Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

General Review Article

Role of Brain-Gut-Microbiota Axis in Depression: Emerging Therapeutic Avenues

Author(s): Shvetank Bhatt*, Jovita Kanoujia, S. Mohana Lakshmi, CR. Patil, Gaurav Gupta, Dinesh Kumar Chellappan and Kamal Dua

Volume 22, Issue 2, 2023

Published on: 10 May, 2022

Page: [276 - 288] Pages: 13

DOI: 10.2174/1871527321666220329140804

Price: $65

Abstract

The human gut microbiota plays a significant role in the pathophysiology of central nervous system-related diseases. Recent studies suggest correlations between the altered gut microbiota and major depressive disorder (MDD). It is proposed that normalization of the gut microbiota alleviates MDD. The imbalance of brain-gut-microbiota axis also results in dysregulation of the hypothalamicpituitary- adrenal (HPA) axis. This imbalance has a crucial role in the pathogenesis of depression. Treatment strategies with certain antibiotics lead to the depletion of useful microbes and thereby induce depression like effects in subjects. Microbiota is also involved in the synthesis of various neurotransmitters (NTs) like 5-hydroxy tryptamine (5-HT; serotonin), norepinephrine (NE) and dopamine (DA). In addition to NTs, the gut microbiota also has an influence on brain derived neurotrophic factor (BDNF) levels. Recent research findings have exhibited that transfer of stress prone microbiota in mice is also responsible for depression and anxiety-like behaviour in animals. The use of probiotics, prebiotics, synbiotics and proper diet have shown beneficial effects in the regulation of depression pathogenesis. Moreover, transplantation of fecal microbiota from depressed individuals to normal subjects also induces depression-like symptoms. With the precedence of limited therapeutic benefits from monoamine targeting drugs, the regulation of brain-gut microbiota is emerging as a new treatment modality for MDDs. In this review, we elaborate on the significance of brain-gut-microbiota axis in the progression of MDD, particularly focusing on the modulation of the gut microbiota as a mode of treating MDD.

Keywords: Brain dysfunction, Gut microbiota, HPA axis, Immune system, MDD, 5-hydroxy tryptamine.

Graphical Abstract
[2]
Mental Health and Substance Use. Available from: https://edubirdie.com/blog/mental-health-in-the-workplace.
[3]
Trautmann S, Rehm J, Wittchen HU. The economic costs of mental disorders: Do our societies react appropriately to the burden of mental disorders? EMBO Rep 2016; 17(9): 1245-9.
[http://dx.doi.org/10.15252/embr.201642951] [PMID: 27491723]
[4]
Al-Harbi KS. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer Adherence 2012; 6: 369-88.
[http://dx.doi.org/10.2147/PPA.S29716] [PMID: 22654508]
[5]
Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: How gut microbes shape human behavior. J Psychiatr Res 2015; 63: 1-9.
[http://dx.doi.org/10.1016/j.jpsychires.2015.02.021] [PMID: 25772005]
[6]
Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 2018; 6(2): 133-48.
[http://dx.doi.org/10.1016/j.jcmgh.2018.04.003] [PMID: 30023410]
[7]
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain research 2018; 1693(Pt B): 128-33.
[http://dx.doi.org/10.1016/j.brainres.2018.03.015]
[8]
Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: Paradigm shift in neuroscience. J Neurosci 2014; 34(46): 15490-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3299-14.2014] [PMID: 25392516]
[9]
Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 2017; 46(1): 77-89.
[http://dx.doi.org/10.1016/j.gtc.2016.09.007] [PMID: 28164854]
[10]
Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019; 7: e7502.
[http://dx.doi.org/10.7717/peerj.7502] [PMID: 31440436]
[11]
Miller AH, Raison CL. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat Rev Immunol 2016; 16(1): 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[12]
Du Y, Gao XR, Peng L, Ge JF. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon 2020; 6(6): e04097.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04097] [PMID: 32529075]
[13]
Karl JP, Hatch AM, Arcidiacono SM, et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol 2018; 9: 2013.
[http://dx.doi.org/10.3389/fmicb.2018.02013] [PMID: 30258412]
[14]
Liang S, Wu X, Hu X, Wang T, Jin F. Recognizing depression from the microbiota−Gut−brain axis. Int J Mol Sci 2018; 19(6): 1592.
[http://dx.doi.org/10.3390/ijms19061592]
[15]
Tolentino JC, Schmidt SL. DSM-5 Criteria and depression severity: Implications for clinical practice. Front Psychiatry 2018; 9: 450.
[http://dx.doi.org/10.3389/fpsyt.2018.00450] [PMID: 30333763]
[16]
Albert PR. Why is depression more prevalent in women? J Psychiatry Neurosci 2015; 40(4): 219-21.
[http://dx.doi.org/10.1503/jpn.150205] [PMID: 26107348]
[17]
Boivin JR, Piekarski DJ, Wahlberg JK, Wilbrecht L. Age, sex, and gonadal hormones differently influence anxiety- and depression-related behavior during puberty in mice. Psychoneuroendocrinology 2017; 85: 78-87.
[http://dx.doi.org/10.1016/j.psyneuen.2017.08.009] [PMID: 28837909]
[18]
Shors TJ, Leuner B. Estrogen-mediated effects on depression and memory formation in females. J Affect Disord 2003; 74(1): 85-96.
[http://dx.doi.org/10.1016/S0165-0327(02)00428-7] [PMID: 12646301]
[19]
Karpinski M, Mattina GF, Steiner M. Effect of gonadal hormones on neurotransmitters implicated in the pathophysiology of obsessive-compulsive disorder: A critical review. Neuroendocrinology 2017; 105(1): 1-16.
[http://dx.doi.org/10.1159/000453664] [PMID: 27894107]
[20]
Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci 2018; 72(1): 3-12.
[http://dx.doi.org/10.1111/pcn.12604] [PMID: 28926161]
[21]
Heninger GR, Delgado PL, Charney DS. The revised monoamine theory of depression: A modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 1996; 29(1): 2-11.
[http://dx.doi.org/10.1055/s-2007-979535] [PMID: 8852528]
[22]
Lener MS, Niciu MJ, Ballard ED, et al. Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry 2017; 81(10): 886-97.
[http://dx.doi.org/10.1016/j.biopsych.2016.05.005] [PMID: 27449797]
[23]
Yu H, Chen ZY. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin 2011; 32(1): 3-11.
[http://dx.doi.org/10.1038/aps.2010.184] [PMID: 21131999]
[24]
Shadrina M, Bondarenko EA, Slominsky PA. Genetics factors in major depression disease. Front Psychiatry 2018; 9: 334.
[http://dx.doi.org/10.3389/fpsyt.2018.00334] [PMID: 30083112]
[25]
Du X, Pang TY. Is dysregulation of the HPA-axis a core pathophysiology mediating co-morbid depression in neurodegenerative diseases? Front Psychiatry 2015; 6: 32.
[http://dx.doi.org/10.3389/fpsyt.2015.00032] [PMID: 25806005]
[26]
Stephens MA, Wand G. Stress and the HPA axis: Role of glucocorticoids in alcohol dependence. Alcohol Res 2012; 34(4): 468-83.
[PMID: 23584113]
[27]
Juruena MF, Cleare AJ, Pariante CM. The hypothalamic pituitary adrenal axis, glucocorticoid receptor function and relevance to depression. Rev Bras Psiquiatr 2004; 26(3): 189-201.
[http://dx.doi.org/10.1590/S1516-44462004000300009] [PMID: 15645065]
[28]
Pariante CM, Makoff A, Lovestone S, et al. Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br J Pharmacol 2001; 134(6): 1335-43.
[http://dx.doi.org/10.1038/sj.bjp.0704368] [PMID: 11704655]
[29]
Jin Y, Sun LH, Yang W, Cui RJ, Xu SB. The role of BDNF in the neuroimmune axis regulation of mood disorders. Front Neurol 2019; 10: 515.
[http://dx.doi.org/10.3389/fneur.2019.00515] [PMID: 31231295]
[30]
Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress 2017; 7: 124-36.
[http://dx.doi.org/10.1016/j.ynstr.2017.03.001] [PMID: 29276734]
[31]
Gut Microbiome (Gut-Brain Axis) and DepressionPathophysiology. Role of Pre and Probiotics. Available from: https://psychscenehub.com/psychinsights/gut-microbiome-and-depression-pathophysiology-role-of-pre-and-probiotics-2/
[32]
Liu F, Lee SA, Riordan SM, Zhang L, Zhu L. Effects of anti-cytokine antibodies on gut barrier function. Mediators Inflamm 2019; 2019: 7028253.
[http://dx.doi.org/10.1155/2019/7028253] [PMID: 31780866]
[33]
Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today 2020; 25(7): 1270-6.
[http://dx.doi.org/10.1016/j.drudis.2020.05.001]
[34]
Michel TM, Pülschen D, Thome J. The role of oxidative stress in depressive disorders. Curr Pharm Des 2012; 18(36): 5890-9.
[http://dx.doi.org/10.2174/138161212803523554] [PMID: 22681168]
[35]
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014; 20(7): 1126-67.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[36]
Salim S. Oxidative stress and psychological disorders. Curr Neuropharmacol 2014; 12(2): 140-7.
[http://dx.doi.org/10.2174/1570159X11666131120230309] [PMID: 24669208]
[37]
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J 2016; 15(1): 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[38]
Raison CL, Miller AH. Is depression an inflammatory disorder? Curr Psychiatry Rep 2011; 13(6): 467-75.
[http://dx.doi.org/10.1007/s11920-011-0232-0] [PMID: 21927805]
[39]
Ciranna L. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: Implications in physiological functions and in pathology. Curr Neuropharmacol 2006; 4(2): 101-14.
[http://dx.doi.org/10.2174/157015906776359540] [PMID: 18615128]
[40]
Onodera Y, Teramura T, Takehara T, Shigi K, Fukuda K. Reactive oxygen species induce Cox-2 expression via TAK1 activation in synovial fibroblast cells. FEBS Open Bio 2015; 5(1): 492-501.
[http://dx.doi.org/10.1016/j.fob.2015.06.001] [PMID: 26110105]
[41]
Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011; 108(7): 3047-52.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[42]
Luo Y, Zeng B, Zeng L, et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl Psychiatry 2018; 8(1): 187.
[http://dx.doi.org/10.1038/s41398-018-0240-5] [PMID: 30194287]
[43]
Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558(Pt 1): 263-75.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[44]
Gur TL, Worly BL, Bailey MT. Stress and the commensal microbiota: Importance in parturition and infant neurodevelopment. Front Psychiatry 2015; 6: 5.
[http://dx.doi.org/10.3389/fpsyt.2015.00005] [PMID: 25698977]
[45]
Farzi A, Fröhlich EE, Holzer P. Gut microbiota and the neuroendocrine system. Neurotherapeutics 2018; 15(1): 5-22.
[http://dx.doi.org/10.1007/s13311-017-0600-5] [PMID: 29380303]
[46]
Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 2014; 6(263): 263ra158.
[http://dx.doi.org/10.1126/scitranslmed.3009759] [PMID: 25411471]
[47]
Goyal MS, Venkatesh S, Milbrandt J, Gordon JI, Raichle ME. Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development. Proc Natl Acad Sci USA 2015; 112(46): 14105-12.
[http://dx.doi.org/10.1073/pnas.1511465112] [PMID: 26578751]
[48]
Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011; 60(3): 307-17.
[http://dx.doi.org/10.1136/gut.2009.202515] [PMID: 20966022]
[49]
Rao M, Gershon MD. The bowel and beyond: The enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 2016; 13(9): 517-28.
[http://dx.doi.org/10.1038/nrgastro.2016.107] [PMID: 27435372]
[50]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[51]
Vemuri R, Shankar EM, Chieppa M, Eri R, Kavanagh K. Beyond just bacteria: Functional biomes in the gut ecosystem including virome, mycobiome, archaeome and helminths. Microorganisms 2020; 8(4): 483.
[http://dx.doi.org/10.3390/microorganisms8040483] [PMID: 32231141]
[52]
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334(6052): 105-8.
[http://dx.doi.org/10.1126/science.1208344] [PMID: 21885731]
[53]
Macfarlane GT, Cummings JH. Probiotics and prebiotics: Can regulating the activities of intestinal bacteria benefit health? BMJ 1999; 318(7189): 999-1003.
[http://dx.doi.org/10.1136/bmj.318.7189.999] [PMID: 10195977]
[54]
Liu L, Zhu G. Gut-brain axis and mood disorder. Front Psychiatry 2018; 9: 223.
[http://dx.doi.org/10.3389/fpsyt.2018.00223] [PMID: 29896129]
[55]
Michels N, Van de Wiele T, De Henauw S. Chronic psychosocial stress and gut health in children: Associations with calprotectin and fecal short-chain fatty acids. Psychosom Med 2017; 79(8): 927-35.
[http://dx.doi.org/10.1097/PSY.0000000000000413] [PMID: 27787408]
[56]
Fadgyas-Stanculete M, Buga AM, Popa-Wagner A, Dumitrascu DL. The relationship between irritable bowel syndrome and psychiatric disorders: From molecular changes to clinical manifestations. J Mol Psychiatry 2014; 2(1): 4.
[http://dx.doi.org/10.1186/2049-9256-2-4] [PMID: 25408914]
[57]
Kawoos Y, Wani ZA, Kadla SA, et al. Psychiatric co-morbidity in patients with irritable bowel syndrome at a tertiary care center in northern India. J Neurogastroenterol Motil 2017; 23(4): 555-60.
[http://dx.doi.org/10.5056/jnm16166] [PMID: 28738451]
[58]
Liu S, Guo R, Liu F, Yuan Q, Yu Y, Ren F. Gut microbiota regulates depression-like behavior in rats through the neuroendocrine-immune-mitochondrial pathway. Neuropsychiatr Dis Treat 2020; 16: 859-69.
[http://dx.doi.org/10.2147/NDT.S243551] [PMID: 32280227]
[59]
Kelly JR, Borre Y, O’ Brien C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016; 82: 109-18.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.019] [PMID: 27491067]
[60]
Park AJ, Collins J, Blennerhassett PA, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 2013; 25(9): 733-e575.
[http://dx.doi.org/10.1111/nmo.12153] [PMID: 23773726]
[61]
O’Mahony SM, Marchesi JR, Scully P, et al. Early life stress alters behavior, immunity, and microbiota in rats: Implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009; 65(3): 263-7.
[http://dx.doi.org/10.1016/j.biopsych.2008.06.026] [PMID: 18723164]
[62]
Bharwani A, Mian MF, Surette MG, Bienenstock J, Forsythe P. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Med 2017; 15(1): 7.
[http://dx.doi.org/10.1186/s12916-016-0771-7] [PMID: 28073366]
[63]
Yu M, Jia H, Zhou C, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal 2017; 138: 231-9.
[http://dx.doi.org/10.1016/j.jpba.2017.02.008] [PMID: 28219800]
[64]
Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015; 310: 561-77.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.033] [PMID: 26408987]
[65]
Galland L. The gut microbiome and the brain. J Med Food 2014; 17(12): 1261-72.
[http://dx.doi.org/10.1089/jmf.2014.7000] [PMID: 25402818]
[66]
Pessione E, Cirrincione S. Bioactive molecules released in food by lactic acid bacteria: Encrypted peptides and biogenic amines. Front Microbiol 2016; 7: 876.
[http://dx.doi.org/10.3389/fmicb.2016.00876] [PMID: 27375596]
[67]
Abdellatif B, McVeigh C, Bendriss G, Chaari A. The promising role of probiotics in managing the altered gut in autism spectrum disorders. Int J Mol Sci 2020; 21(11): 4159.
[http://dx.doi.org/10.3390/ijms21114159] [PMID: 32532137]
[68]
Haas-Neill S, Forsythe P. A budding relationship: Bacterial extracellular vesicles in the microbiota-gut-brain axis. Int J Mol Sci 2020; 21(23): 8899.
[http://dx.doi.org/10.3390/ijms21238899] [PMID: 33255332]
[69]
Averina OV, Zorkina YA, Yunes RA, et al. Bacterial metabolites of human gut microbiota correlating with depression. Int J Mol Sci 2020; 21(23): 9234.
[http://dx.doi.org/10.3390/ijms21239234] [PMID: 33287416]
[70]
Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 1996; 62(5): 1589-92.
[http://dx.doi.org/10.1128/aem.62.5.1589-1592.1996] [PMID: 8633856]
[71]
Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009; 294(1): 1-8.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01514.x] [PMID: 19222573]
[72]
Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne) 2020; 11: 25.
[http://dx.doi.org/10.3389/fendo.2020.00025] [PMID: 32082260]
[73]
Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019; 10: 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[74]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[75]
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci 2016; 39(11): 763-81.
[http://dx.doi.org/10.1016/j.tins.2016.09.002] [PMID: 27793434]
[76]
Mayer EA. Gut feelings: The emerging biology of gut-brain communication. Nat Rev Neurosci 2011; 12(8): 453-66.
[http://dx.doi.org/10.1038/nrn3071] [PMID: 21750565]
[77]
Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: What happens in vagus. Neuron 2019; 101(6): 998-1002.
[http://dx.doi.org/10.1016/j.neuron.2019.02.008] [PMID: 30897366]
[78]
O’Reardon JP, Cristancho P, Peshek AD. Vagus nerve stimulation (VNS) and treatment of depression: To the brainstem and beyond. Psychiatry (Edgmont) 2006; 3(5): 54-63.
[PMID: 21103178]
[79]
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry 2018; 9: 44.
[http://dx.doi.org/10.3389/fpsyt.2018.00044] [PMID: 29593576]
[80]
Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci 2018; 12: 49.
[http://dx.doi.org/10.3389/fnins.2018.00049] [PMID: 29467611]
[81]
Lurie I, Yang YX, Haynes K, Mamtani R, Boursi B. Antibiotic exposure and the risk for depression, anxiety, or psychosis: A nested case-control study. J Clin Psychiatry 2015; 76(11): 1522-8.
[http://dx.doi.org/10.4088/JCP.15m09961] [PMID: 26580313]
[82]
Llor C, Bjerrum L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 2014; 5(6): 229-41.
[http://dx.doi.org/10.1177/2042098614554919] [PMID: 25436105]
[83]
Galley JD, Bailey MT. Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes 2014; 5(3): 390-6.
[http://dx.doi.org/10.4161/gmic.28683] [PMID: 24690880]
[84]
Golubeva AV, Crampton S, Desbonnet L, et al. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 2015; 60: 58-74.
[http://dx.doi.org/10.1016/j.psyneuen.2015.06.002] [PMID: 26135201]
[85]
De Palma G, Blennerhassett P, Lu J, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 2015; 6(1): 7735.
[http://dx.doi.org/10.1038/ncomms8735] [PMID: 26218677]
[86]
Moussaoui N, Jacobs JP, Larauche M, et al. Chronic early-life stress in rat pups alters basal corticosterone, intestinal permeability, and fecal microbiota at weaning: Influence of sex. J Neurogastroenterol Motil 2017; 23(1): 135-43.
[http://dx.doi.org/10.5056/jnm16105] [PMID: 27829577]
[87]
Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 2014; 42: 207-17.
[http://dx.doi.org/10.1016/j.psyneuen.2014.01.014] [PMID: 24636517]
[88]
Bharwani A, Mian MF, Foster JA, Surette MG, Bienenstock J, Forsythe P. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology 2016; 63: 217-27.
[http://dx.doi.org/10.1016/j.psyneuen.2015.10.001] [PMID: 26479188]
[89]
Aoki-Yoshida A, Aoki R, Moriya N, et al. Omics studies of the murine intestinal ecosystem exposed to subchronic and mild social defeat stress. J Proteome Res 2016; 15(9): 3126-38.
[http://dx.doi.org/10.1021/acs.jproteome.6b00262] [PMID: 27482843]
[90]
Bercik P, Denou E, Collins J, et al. The intestinal microbiotas affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141: 599-609.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052]
[91]
Madison A, Kiecolt-Glaser JK. Stress, depression, diet, and the gut microbiota: Human-bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci 2019; 28: 105-10.
[http://dx.doi.org/10.1016/j.cobeha.2019.01.011] [PMID: 32395568]
[92]
Khoruts A. Targeting the microbiome: From probiotics to fecal microbiota transplantation. Genome Med 2018; 10(1): 80.
[http://dx.doi.org/10.1186/s13073-018-0592-8] [PMID: 30376869]
[93]
McNutt MD, Liu S, Manatunga A, et al. Neurobehavioral effects of interferon-α in patients with hepatitis-C: Symptom dimensions and responsiveness to paroxetine. Neuropsychopharmacology 2012; 37(6): 1444-54.
[http://dx.doi.org/10.1038/npp.2011.330] [PMID: 22353759]
[94]
Lu Y, Christian K, Lu B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 2008; 89(3): 312-23.
[http://dx.doi.org/10.1016/j.nlm.2007.08.018] [PMID: 17942328]
[95]
Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 2007; 56(11): 1522-8.
[http://dx.doi.org/10.1136/gut.2006.117176] [PMID: 17339238]
[96]
Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108(38): 16050-5.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[97]
Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, et al. Probiotics: Versatile bioactive components in promoting human health. Medicina (Kaunas) 2020; 56(9): 433.
[http://dx.doi.org/10.3390/medicina56090433] [PMID: 32867260]
[98]
Ranuh R, Athiyyah AF, Darma A, et al. Effect of the probiotic Lactobacillus plantarum IS-10506 on BDNF and 5HT stimulation: Role of intestinal microbiota on the gut-brain axis. Iran J Microbiol 2019; 11(2): 145-50.
[http://dx.doi.org/10.18502/ijm.v11i2.1077] [PMID: 31341569]
[99]
Ait-Belgnaoui A, Durand H, Cartier C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 2012; 37(11): 1885-95.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.024] [PMID: 22541937]
[100]
Ait-Belgnaoui A, Colom A, Braniste V, et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil 2014; 26(4): 510-20.
[http://dx.doi.org/10.1111/nmo.12295] [PMID: 24372793]
[101]
Luo J, Wang T, Liang S, Hu X, Li W, Jin F. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Sci China Life Sci 2014; 57(3): 327-35.
[http://dx.doi.org/10.1007/s11427-014-4615-4] [PMID: 24554471]
[102]
Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann Gen Psychiatry 2017; 16(1): 14.
[http://dx.doi.org/10.1186/s12991-017-0138-2] [PMID: 28239408]
[103]
Herman JP, McKlveen JM, Ghosal S, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 2016; 6(2): 603-21.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[104]
Tarr AJ, Galley JD, Fisher SE, Chichlowski M, Berg BM, Bailey MT. The prebiotics 3‘sialyllactose and 6’sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut-brain axis. Brain Behav Immun 2015; 50: 166-77.
[http://dx.doi.org/10.1016/j.bbi.2015.06.025] [PMID: 26144888]
[105]
Cerdó T, Ruíz A, Suárez A, Campoy C. Probiotic, prebiotic, and brain development. Nutrients 2017; 9(11): 1247.
[http://dx.doi.org/10.3390/nu9111247] [PMID: 29135961]
[106]
Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. J Neuroinflammation 2019; 16(1): 53.
[http://dx.doi.org/10.1186/s12974-019-1434-3] [PMID: 30823925]
[107]
Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health Nutrients 2017; 9(9): 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[108]
Davani-Davari D, Negahdaripour M, Karimzadeh I, et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019; 8(3): 92.
[http://dx.doi.org/10.3390/foods8030092] [PMID: 30857316]
[109]
Louis P, Flint HJ, Michel C. How to manipulate the microbiota: Prebiotics. Adv Exp Med Biol 2016; 902: 119-42.
[http://dx.doi.org/10.1007/978-3-319-31248-4_9] [PMID: 27161355]
[110]
Chudzik A. Orzyłowska A, Rola R, Stanisz GJ. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: Modulation of the brain-gut-microbiome axis. Biomolecules 2021; 11(7): 1000.
[http://dx.doi.org/10.3390/biom11071000] [PMID: 34356624]
[111]
Savignac HM, Couch Y, Stratford M, et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav Immun 2016; 52: 120-31.
[http://dx.doi.org/10.1016/j.bbi.2015.10.007] [PMID: 26476141]
[112]
Lyte M, Chapel A, Lyte JM, et al. Resistant starch alters the microbiota-gut brain axis: Implications for dietary modulation of behavior. PLoS One 2016; 11(1): e0146406.
[http://dx.doi.org/10.1371/journal.pone.0146406] [PMID: 26745269]
[113]
Hu H, Zhang S, Liu F, Zhang P, Muhammad Z, Pan S. Role of the gut microbiota and their metabolites in modulating the cholesterol-lowering effects of citrus pectin oligosaccharides in C57BL/6 Mice. J Agric Food Chem 2019; 67(43): 11922-30.
[http://dx.doi.org/10.1021/acs.jafc.9b03731] [PMID: 31576748]
[114]
Kawabata K, Yoshioka Y, Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019; 24(2): 370.
[http://dx.doi.org/10.3390/molecules24020370] [PMID: 30669635]
[115]
Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci 2015; 16(4): 7493-519.
[http://dx.doi.org/10.3390/ijms16047493] [PMID: 25849657]
[116]
Rao TS, Asha MR, Ramesh BN, Rao KS. Understanding nutrition, depression and mental illnesses. Indian J Psychiatry 2008; 50(2): 77-82.
[http://dx.doi.org/10.4103/0019-5545.42391] [PMID: 19742217]
[117]
Romagnolo DF, Selmin OI. Mediterranean diet and prevention of chronic diseases. Nutr Today 2017; 52(5): 208-22.
[http://dx.doi.org/10.1097/NT.0000000000000228] [PMID: 29051674]
[118]
Georgousopoulou EN, Kastorini CM, Milionis HJ, et al. Association between mediterranean diet and non-fatal cardiovascular events, in the context of anxiety and depression disorders: A case/case-control study. Hellenic J Cardiol 2014; 55(1): 24-31.
[PMID: 24491932]
[119]
Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front Pharmacol 2018; 9(9): 1162.
[http://dx.doi.org/10.3389/fphar.2018.01162] [PMID: 30405405]
[120]
Limbana T, Khan F, Eskander N. Gut microbiome and depression: How microbes affect the way we think. Cureus 2020; 12(8): e9966.
[http://dx.doi.org/10.7759/cureus.9966] [PMID: 32983670]
[121]
Nagpal R, Shively CA, Register TC, Craft S, Yadav H. Gut microbiome-mediterranean diet interactions in improving host health. F1000 Res 2019; 8: 699.
[http://dx.doi.org/10.12688/f1000research.18992.1] [PMID: 32704349]
[122]
Ketogenic Diets Alter Gut Microbiome in Humans, Mice.. Available from: https://www.ucsf.edu/news/2020/05/417466/ketogenic-diets-alter-gut-microbiome-humans-mice
[123]
Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Ketogenic diet and microbiota: Friends or enemies? Genes (Basel) 2019; 10(7): 534.
[http://dx.doi.org/10.3390/genes10070534] [PMID: 31311141]
[124]
Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: Profound implications for diet and disease. Nutrients 2019; 11(7): 1613.
[http://dx.doi.org/10.3390/nu11071613] [PMID: 31315227]
[125]
Wilson BC, Vatanen T, Cutfield WS, O’Sullivan JM. The super-donor phenomenon in fecal microbiota transplantation. Front Cell Infect Microbiol 2019; 9: 2.
[http://dx.doi.org/10.3389/fcimb.2019.00002] [PMID: 30719428]
[126]
Saidel-Odes L, Borer A, Odes S. Clostridium difficile infection in patients with inflammatory bowel disease. Ann Gastroenterol 2011; 24(4): 263-70.
[PMID: 24713726]
[127]
Ait Chait Y, Mottawea W, Tompkins TA, Hammami R. Unravelling the antimicrobial action of antidepressants on gut commensal microbes. Sci Rep 2020; 10(1): 17878.
[http://dx.doi.org/10.1038/s41598-020-74934-9] [PMID: 33087796]
[128]
Ayaz M, Subhan F, Ahmed J, et al. Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J Biol Res (Thessalon) 2015; 22(1): 4.
[http://dx.doi.org/10.1186/s40709-015-0028-1] [PMID: 26029671]
[129]
Borah A, Singha B, Phukan S. Antidepressant effect of ceftriaxone in forced swimming test and in tail suspension test in mice. Int J Pharm Pharm Sci 2016; 8(11): 191-4.
[http://dx.doi.org/10.22159/ijpps.2016v8i11.14466]
[130]
Mahesh R, Jindal A, Gautam B, Bhatt S, Pandey D. Evaluation of anti-depressant-like activity of linezolid, an oxazolidinone class derivative - an investigation using behavioral tests battery of depression. Biochem Biophys Res Commun 2011; 409(4): 723-6.
[http://dx.doi.org/10.1016/j.bbrc.2011.05.075] [PMID: 21624345]
[131]
Ahmed S, Busetti A, Fotiadou P, et al. In vitro characterization of gut microbiota-derived bacterial strains with neuroprotective properties. Front Cell Neurosci 2019; 13: 402.
[http://dx.doi.org/10.3389/fncel.2019.00402] [PMID: 31619962]
[132]
Lukić I, Getselter D, Ziv O, et al. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl Psychiatry 2019; 9(1): 133.
[http://dx.doi.org/10.1038/s41398-019-0466-x] [PMID: 30967529]
[133]
Schnorr SL, Bachner HA. Integrative therapies in anxiety treatment with special emphasis on the gut microbiome. Yale J Biol Med 2016; 89(3): 397-422.
[PMID: 27698624]
[134]
Savignac HM, Corona G, Mills H, et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int 2013; 63(8): 756-64.
[http://dx.doi.org/10.1016/j.neuint.2013.10.006] [PMID: 24140431]
[135]
Bambling M, Edwards SC, Hall S, Vitetta L. A combination of probiotics and magnesium orotate attenuate depression in a small SSRI resistant cohort: An intestinal anti-inflammatory response is suggested. Inflammopharmacology 2017; 25(2): 271-4.
[http://dx.doi.org/10.1007/s10787-017-0311-x] [PMID: 28155119]
[136]
Rutsch A, Kantsjö JB, Ronchi F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 2020; 11: 604179.
[http://dx.doi.org/10.3389/fimmu.2020.604179] [PMID: 33362788]
[137]
Bastiaanssen TFS, Cowan CSM, Claesson MJ, Dinan TG, Cryan JF. Making sense of the microbiome in psychiatry. Int J Neuropsychopharmacol 2019; 22(1): 37-52.
[http://dx.doi.org/10.1093/ijnp/pyy067] [PMID: 30099552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy