Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Advancement and Applications of Platelet-inspired Nanoparticles: A Paradigm for Cancer Targeting

Author(s): Debashish Ghose, Suryakanta Swain*, Chinam Niranjan Patra, Bikash Ranjan Jena and Muddana Eswara Bhanoji Rao

Volume 24, Issue 2, 2023

Published on: 06 July, 2022

Page: [213 - 237] Pages: 25

DOI: 10.2174/1389201023666220329111920

Price: $65

Open Access Journals Promotions 2
Abstract

Platelet-inspired nanoparticles have ignited the possibility of new opportunities for producing similar biological particulates, such as structural cellular and vesicular components, as well as various viral forms, to improve biocompatible features that could improve the nature of biocompatible elements and enhance therapeutic efficacy. The simplicity and more effortless adaptability of such biomimetic techniques uplift the delivery of the carriers laden with cellular structures, which has created varied opportunities and scope of merits like; prolongation in circulation and alleviating immunogenicity improvement of the site-specific active targeting. Platelet-inspired nanoparticles or medicines are the most recent nanotechnology-based drug targeting systems used mainly to treat blood-related disorders, tumors, and cancer. The present review encompasses the current approach of platelet-inspired nanoparticles or medicines that have boosted the scientific community from versatile fields to advance biomedical sciences. Surprisingly, this knowledge has streamlined to development of newer diagnostic methods, imaging techniques, and novel nanocarriers, which might further help in the treatment protocol of the various diseased conditions. The review primarily focuses on the novel advancements and recent patents in nanoscience and nanomedicine that could be streamlined in the future for the management of progressive cancers and tumor targeting. Rigorous technological advancements like biomimetic stem cells, pH-sensitive drug delivery of nanoparticles, DNA origami devices, virosomes, nano cells like exosomes mimicking nanovesicles, DNA nanorobots, microbots, etc., can be implemented effectively for target-specific drug delivery.

Keywords: Artificial blood components, hemoglobin-based oxygen-carrier systems, tumor therapy, thrombocytosis, CLEC-2 inhibitors, adenosine diphosphate receptors.

Graphical Abstract
[1]
Kwon, E.J.; Lo, J.H.; Bhatia, S.N. Smart nanosystems: Ioinspired technologies that interact with the host environment. Proc. Natl. Acad. Sci., 2015, 112, 14460-14466.
[http://dx.doi.org/10.1073/pnas.1508522112]
[2]
Yoo, J.W.; Irvine, D.J.; Discher, D.E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov., 2011, 10(7), 521-535.
[http://dx.doi.org/10.1038/nrd3499] [PMID: 21720407]
[3]
Dehaini, D.; Fang, R.H.; Zhang, L. Biomimetic strategies for targeted nanoparticle delivery. Bioeng. Transl. Med., 2016, 1(1), 30-46.
[http://dx.doi.org/10.1002/btm2.10004] [PMID: 29313005]
[4]
Deutsch, V.R.; Tomer, A. Megakaryocyte development and platelet production. Br. J. Haematol., 2006, 134(5), 453-466.
[http://dx.doi.org/10.1111/j.1365-2141.2006.06215.x] [PMID: 16856888]
[5]
Smyth, S.S.; McEver, R.P.; Weyrich, A.S.; Morrell, C.N.; Hoffman, M.R.; Arepally, G.M.; French, P.A.; Dauerman, H.L.; Becker, R.C. Platelet functions beyond hemostasis. J. Thromb. Haemost., 2009, 7(11), 1759-1766.
[http://dx.doi.org/10.1111/j.1538-7836.2009.03586.x] [PMID: 19691483]
[6]
Ruggeri, Z.M. Platelet adhesion under flow. Microcirculation, 2009, 16(1), 58-83.
[http://dx.doi.org/10.1080/10739680802651477] [PMID: 19191170]
[7]
Kuwahara, M.; Sugimoto, M.; Tsuji, S.; Matsui, H.; Mizuno, T.; Miyata, S.; Yoshioka, A. Platelet shape changes and adhesion under high shear flow. Arterioscler. Thromb. Vasc. Biol., 2002, 22(2), 329-334.
[http://dx.doi.org/10.1161/hq0202.104122] [PMID: 11834537]
[8]
Ruggeri, Z.M.; Mendolicchio, G.L. Adhesion mechanisms in platelet function. Circ. Res., 2007, 100(12), 1673-1685.
[http://dx.doi.org/10.1161/01.RES.0000267878.97021.ab]
[9]
Ware, J.; Suva, L.J. Platelets to hemostasis and beyond. Blood, 2011, 117(14), 3703-3704.
[http://dx.doi.org/10.1182/blood-2011-02-332593] [PMID: 21474678]
[10]
Modery-Pawlowski, C.L.; Tian, L.L.; Pan, V.; McCrae, K.R.; Mitragotri, S.; Sen Gupta, A. Approaches to synthetic platelet analogs. Biomaterials, 2013, 34(2), 526-541.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.074] [PMID: 23092864]
[11]
Anselmo, A.C.; Modery-Pawlowski, C.L.; Menegatti, S.; Kumar, S.; Vogus, D.R.; Tian, L.L.; Chen, M.; Squires, T.M.; Sen Gupta, A.; Mitragotri, S. Platelet-like nanoparticles: Mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano, 2014, 8(11), 11243-11253.
[http://dx.doi.org/10.1021/nn503732m] [PMID: 25318048]
[12]
Hu, C.M.; Fang, R.H.; Wang, K.C.; Luk, B.T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C.H.; Kroll, A.V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S.H.; Zhu, J.; Shi, W.; Hofman, F.M.; Chen, T.C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571), 118-121.
[http://dx.doi.org/10.1038/nature15373] [PMID: 26374997]
[13]
Nishiya, T.; Kainoh, M.; Murata, M.; Handa, M.; Ikeda, Y. Reconstitution of adhesive properties of human platelets in liposomes carrying both recombinant glycoproteins Ia/IIa and Ib alpha under flow conditions: Specific synergy of receptor-ligand interactions. Blood, 2002, 100(1), 136-142.
[http://dx.doi.org/10.1182/blood.V100.1.136] [PMID: 12070018]
[14]
Merkel, T.J.; Jones, S.W.; Herlihy, K.P.; Kersey, F.R.; Shields, A.R.; Napier, M.; Luft, J.C.; Wu, H.; Zamboni, W.C.; Wang, A.Z.; Bear, J.E.; DeSimone, J.M. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc. Natl. Acad. Sci. USA, 2011, 108(2), 586-591.
[http://dx.doi.org/10.1073/pnas.1010013108] [PMID: 21220299]
[15]
Doshi, N.; Orje, J.N.; Molins, B.; Smith, J.W.; Mitragotri, S.; Ruggeri, Z.M. Platelet mimetic particles for targeting thrombi in flowing blood. Adv. Mater., 2012, 24(28), 3864-3869.
[http://dx.doi.org/10.1002/adma.201200607] [PMID: 22641451]
[16]
Rybak, M.E.; Renzulli, L.A. A liposome based platelet substitute, the plateletsome, with hemostatic efficacy. Biomater. Artif. Cells Immobilization Biotechnol., 1993, 21(2), 101-118.
[http://dx.doi.org/10.3109/10731199309117350] [PMID: 8318606]
[17]
Hsu, B.B.; Conway, W.; Tschabrunn, C.M.; Mehta, M.; Perez-Cuevas, M.B.; Zhang, S.; Hammond, P.T. Clotting mimicry from robust hemostatic bandages based on self-assembling peptides. ACS Nano, 2015, 9(9), 9394-9406.
[http://dx.doi.org/10.1021/acsnano.5b02374]
[18]
Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourguignon, L.; Ducher, M.; Maire, P. The Hill equation: A review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol., 2008, 22(6), 633-648.
[http://dx.doi.org/10.1111/j.1472-8206.2008.00633.x] [PMID: 19049668]
[19]
Umbreit, J. Methemoglobin it’s not just blue: A concise review. Am. J. Hematol., 2007, 82(2), 134-144.
[http://dx.doi.org/10.1002/ajh.20738] [PMID: 16986127]
[20]
Squires, J.E. Artificial blood. Science, 2002, 295(5557), 1002-1005.
[http://dx.doi.org/10.1126/science.1068443] [PMID: 11834811]
[21]
Dorman, S.C.; Kenny, C.F.; Miller, L.; Hirsch, R.E.; Harrington, J.P. Role of redox potential of hemoglobin-based oxygen carriers on methemoglobin reduction by plasma components. Artif. Cells Blood Substit. Immobil. Biotechnol., 2002, 30(1), 39-51.
[http://dx.doi.org/10.1081/BIO-120002726] [PMID: 12000225]
[22]
Mohanty, D. Current concepts in platelet transfusion. Asian J. Transfus. Sci., 2009, 3(1), 18-21.
[http://dx.doi.org/10.4103/0973-6247.45257] [PMID: 20041092]
[23]
Stowell, C.P.; Levin, J.; Spiess, B.D.; Winslow, R.M. Progress in the development of RBC substitutes. Transfusion, 2001, 41(2), 287-299.
[http://dx.doi.org/10.1046/j.1537-2995.2001.41020287.x] [PMID: 11239237]
[24]
Winslow, R.M. Red cell substitutes. Semin. Hematol., 2007, 44(1), 51-59.
[http://dx.doi.org/10.1053/j.seminhematol.2006.09.013] [PMID: 17198847]
[25]
Chang, T.M.S. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond. Artif. Cells Blood Substit. Immobil. Biotechnol., 2012, 40(3), 197-199.
[http://dx.doi.org/10.3109/10731199.2012.662408] [PMID: 22409281]
[26]
Piras, A.M.; Dessy, A.; Chiellini, F.; Chiellini, E.; Farina, C.; Ramelli, M.; Della Valle, E. Polymeric nanoparticles for hemoglobin-based oxygen carriers. Biochim. Biophys. Acta, 2008, 1784(10), 1454-1461.
[http://dx.doi.org/10.1016/j.bbapap.2008.03.013] [PMID: 18452723]
[27]
Freitas, R.A., Jr Exploratory design in medical nanotechnology: A mechanical artificial red cell. Artif. Cells Blood Substit. Immobil. Biotechnol., 1998, 26(4), 411-430.
[http://dx.doi.org/10.3109/10731199809117682] [PMID: 9663339]
[28]
Krafft, M.P.; Riess, J.G. Perfluorocarbons: Life sciences and biomedical uses. J. Polym. Sci. A Polym. Chem., 2007, 45, 1185-1198.
[http://dx.doi.org/10.1002/pola.21937]
[29]
Riess, J.G.; Krafft, M.P. Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery. Biomaterials, 1998, 19(16), 1529-1539.
[http://dx.doi.org/10.1016/S0142-9612(98)00071-4] [PMID: 9794531]
[30]
Schutt, E.G.; Klein, D.H.; Mattrey, R.M.; Riess, J.G. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: The key role of perfluorochemicals. Angew. Chem. Int. Ed., 2003, 42(28), 3218-3235.
[http://dx.doi.org/10.1002/anie.200200550] [PMID: 12876730]
[31]
Cosgrove, D. Ultrasound contrast agents: An overview. Eur. J. Radiol., 2006, 60(3), 324-330.
[http://dx.doi.org/10.1016/j.ejrad.2006.06.022] [PMID: 16938418]
[32]
Freire, M.G.; Gomes, L.; Santos, L.M.; Marrucho, I.M.; Coutinho, J.A. Water solubility in linear fluoroalkanes used in blood substitute formulations. J. Phys. Chem. B, 2006, 110(45), 22923-22929.
[http://dx.doi.org/10.1021/jp0622942] [PMID: 17092045]
[33]
Nandi, S.; Brown, A.C. Platelet-mimetic strategies for modulating the wound environment and inflammatory responses. Exp. Biol. Med. (Maywood), 2016, 241(10), 1138-1148.
[http://dx.doi.org/10.1177/1535370216647126] [PMID: 27190260]
[34]
Rendu, F.; Brohard-Bohn, B. The platelet release reaction: Granules’ constituents, secretion and functions. Platelets, 2001, 12(5), 261-273.
[http://dx.doi.org/10.1080/09537100120068170] [PMID: 11487378]
[35]
Modery, C.L.; Ravikumar, M.; Wong, T.L.; Dzuricky, M.J.; Durongkaveroj, N.; Sen Gupta, A. Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery. Biomaterials, 2011, 32(35), 9504-9514.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.067] [PMID: 21906806]
[36]
Modery-Pawlowski, C.L.; Kuo, H.H.; Baldwin, W.M.; Sen Gupta, A. A platelet-inspired paradigm for nanomedicine targeted to multiple diseases. Nanomedicine (Lond.), 2013, 8(10), 1709-1727.
[http://dx.doi.org/10.2217/nnm.13.113] [PMID: 24074391]
[37]
Harrison, P. Platelet function analysis. Blood Rev., 2005, 19(2), 111-123.
[http://dx.doi.org/10.1016/j.blre.2004.05.002] [PMID: 15603914]
[38]
Mallett, S.V.; Cox, D.J. Thrombelastography. Br. J. Anaesth., 1992, 69(3), 307-313.
[http://dx.doi.org/10.1093/bja/69.3.307] [PMID: 1389849]
[39]
Davie, E.W.; Fujikawa, K.; Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry, 1991, 30(43), 10363-10370.
[http://dx.doi.org/10.1021/bi00107a001] [PMID: 1931959]
[40]
Badimon, L.; Padró, T.; Vilahur, G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Heart J. Acute Cardiovasc. Care, 2012, 1(1), 60-74.
[http://dx.doi.org/10.1177/2048872612441582] [PMID: 24062891]
[41]
Fitzgerald, J.R.; Foster, T.J.; Cox, D. The interaction of bacterial pathogens with platelets. Nat. Rev. Microbiol., 2006, 4(6), 445-457.
[http://dx.doi.org/10.1038/nrmicro1425] [PMID: 16710325]
[42]
Hu, C.M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA, 2011, 108(27), 10980-10985.
[http://dx.doi.org/10.1073/pnas.1106634108] [PMID: 21690347]
[43]
Hu, C.M.; Fang, R.H.; Copp, J.; Luk, B.T.; Zhang, L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol., 2013, 8(5), 336-340.
[http://dx.doi.org/10.1038/nnano.2013.54] [PMID: 23584215]
[44]
Hu, C.M.; Fang, R.H.; Luk, B.T.; Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol., 2013, 8(12), 933-938.
[http://dx.doi.org/10.1038/nnano.2013.254] [PMID: 24292514]
[45]
Pelaz, B.; Charron, G.; Pfeiffer, C.; Zhao, Y.; de la Fuente, J.M.; Liang, X.J.; Parak, W.J.; Del Pino, P. Interfacing engineered nanoparticles with biological systems: Anticipating adverse nano-bio interactions. Small, 2013, 9(9-10), 1573-1584.
[http://dx.doi.org/10.1002/smll.201201229] [PMID: 23112130]
[46]
Li, J.; Ai, Y.; Wang, L.; Bu, P.; Sharkey, C.C.; Wu, Q.; Wun, B.; Roy, S.; Shen, X.; King, M.R. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials, 2016, 76, 52-65.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.046] [PMID: 26519648]
[47]
Kanikarla-Marie, P.; Lam, M.; Menter, D.G.; Kopetz, S. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev., 2017, 36(2), 235-248.
[http://dx.doi.org/10.1007/s10555-017-9681-1] [PMID: 28667367]
[48]
Yang, J.; Wang, S.; Liu, P.; Dai, L.; Chen, B.; Luan, J.; Zhou, J. Platelet-inspired medicine for tumor therapy. Oncotarget, 2017, 8(70), 115748-115753.
[http://dx.doi.org/10.18632/oncotarget.22853] [PMID: 29383198]
[49]
Price, J.E.; Zhang, R.D. Studies of human breast cancer metastasis using nude mice. Cancer Metastasis Rev., 1990, 8(4), 285-297.
[http://dx.doi.org/10.1007/BF00052605] [PMID: 2182209]
[50]
Doré, J.F.; Bailly, M.; Bertrand, S. Metastases of human tumors in experimental animals. Anticancer Res., 1987, 7(5B), 997-1003.
[PMID: 3324940]
[51]
Dai, L.; Gu, N.; Chen, B.A.; Marriott, G. Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants. Oncotarget, 2016, 7(16), 21076-21090.
[http://dx.doi.org/10.18632/oncotarget.8517] [PMID: 27049725]
[52]
Xu, P.; Zuo, H.; Chen, B.; Wang, R.; Ahmed, A.; Hu, Y.; Ouyang, J. Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma. Sci. Rep., 2017, 15(7), 42632.
[http://dx.doi.org/10.1038/srep42632]
[53]
Rao, L.; Bu, L.L.; Ma, L.; Wang, W.; Liu, H.; Wan, D.; Liu, J.F.; Li, A.; Guo, S.S.; Zhang, L.; Zhang, W.F.; Zhao, X.Z.; Sun, Z.J.; Liu, W. Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem. Int. Ed. Engl., 2017, (10)
[http://dx.doi.org/10.1002/anie.201709457] [PMID: 29193651]
[54]
Pantel, K.; Brakenhoff, R.H. Dissecting the metastatic cascade. Nat. Rev. Cancer, 2004, 4(6), 448-456.
[http://dx.doi.org/10.1038/nrc1370] [PMID: 15170447]
[55]
Jurasz, P.; Alonso-Escolano, D.; Radomski, M.W. Platelet--cancer interactions: Mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br. J. Pharmacol., 2004, 143(7), 819-826.
[http://dx.doi.org/10.1038/sj.bjp.0706013] [PMID: 15492016]
[56]
Bambace, N.M.; Holmes, C.E. The platelet contribution to cancer progression. J. Thromb. Haemost., 2011, 9(2), 237-249.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04131.x] [PMID: 21040448]
[57]
Konstantopoulos, K.; Thomas, S.N. Cancer cells in transit: The vascular interactions of tumor cells. Annu. Rev. Biomed. Eng., 2009, 11, 177-202.
[http://dx.doi.org/10.1146/annurev-bioeng-061008-124949] [PMID: 19413512]
[58]
Varki, A. Trousseau’s syndrome: Multiple definitions and multiple mechanisms. Blood, 2007, 110(6), 1723-1729.
[http://dx.doi.org/10.1182/blood-2006-10-053736] [PMID: 17496204]
[59]
Billroth, T. Lectures on Surgical Pathology and Therapeutics: A Handbook for Students and Practictioners, 8th ed; Palala Press, 2018.
[60]
Gasic, G.J.; Gasic, T.B.; Stewart, C.C. Antimetastatic effects associated with platelet reduction. Proc. Natl. Acad. Sci. USA, 1968, 61(1), 46-52.
[http://dx.doi.org/10.1073/pnas.61.1.46] [PMID: 5246932]
[61]
Pinedo, H.M.; Verheul, H.M.; D’Amato, R.J.; Folkman, J. Involvement of platelets in tumour angiogenesis? Lancet, 1998, 352(9142), 1775-1777.
[http://dx.doi.org/10.1016/S0140-6736(98)05095-8] [PMID: 9848370]
[62]
Gay, L.J.; Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer, 2011, 11(2), 123-134.
[http://dx.doi.org/10.1038/nrc3004] [PMID: 21258396]
[63]
Modery-Pawlowski, C.L.; Master, A.M.; Pan, V.; Howard, G.P.; Sen Gupta, A. A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms. Biomacromolecules, 2013, 14(3), 910-919.
[http://dx.doi.org/10.1021/bm301996p] [PMID: 23360320]
[64]
Labelle, M.; Begum, S.; Hynes, R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 2011, 20(5), 576-590.
[http://dx.doi.org/10.1016/j.ccr.2011.09.009] [PMID: 22094253]
[65]
Deryugina, E.I.; Quigley, J.P. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev., 2006, 25(1), 9-34.
[http://dx.doi.org/10.1007/s10555-006-7886-9] [PMID: 16680569]
[66]
Palumbo, J.S.; Talmage, K.E.; Massari, J.V.; La Jeunesse, C.M.; Flick, M.J.; Kombrinck, K.W.; Jirousková, M.; Degen, J.L. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 2005, 105(1), 178-185.
[http://dx.doi.org/10.1182/blood-2004-06-2272] [PMID: 15367435]
[67]
Wirtz, D.; Konstantopoulos, K.; Searson, P.C. The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer, 2011, 11(7), 512-522.
[http://dx.doi.org/10.1038/nrc3080] [PMID: 21701513]
[68]
Tranum, B.L.; Haut, A. Thrombocytosis: Platelet kinetics in neoplasia. J. Lab. and Clin. Med., 1974, 84(5), 615-619.
[69]
Sharma, D.; Brummel-Ziedins, K.E.; Bouchard, B.A.; Holmes, C.E. Platelets in tumor progression: A host factor that offers multiple potential targets in the treatment of cancer. J. Cell. Physiol., 2014, 229(8), 1005-1015.
[http://dx.doi.org/10.1002/jcp.24539] [PMID: 24374897]
[70]
Li, R.; Ren, M.; Chen, N.; Luo, M.; Deng, X.; Xia, J.; Yu, G.; Liu, J.; He, B.; Zhang, X.; Zhang, Z.; Zhang, X.; Ran, B.; Wu, J. Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer, 2014, 14, 167.
[http://dx.doi.org/10.1186/1471-2407-14-167] [PMID: 24606812]
[71]
Serebruany, V.L.; Tomek, A.; Kim, M.H. Survival after solid cancers in antithrombotic trials. Am. J. Cardiol., 2015, 116(6), 969-972.
[http://dx.doi.org/10.1016/j.amjcard.2015.06.026] [PMID: 26189037]
[72]
Allensworth, S.K.; Langstraat, C.L.; Martin, J.R.; Lemens, M.A.; McGree, M.E.; Weaver, A.L.; Dowdy, S.C.; Podratz, K.C.; Bakkum-Gamez, J.N. Evaluating the prognostic significance of preoperative thrombocytosis in epithelial ovarian cancer. Gynecol. Oncol., 2013, 130(3), 499-504.
[http://dx.doi.org/10.1016/j.ygyno.2013.05.038] [PMID: 23747328]
[73]
Karpatkin, S.; Pearlstein, E.; Salk, P.L.; Yogeeswaran, G. Role of platelets in tumor cell metastases. Ann. N. Y. Acad. Sci., 1981, 370, 101-118.
[http://dx.doi.org/10.1111/j.1749-6632.1981.tb29726.x] [PMID: 6943955]
[74]
Rachidi, S.; Wallace, K.; Day, T.A.; Alberg, A.J.; Li, Z. Lower circulating platelet counts and antiplatelet therapy independently predict better outcomes in patients with head and neck squamous cell carcinoma. J. Hematol. Oncol., 2014, 7(7), 65.
[http://dx.doi.org/10.1186/s13045-014-0065-5] [PMID: 25260646]
[75]
Jacobsen, J.; Grankvist, K.; Rasmuson, T.; Ljungberg, B. Prognostic importance of serum vascular endothelial growth factor in relation to platelet and leukocyte counts in human renal cell carcinoma. Eur. J. Cancer Prev., 2002, 11(3), 245-252.
[http://dx.doi.org/10.1097/00008469-200206000-00008] [PMID: 12131658]
[76]
Steele, M.; Voutsadakis, I.A. Pre-treatment platelet counts as a prognostic and predictive factor in stage II and III rectal adenocarcinoma. World J. Gastrointest. Oncol., 2017, 9(1), 42-49.
[http://dx.doi.org/10.4251/wjgo.v9.i1.42] [PMID: 28144399]
[77]
Mantas, D.; Kostakis, I.D; Machairas, N; Markopoulos, C. White blood cell and platelet indices as prognosticmarkers in patients with invasive ductal breast carcinoma. Onco Lett., 2016, 12(2), 1610-1614.
[http://dx.doi.org/10.3892/ol.2016.4760]
[78]
Shirai, T; Inoue, O; Tamura, S; Tsukiji, N; Sasaki, T; Endo, H C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J. Thromb. Haemost., 2017, 15(3), 513-525.
[http://dx.doi.org/10.1111/jth.13604]
[79]
Kato, Y.; Kaneko, M.K.; Kunita, A.; Ito, H.; Kameyama, A.; Ogasawara, S.; Matsuura, N.; Hasegawa, Y.; Suzuki-Inoue, K.; Inoue, O.; Ozaki, Y.; Narimatsu, H. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci., 2008, 99(1), 54-61.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00634.x] [PMID: 17944973]
[80]
Suzuki-Inoue, K. Essential in vivo roles of the platelet activation receptor CLEC-2 in tumour metastasis, lymphangiogenesis and thrombus formation. J. Biochem., 2011, 150(2), 127-132.
[http://dx.doi.org/10.1093/jb/mvr079] [PMID: 21693546]
[81]
Riedl, J.; Preusser, M.; Nazari, P.M.; Posch, F.; Panzer, S.; Marosi, C.; Birner, P.; Thaler, J.; Brostjan, C.; Lötsch, D.; Berger, W.; Hainfellner, J.A.; Pabinger, I.; Ay, C. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood, 2017, 129(13), 1831-1839.
[http://dx.doi.org/10.1182/blood-2016-06-720714] [PMID: 28073783]
[82]
Wojtukiewicz, M.Z.; Hempel, D.; Sierko, E.; Tucker, S.C.; Honn, K.V. Thrombin-unique coagulation system protein with multifaceted impacts on cancer and metastasis. Cancer Metastasis Rev., 2016, 35(2), 213-233.
[http://dx.doi.org/10.1007/s10555-016-9626-0] [PMID: 27189210]
[83]
Camerer, E.; Qazi, A.A.; Duong, D.N.; Cornelissen, I.; Advincula, R.; Coughlin, S.R. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood, 2004, 104(2), 397-401.
[http://dx.doi.org/10.1182/blood-2004-02-0434] [PMID: 15031212]
[84]
Sadej, R.; Grudowska, A.; Turczyk, L.; Kordek, R.; Romanska, H.M. CD151 in cancer progression and metastasis: A complex scenario. Lab. Inves., 2014, 94(1), 41-51.
[http://dx.doi.org/10.1038/labinvest.2013.136]
[85]
Huang, Z.; Miao, X.; Patarroyo, M.; Nilsson, G.P.; Pernow, J.; Li, N. Tetraspanin CD151 and integrin α6β1 mediate platelet-enhanced endothelial colony forming cell angiogenesis. J. Thromb. Haemost., 2016, 14(3), 606-618.
[http://dx.doi.org/10.1111/jth.13248] [PMID: 26749288]
[86]
Wang, Y.; Sun, Y.; Li, D.; Zhang, L.; Wang, K.; Zuo, Y.; Gartner, T.K.; Liu, J. Platelet P2Y12 is involved in murine pulmonary metastasis. PLoS One, 2013, 8(11), e80780.
[http://dx.doi.org/10.1371/journal.pone.0080780] [PMID: 24236201]
[87]
Bambace, N.M.; Levis, J.E.; Holmes, C.E. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets, 2010, 21(2), 85-93.
[http://dx.doi.org/10.3109/09537100903470298] [PMID: 20063989]
[88]
Schumacher, D.; Strilic, B.; Sivaraj, K.K.; Wettschureck, N.; Offermanns, S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell, 2013, 24(1), 130-137.
[http://dx.doi.org/10.1016/j.ccr.2013.05.008] [PMID: 23810565]
[89]
Guo, F.; Huang, D.; Zhang, W.; Yan, Q.; Yang, Q.; Yang, Y.; Li, H.; Yun, J.; Hong, W.; Yang, G. Star-shaped polyester-based elastomers as an implantable delivery system for insulin: Development, pharmacokinetics, pharmacodynamics, and biocompatibility. Mater. Sci. Eng. C, 2018, 84, 180-187.
[http://dx.doi.org/10.1016/j.msec.2017.11.045] [PMID: 29519427]
[90]
Yepes, M.; Roussel, B.D.; Ali, C.; Vivien, D. Tissue-type plasminogen activator in the ischemic brain: More than a thrombolytic. Trends Neurosci., 2009, 32(1), 48-55.
[http://dx.doi.org/10.1016/j.tins.2008.09.006] [PMID: 18963068]
[91]
Korin, N.; Kanapathipillai, M.; Matthews, B.D.; Crescente, M.; Brill, A.; Mammoto, T.; Ghosh, K.; Jurek, S.; Bencherif, S.A.; Bhatta, D.; Coskun, A.U.; Feldman, C.L.; Wagner, D.D.; Ingber, D.E. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science, 2012, 337(6095), 738-742.
[http://dx.doi.org/10.1126/science.1217815] [PMID: 22767894]
[92]
Hansen, C.E.; Myers, D.R.; Baldwin, W.H.; Sakurai, Y.; Meeks, S.L.; Lyon, L.A.; Lam, W.A. Platelet–microcapsule hybrids leverage contractile force for targeted delivery of hemostatic agents. ACS Nano, 2017, 11(6), 5579-5589.
[http://dx.doi.org/10.1021/acsnano.7b00929] [PMID: 28541681]
[93]
Pawlowski, C.L.; Li, W.; Sun, M.; Ravichandran, K.; Hickman, D.; Kos, C.; Kaur, G.; Sen Gupta, A. Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials, 2017, 128, 94-108.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.012] [PMID: 28314136]
[94]
Juenet, M.; Aid-Launais, R.; Li, B.; Berger, A.; Aerts, J.; Ollivier, V.; Nicoletti, A.; Letourneur, D.; Chauvierre, C. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials, 2018, 156, 204-216.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.047] [PMID: 29216534]
[95]
Murciano, J.C.; Medinilla, S.; Eslin, D.; Atochina, E.; Cines, D.B.; Muzykantov, V.R. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat. Biotechnol., 2003, 21(8), 891-896.
[http://dx.doi.org/10.1038/nbt846] [PMID: 12845330]
[96]
Toso, J.F.; Gill, V.J.; Hwu, P.; Marincola, F.M.; Restifo, N.P.; Schwartzentruber, D.J.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Stock, F.; Freezer, L.J.; Morton, K.E.; Seipp, C.; Haworth, L.; Mavroukakis, S.; White, D.; MacDonald, S.; Mao, J.; Sznol, M.; Rosenberg, S.A. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol., 2002, 20(1), 142-152.
[http://dx.doi.org/10.1200/JCO.2002.20.1.142] [PMID: 11773163]
[97]
Huh, Y.; Lee, E.S.; Lee, J.H.; Jun, Y.W.; Kim, P.H.; Yun, C.O.; Kim, J.H.; Suh, J.S.; Cheon, J. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv. Mater., 2007, 19, 3109-3112.
[http://dx.doi.org/10.1002/adma.200701952]
[98]
Garland, S.M.; Hernandez-Avila, M.; Wheeler, C.M.; Perez, G.; Harper, D.M.; Leodolter, S.; Tang, G.W.; Ferris, D.G.; Steben, M.; Bryan, J.; Taddeo, F.J.; Railkar, R.; Esser, M.T.; Sings, H.L.; Nelson, M.; Boslego, J.; Sattler, C.; Barr, E.; Koutsky, L.A. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med., 2007, 356(19), 1928-1943.
[http://dx.doi.org/10.1056/NEJMoa061760] [PMID: 17494926]
[99]
Wu, W.; Hsiao, S.C.; Carrico, Z.M.; Francis, M.B. Genome-free viral capsids as multivalent carriers for taxol delivery. Angew. Chem. Int. Ed. Engl., 2009, 48(50), 9493-9497.
[http://dx.doi.org/10.1002/anie.200902426] [PMID: 19921725]
[100]
Leroux-Roels, G. Unmet needs in modern vaccinology: Adjuvants to improve the immune response. Vaccine, 2010, 28(Suppl. 3), C25-C36.
[http://dx.doi.org/10.1016/j.vaccine.2010.07.021] [PMID: 20713254]
[101]
Waelti, E.; Wegmann, N.; Schwaninger, R.; Wetterwald, A.; Wingenfeld, C.; Rothen-Rutishauser, B.; Gimmi, C.D. Targeting her-2/neu with antirat Neu virosomes for cancer therapy. Cancer Res., 2002, 62(2), 437-444.
[PMID: 11809693]
[102]
Doshi, N.; Zahr, A.S.; Bhaskar, S.; Lahann, J.; Mitragotri, S. Red blood cell-mimicking synthetic biomaterial particles. Proc. Natl. Acad. Sci. USA, 2009, 106(51), 21495-21499.
[http://dx.doi.org/10.1073/pnas.0907127106] [PMID: 20018694]
[103]
Neubauer, A.M.; Sim, H.; Winter, P.M.; Caruthers, S.D.; Williams, T.A.; Robertson, J.D.; Sept, D.; Lanza, G.M.; Wickline, S.A. Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging. Magn. Reson. Med., 2008, 60(6), 1353-1361.
[http://dx.doi.org/10.1002/mrm.21795] [PMID: 19025903]
[104]
Tsai, R.K.; Discher, D.E. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol., 2008, 180(5), 989-1003.
[http://dx.doi.org/10.1083/jcb.200708043] [PMID: 18332220]
[105]
Braat, H.; Rottiers, P.; Hommes, D.W.; Huyghebaert, N.; Remaut, E.; Remon, J.P.; van Deventer, S.J.; Neirynck, S.; Peppelenbosch, M.P.; Steidler, L. A phase i trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol., 2006, 4(6), 754-759.
[http://dx.doi.org/10.1016/j.cgh.2006.03.028] [PMID: 16716759]
[106]
Price, J.E.; Polyzos, A.; Zhang, R.D.; Daniels, L.M. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res., 1990, 50(3), 717-721.
[PMID: 2297709]
[107]
Zhang, L.; Zhu, D.; Qin, Yu.; Fan, F.; Zhang, Z. Preparation method of nano delivery system of targeted reduction sensitive co-carried chemotherapeutic drug and P-gp drug resistance reversal agent CN108619526B, 2021.
[108]
Cheng, K. Stem cell biomimetic nanoparticle therapeutic agents and uses thereof. WO2019246014A1, 2019.
[109]
Harsha, J.; Lalithasri, R. Wang Exosome mimicking nanovesicles making and biological use. WO2020215024A1, 2020.
[110]
Osama, A.A.; Ahmed, U.A.; Fahmy, N.A.; Hassan, A.S.; Azhar, M.M. Cardio protective nano-pharmaceutical formulation US10653666B1, 2020.
[111]
Linjie, D.; Jiabo, L.; Junru, S.; Tangxuan, W.; Xiaoheng, Z. A method of preparing of PH-sensitive drug delivery nanoparticles. AU2020102467A4, 2020.
[112]
Junyan, C.; Bingjie, L.; Yuxiang, L. Fabrication of a pHresponsive nanoparticle for drug delivery. AU2020100701A4, 2020.
[113]
Makin, Raj I.S. Methods and devices for wound therapy. AU2014260423B2, 2018.
[114]
Ouyang, H.; Hong, Y.; Zhou, F.; Zhang, S. Agent for biological damage repair or hemostasis and the method thereof. US20200206383A, 2020.
[115]
Allain, J.P.; Barnwell, A.; Shetty, A.R.; Fatima, A.; Fernandez, C.; Torres, Y.; Jose, J.P. Nanostructured titanium-based compositions and methods to fabricate the same. US20200149145A1, 2020.
[116]
Ireinski, P. Medelling with the immunosuppressor of synthesis nano-carrier coupling is administered. CN110325203A, 2019.
[117]
Kornman, K.S.; Stamm, L.D.; Duff, G.W. Compositions and methods for treating lung, colorectal and breast cancer. WO2020245402A1, 2020.
[118]
Weiner, D.B.; Puchalt, A.P. Dna monoclonal antibodies targeting pd-1 for the treatment and prevention of cancer. WO2020146865A1, 2020.
[119]
Xuefeng, Z.; Ning, G. Method for improving platelet activation resisting function of polyurethane material. CN111643726A, 2020.
[120]
Friedman, J.; Stanley, S. Ferritin nanoparticle compositions and methods to modulate cell activity. US 10786570B2S, 2020.
[121]
Wang, J.; Pang, Z.; Yuwei, H.; Ruixiang, Li.; Haichun, L. Nano artificial red blood cell and its use in preparing medicine for treating bacterial infection. CN113041224A, 2021.
[122]
Yong, Z. Genetically modified exosomes for immune modulation. WO2020205579A1, 2020.
[123]
Cines, D.B. Glycoprotein IIb/IIIa antagonists: Potential induction and detection of drug-dependent antiplatelet antibodies. Am. Heart J., 1998, 135(5 Pt 2 Su), S152-S159.
[http://dx.doi.org/10.1016/S0002-8703(98)70243-1] [PMID: 9588394]
[124]
Poikonen, E.; Lassila, R.; Roine, R. A patient with immune thrombocytopenia and recurrent severe thrombosis: Resolvement of both after antiplatelet therapy. Thromb. Haemost., 2001, 86(Suppl.), 1349.
[125]
Bednar, B.; Cook, J.J.; Holahan, M.A.; Cunningham, M.E.; Jumes, P.A.; Bednar, R.A.; Hartman, G.D.; Gould, R.J. Fibrinogen receptor antagonist-induced thrombocytopenia in chimpanzee and rhesus monkey associated with preexisting drug-dependent antibodies to platelet glycoprotein IIb/IIIa. Blood, 1999, 94(2), 587-599.
[http://dx.doi.org/10.1182/blood.V94.2.587] [PMID: 10397726]
[126]
Tcheng, J.E.; Ellis, S.G.; George, B.S.; Kereiakes, D.J.; Kleiman, N.S.; Talley, J.D.; Wang, A.L.; Weisman, H.F.; Califf, R.M.; Topol, E.J. Pharmacodynamics of chimeric glycoprotein IIb/IIIa integrin antiplatelet antibody Fab 7E3 in high-risk coronary angioplasty. Circulation, 1994, 90(4), 1757-1764.
[http://dx.doi.org/10.1161/01.CIR.90.4.1757] [PMID: 7923659]
[127]
A comparison of aspirin plus tirofiban with aspirin plus heparin for unstable angina. Platelet receptor inhibition in ischemic syndrome management (PRISM) study investigators. N. Engl. J. Med., 1998, 338, 1498-1505.
[http://dx.doi.org/10.1056/NEJM199805213382103]
[128]
Clancy, R.; Jenkins, E.; Firkin, B. Qualitative platelet abnormalities in idiopathic thrombocytopenic purpura. N. Engl. J. Med., 1972, 286(12), 622-626.
[http://dx.doi.org/10.1056/NEJM197203232861202] [PMID: 5062182]
[129]
Aster, R.H. The immunologic thrombocytopenias. Platelet immunobiology. Molecular and clinical aspects; Kunicki, T.J.; George, J.N., Eds.; Lippincott: Philadelphia, 1989, pp. 387-435.
[130]
Coller, B.S.; Peerschke, E.I.; Scudder, L.E.; Sullivan, C.A. A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J. Clin. Invest., 1983, 72(1), 325-338.325–33.
[http://dx.doi.org/10.1172/JCI110973] [PMID: 6308050]
[131]
Loeb, L.A.; Loeb, K.R.; Anderson, J.P. Multiple mutations and cancer. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 776-781.
[http://dx.doi.org/10.1073/pnas.0334858100] [PMID: 12552134]
[132]
Beatty, G.L.; Gladney, W.L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res., 2015, 21(4), 687-692.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1860] [PMID: 25501578]
[133]
Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; Signori, E.; Honoki, K.; Georgakilas, A.G.; Amin, A.; Helferich, W.G.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Chen, S.; Mohammed, S.I.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Fujii, H.; Aquilano, K.; Ashraf, S.S.; Nowsheen, S.; Yang, X.; Choi, B.K.; Kwon, B.S. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol., 2015, 35(Suppl.), S185-S198.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.004] [PMID: 25818339]
[134]
Hiraki, A.; Fujii, N.; Murakami, T.; Kiura, K.; Aoe, K.; Yamane, H.; Masuda, K.; Maeda, T.; Sugi, K.; Darzynkiewicz, Z.; Tanimoto, M.; Harada, M. High frequency of allele-specific down-regulation of HLA class I expression in lung cancer cell lines. Anticancer Res., 2004, 24(3a), 1525-1528.
[PMID: 15274319]
[135]
Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol., 2015, 15(8), 486-499.
[http://dx.doi.org/10.1038/nri3862] [PMID: 26205583]
[136]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480, 480-489.
[http://dx.doi.org/10.1038/nature10673]
[137]
Doroudchi, M.M.; Greenberg, K.P.; Liu, J.; Silka, K.A.; Boyden, E.S.; Lockridge, J.A.; Arman, A.C.; Janani, R.; Boye, S.E.; Boye, S.L.; Gordon, G.M.; Matteo, B.C.; Sampath, A.P.; Hauswirth, W.W.; Horsager, A. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther., 2011, 19(7), 1220-1229.
[http://dx.doi.org/10.1038/mt.2011.69] [PMID: 21505421]
[138]
Apolonia, L.; Waddington, S.N.; Fernandes, C.; Ward, N.J.; Bouma, G.; Blundell, M.P.; Thrasher, A.J.; Collins, M.K.; Philpott, N.J. Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol. Ther., 2007, 15(11), 1947-1954.
[http://dx.doi.org/10.1038/sj.mt.6300281] [PMID: 17700544]
[139]
Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 2003, 4(5), 346-358.
[http://dx.doi.org/10.1038/nrg1066] [PMID: 12728277]
[140]
Zhang, Y.; Liu, J.Y.; Yang, F.; Zhang, Y.J.; Yao, Q.; Cui, T.Y.; Zhao, X.; Zhang, Z.D. A new strategy for assembling multifunctional nanocomposites with iron oxide and amino-terminated PAMAM dendrimers. J. Mater. Sci. Mater. Med., 2009, 20(12), 2433-2440.
[http://dx.doi.org/10.1007/s10856-009-3808-z] [PMID: 19578982]
[141]
Navarro, G.; Tros de Ilarduya, C. Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomedicine, 2009, 5(3), 287-297.
[http://dx.doi.org/10.1016/j.nano.2008.12.007] [PMID: 19523431]
[142]
De Laporte, L.; Cruz Rea, J.; Shea, L.D. Design of modular non-viral gene therapy vectors. Biomaterials, 2006, 27(7), 947-954.
[http://dx.doi.org/10.1016/j.biomaterials.2005.09.036] [PMID: 16243391]
[143]
Lam, A.P.; Dean, D.A. Progress and prospects: Nuclear import of nonviral vectors. Gene Ther., 2010, 17(4), 439-447.
[http://dx.doi.org/10.1038/gt.2010.31] [PMID: 20200566]
[144]
Kim, S.S.; Garg, H.; Joshi, A.; Manjunath, N. Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol. Med., 2009, 15(11), 491-500.
[http://dx.doi.org/10.1016/j.molmed.2009.09.001] [PMID: 19846342]
[145]
Bergen, J.M.; Park, I.K.; Horner, P.J.; Pun, S.H. Nonviral approaches for neuronal delivery of nucleic acids. Pharm. Res., 2008, 25(5), 983-998.
[http://dx.doi.org/10.1007/s11095-007-9439-5] [PMID: 17932730]
[146]
Ko, T.Y.; Kale, A.; Torchilin, V. Self-assembling micelle-like nanoparticles for systemic gene delivery. US2010/0285111 A1, 2010.
[147]
Luten, J.; Nostrum, C.F.V.; Smedt, S.C.D.; Hennink, W.E. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control. Release, 2008, 126, 97-110.
[http://dx.doi.org/10.1016/j.jconrel.2007.10.028]
[148]
Arscott, P.G.; Li, A.Z.; Bloomfield, V.A. Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers, 1990, 30(5-6), 619-630.
[http://dx.doi.org/10.1002/bip.360300514] [PMID: 2265233]
[149]
Rejman, J.; Oberle, V.; Zuhorn, I.S.; Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J., 2004, 377(Pt 1), 159-169.
[http://dx.doi.org/10.1042/bj20031253] [PMID: 14505488]
[150]
Dai, K.; Wang, Y.; Yan, R.; Shi, Q.; Wang, Z.; Yuan, Y.; Cheng, H.; Li, S.; Fan, Y.; Zhuang, F. Effects of microgravity and hypergravity on platelet functions. Thromb. Haemost., 2009, 101(5), 902-910.
[http://dx.doi.org/10.1160/TH08-11-0750] [PMID: 19404544]
[151]
Hatton, J.P.; Gaubert, F.; Cazenave, J.P.; Schmitt, D. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J. Cell. Biochem., 2002, 87(1), 39-50.
[http://dx.doi.org/10.1002/jcb.10273] [PMID: 12210720]
[152]
Plett, P.A.; Abonour, R.; Frankovitz, S.M.; Orschell, C.M. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Exp. Hematol., 2004, 32(8), 773-781.
[http://dx.doi.org/10.1016/j.exphem.2004.03.014] [PMID: 15308329]
[153]
Cogoli, A.; Tschopp, A.; Fuchs-Bislin, P. Cell sensitivity to gravity. Science, 1984, 225(4658), 228-230.
[http://dx.doi.org/10.1126/science.6729481] [PMID: 6729481]
[154]
Ullrich, O.; Huber, K.; Lang, K. Signal transduction in cells of the immune system in microgravity. Cell Commun. Signal., 2008, 6, 9.
[http://dx.doi.org/10.1186/1478-811X-6-9] [PMID: 18957108]
[155]
Heart Disease Facts. Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/heartdisease/facts.htm Accessed November 2, 2018.
[156]
Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; de Ferranti, S.D.; Ferguson, J.F.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Lutsey, P.L.; Mackey, J.S.; Matchar, D.B.; Matsushita, K.; Mussolino, M.E.; Nasir, K.; O’Flaherty, M.; Palaniappan, L.P.; Pandey, A.; Pandey, D.K.; Reeves, M.J.; Ritchey, M.D.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sampson, U.K.A.; Satou, G.M.; Shah, S.H.; Spartano, N.L.; Tirschwell, D.L.; Tsao, C.W.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics-2018 update: A report from the american heart association. Circulation, 2018, 137(12), e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[157]
Phillips, D.R.; Conley, P.B.; Sinha, U.; Andre, P. Therapeutic approaches in arterial thrombosis. J. Thromb. Haemost., 2005, 3, 1577-1589.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01418.x]
[158]
Gurbel, P.A.; Serebruany, V.L. Oral platelet IIb/IIIa inhibitors: From attractive theory to clinical failures. J. Thromb. Thrombolysis, 2000, 10(3), 217-220.
[http://dx.doi.org/10.1023/A:1026582821645] [PMID: 11122540]
[159]
Marzilli, M. From the experimental myocardial infarction to the clinical acute myocardial infarction: Limitations of thrombolytic therapy. Int. J. Cardiol., 1995, 49(Suppl.), S71-S75.
[http://dx.doi.org/10.1016/0167-5273(95)02341-S]
[160]
Rebeiz, A.G.; Granger, C.B.; Simoons, M.L. Incidence and management of complications of fibrinolytic, antiplatelet, and anticoagulant therapy. Fund. Clin. Cardiol., 2005, 52, 375-395.
[161]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[162]
Berger, H., Jr; Pizzo, S.V. Preparation of polyethylene glycol-tissue plasminogen activator adducts that retain functional activity: Characteristics and behavior in three animal species. Blood, 1988, 71(6), 1641-1647.
[http://dx.doi.org/10.1182/blood.V71.6.1641.1641] [PMID: 3370312]
[163]
Moreadith, R.W.; Collen, D. Clinical development of PEGylated recombinant staphylokinase (PEG-Sak) for bolus thrombolytic treatment of patients with acute myocardial infarction. Adv. Drug Deliv. Rev., 2003, 55(10), 1337-1345.
[164]
Weiss, L. Metastatic inefficiency. Metastatic inefficiency. Adv. Cancer, 1990, 54, 159-211.
[http://dx.doi.org/10.1016/S0065-230X(08)60811-8]
[165]
Luzzi, K.J.; Mac Donald, I.C.; Schmidt, E.E.; Kerkvliet, N.; Morris, VL; Chambers, AF Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol., 1998, 153, 865-73.
[166]
Nieswandt, B.; Hafner, M.; Echtenacher, B.; Männel, D.N. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res., 1999, 59(6), 1295-1300.
[PMID: 10096562]
[167]
Zucchella, M.; Dezza, L.; Pacchiarini, L.; Meloni, F.; Tacconi, F.; Bonomi, E.; Grignani, G.; Notario, A. Human tumor cells cultured “in vitro” activate platelet function by producing ADP or thrombin. Haematologica, 1989, 74(6), 541-545.
[PMID: 2628235]
[168]
Aitokallio-Tallberg, A.; Kärkkäinen, J.; Pantzar, P.; Wahlström, T.; Ylikorkala, O. Prostacyclin and thromboxane in breast cancer: Relationship between steroid receptor status and medroxyprogesterone acetate. Br. J. Cancer, 1985, 51(5), 671-674.
[http://dx.doi.org/10.1038/bjc.1985.101] [PMID: 2986666]
[169]
Ward, Y.; Lake, R.; Faraji, F.; Sperger, J.; Martin, P.; Gilliard, C.; Ku, K.P.; Rodems, T.; Niles, D.; Tillman, H.; Yin, J.; Hunter, K.; Sowalsky, A.G.; Lang, J.; Kelly, K. Platelets promote metastasis via binding tumor CD97 leading to bidirectional signaling that coordinates transendothelial migration. Cell Rep., 2018, 23(3), 808-822.
[http://dx.doi.org/10.1016/j.celrep.2018.03.092] [PMID: 29669286]
[170]
Han, X.; Guo, B.; Li, Y.; Zhu, B. Tissue factor in tumor microenvironment: A systematic review. J. Hematol. Oncol., 2014, 7, 54.
[http://dx.doi.org/10.1186/s13045-014-0054-8] [PMID: 25084809]
[171]
Adams, G.N.; Rosenfeldt, L.; Frederick, M.; Miller, W.; Waltz, D.; Kombrinck, K.; McElhinney, K.E.; Flick, M.J.; Monia, B.P.; Revenko, A.S.; Palumbo, J.S. Colon cancer growth and dissemination relies upon thrombin, stromal PAR1, and fibrinogen. Cancer Res., 2015, 75(19), 4235-4243.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0964] [PMID: 26238780]
[172]
Liu, S.; Xu, X.; Zeng, X.; Li, L.; Chen, Q.; Li, J. Tumor-targeting bacterial therapy: A potential treatment for oral cancer (Review). Oncol. Lett., 2014, 8(6), 2359-2366.
[http://dx.doi.org/10.3892/ol.2014.2525] [PMID: 25364397]
[173]
Akhter, H.; Saigal, N.; Baboota, S.; Faisal, S.; Ali, J. A two pulse drug delivery system for amoxicillin: An attempt to counter the scourge of bacterial resistance against antibiotics. Acta Pharm., 2011, 61(3), 313-322.
[http://dx.doi.org/10.2478/v10007-011-0026-2] [PMID: 21945910]
[174]
Paukner, S.; Stiedl, T.; Kudela, P.; Bizik, J.; Al Laham, F.; Lubitz, W. Bacterial ghosts as a novel advanced targeting system for drug and DNA delivery. Expert Opin. Drug Deliv., 2006, 3(1), 11-22.
[http://dx.doi.org/10.1517/17425247.3.1.11] [PMID: 16370937]
[175]
Dietrich, G. Bioengineering: Bacteria give nanoparticles a ride. Nat. Nanotechnol., 2007, 2(7), 394-395.
[http://dx.doi.org/10.1038/nnano.2007.161] [PMID: 18654320]
[176]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Durfee, P.N.; Buley, M.D.; Lino, C.A.; Padilla, D.P.; Phillips, B.; Carter, M.B.; Willman, C.L.; Brinker, C.J.; Caldeira, Jdo.C.; Chackerian, B.; Wharton, W.; Peabody, D.S. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano, 2011, 5(7), 5729-5745.
[http://dx.doi.org/10.1021/nn201397z] [PMID: 21615170]
[177]
Hynes, R.O.; Bader, B.L.; Hodivala-Dilke, K. Integrins in vascular development. Braz. J. Med. Biol. Res., 1999.
[178]
Hynes, R.O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell, 1992, 69(1), 11-25.
[http://dx.doi.org/10.1016/0092-8674(92)90115-S] [PMID: 1555235]
[179]
van der Flier, A.; Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res., 2001, 305(3), 285-298.
[http://dx.doi.org/10.1007/s004410100417] [PMID: 11572082]
[180]
Clemetson, K.J.; Clemetson, J.M. Integrins and cardiovascular disease. Cell. Mol. Life Sci., 1998, 54(6), 502-513.
[http://dx.doi.org/10.1007/s000180050179] [PMID: 9676570]
[181]
Naito, M.; Hayashi, T.; Funaki, C.; Kuzuya, M.; Asai, K.; Yamada, K.; Kuzuya, F. Vitronectin-induced haptotaxis of vascular smooth muscle cells in vitro. Exp. Cell Res., 1991, 194(1), 154-156.
[http://dx.doi.org/10.1016/0014-4827(91)90145-K] [PMID: 1707822]
[182]
Dufourcq, P.; Couffinhal, T.; Alzieu, P.; Daret, D.; Moreau, C.; Duplaa, C.; Bonnet, J. Vitronectin is up-regulated after vascular injury and vitronectin blockade prevents neointima formation. Cardiovasc, 2002, 53, 952-62.
[http://dx.doi.org/10.1016/S0008-6363(01)00547-8]
[183]
Friedlander, M.; Brooks, P.C.; Shaffer, R.W.; Kincaid, C.M.; Varner, J.A.; Cheresh, D.A. Definition of two angiogenic pathways by distinct alpha v integrins. Science, 1995, 270(5241), 1500-1502.
[http://dx.doi.org/10.1126/science.270.5241.1500] [PMID: 7491498]
[184]
Weerasinghe, D.; McHugh, K.P.; Ross, F.P.; Brown, E.J.; Gisler, R.H.; Imhof, B.A. A role for the alphavbeta3 integrin in the transmigration of monocytes. J. Cell Biol., 1998, 142(2), 595-607.
[http://dx.doi.org/10.1083/jcb.142.2.595] [PMID: 9679155]
[185]
Landers, R.; Mu¨lhaupt, R. Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Acromol. Mater., 2000, 282(1), 17e21.
[186]
Landers, R.; Pfister, A.; Hu¨bner, U.; John, H.; Schmelzeisen, R.; Mu¨lhaupt, R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci., 2002, 37(15), 3107e16.
[187]
Feder-Mengus, C.; Ghosh, S.; Reschner, A.; Martin, I.; Spagnoli, G.C. New dimensions in tumor immunology: What does 3D culture reveal? Tren. Mol. Med., 2008, 14(8), 333e40.
[188]
Xu, F.; Celli, J.; Rizvi, I.; Moon, S.; Hasan, T.; Demirci, U. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J., 6(2), 204e12.
[http://dx.doi.org/10.1002/biot.201000340]
[189]
Snyder, J.E.; Hamid, Q.; Wang, C. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabricat., 2011, 3(3), 034112.
[http://dx.doi.org/10.1088/1758-5082/3/3/034112]
[190]
Chang, R.; Nam, J.; Sun, W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng. Part C Met., 2008, 14(2), 157e66.
[http://dx.doi.org/10.1089/ten.tec.2007.0392]
[191]
Chang, R.; Emami, K.; Wu, H.; Sun, W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2010, 2(4), 045004.
[http://dx.doi.org/10.1088/1758-5082/2/4/045004]
[192]
Kim, J.A.; Kim, H.N.; Im, S.K.; Chung, S.; Kang, J.Y.; Choi, N. Collagen-based brain microvasculature model in vitro using three-dimensional printed template. Biomicrofluidics, 2015, 9(2), 024115.
[http://dx.doi.org/10.1063/1.4917508] [PMID: 25945141]
[193]
Ceylan, H.; Yasa, I.C.; Yasa, O.; Tabak, A.F.; Giltinan, J.; Sitti, M. 3D-Printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano, 2019, 13(3), 3353-3362.
[http://dx.doi.org/10.1021/acsnano.8b09233] [PMID: 30742410]
[194]
Sarkar, N.; Bose, S. Liposome-Encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces, 2019, 11(19), 17184-17192.
[http://dx.doi.org/10.1021/acsami.9b01218] [PMID: 30924639]
[195]
Uddin, M.J.; Scoutaris, N.; Economidou, S.N.; Giraud, C.; Chowdhry, B.Z.; Donnelly, R.F.; Douroumis, D. 3D printed microneedles for anticancer therapy of skin tumours. Mater. Sci. Eng. C, 2020, 107, 110248.
[http://dx.doi.org/10.1016/j.msec.2019.110248] [PMID: 31761175]
[196]
Pere, C.P.P.; Economidou, S.N.; Lall, G.; Ziraud, C.; Boateng, J.S.; Alexander, B.D.; Lamprou, D.A.; Douroumis, D. 3D printed microneedles for insulin skin delivery. Int. J. Pharm., 2018, 544(2), 425-432.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.031] [PMID: 29555437]
[197]
Lu, Y.; Mantha, S.N.; Crowder, D.C.; Chinchilla, S.; Shah, K.N.; Yun, Y.H.; Wicker, R.B.; Choi, J.W. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication, 2015, 7(4), 045001.
[http://dx.doi.org/10.1088/1758-5090/7/4/045001] [PMID: 26418306]
[198]
Horváth, L.; Umehara, Y.; Jud, C.; Blank, F.; Petri-Fink, A.; Rothen-Rutishauser, B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep., 2015, 5, 7974.
[http://dx.doi.org/10.1038/srep07974] [PMID: 25609567]
[199]
Huang, T.Q.; Qu, X.; Liu, J.; Chen, S. 3D printing of biomimetic microstructures for cancer cell migration. Biomed. Microdevices, 2014, 16(1), 127e32.
[http://dx.doi.org/10.1007/s10544-013-9812-6]
[200]
Yoshimoto, T.; Ohwada, K.; Takahashi, K.; Matsushima, A.; Saito, Y.; Inada, Y. Magnetic urokinase: targeting of urokinase to fibrin clot. Biochem. Biophys. Res. Commun., 1988, 152(2), 739-43.
[http://dx.doi.org/10.1016/s0006-291x(88)80100-1] [PMID: 3365251]
[201]
Hribar, K.C.; Finlay, D.; Ma, X. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture. Lab a Chip, 2015, 15(11), 2412e8.
[http://dx.doi.org/10.1039/C5LC00159E]
[202]
Tricomi, B.J.; Dias, A.D.; Corr, D.T. Stem cell bioprinting for applications in regenerative medicine. Ann. N. Y. Acad. Sci., 2016, 1383(1), 115e24.
[http://dx.doi.org/10.1111/nyas.13266]
[203]
Leach, J.K.; O’Rear, E.A.; Patterson, E.; Miao, Y.; Johnson, A.E. Accelerated thrombolysis in a rabbit model of carotid artery thrombosis with liposome-encapsulated and microencapsulated streptokinase. Thromb. Haemost., 2003, 90(1), 64-70.
[http://dx.doi.org/10.1055/s-0037-1613600] [PMID: 12876627]
[204]
Yoshimoto, T.; Ohwada, K.; Takahashi, K.; Matsushima, A.; Saito, Y.; Inada, Y. Magnetic urokinase: Targeting of urokinase to fibrin clot. Biochem. Biophys. Res. Commun., 1988, 152(2), 739-743.
[http://dx.doi.org/10.1016/S0006-291X(88)80100-1] [PMID: 3365251]
[205]
Torchilin, V.P.; Papisov, M.I.; Orekhova, N.M.; Belyaev, A.A.; Petrov, A.D.; Ragimov, S.E. Magnetically driven thrombolytic preparation containing immobilized streptokinase-targeted transport and action. Haemostasis, 1988, 18(2), 113-116.
[PMID: 3410361]
[206]
Orekhova, N.M.; Akchurin, R.S.; Belyaev, A.A.; Smirnov, M.D.; Ragimov, S.E.; Orekhov, A.N. Local prevention of thrombosis in animal arteries by means of magnetic targeting of aspirin-loaded red cells. Thromb. Res., 1990, 57(4), 611-616.
[http://dx.doi.org/10.1016/0049-3848(90)90078-Q] [PMID: 2326776]
[207]
Orekhov, A.N.; Belyaev, A.A.; Orekhova, N.M.; Smirnov, M.D.; Samokhin, G.P.; Ragimov, S.E.; Akchurin, R.S.; Smirnov, V.N. Prevention of experimental carotid artery thrombosis by magnetic vectoring of aspirin. Lancet, 1987, 2(8558), 564-565.
[http://dx.doi.org/10.1016/S0140-6736(87)92945-X] [PMID: 2887851]
[208]
Heddle, N.M.; Klama, L.N.; Griffith, L.; Roberts, R.; Shukla, G.; Kelto, I.C. The role of plasma from platelet concentrates in transfusion reactions. N Engl. Med., 1994, 331, 625-628.
[209]
Lee, D.; Blajchman, M. Novel treatment modalities: New platelet preparations and substitutes. Br. J. Haematol., 2001, 114, 496-505.
[http://dx.doi.org/10.1046/j.1365-2141.2001.03004.x]
[210]
Furie, B.; Cassileth, P. Clinical hematology and oncology: Presentation, diagnosis, and treatment. In: Elsevier Health Sciences, 1st Edition; , 2003; 10, p. 044306556.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy