photocata-lysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater., 2019, 18(9), 985-993.
[http://dx.doi.org/10.1038/s41563-019-0398-0] [PMID: 31263224]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy