Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Chemistry of 2-(Pipridin-1-yl) and/ or 2-(Morpholin-1-yl) Quinolines (Part II): Synthesis, Reactivity and Biological Activities

Author(s): Moustafa A. Gouda* and Ghada G. El-Bana

Volume 20, Issue 1, 2023

Published on: 10 June, 2022

Page: [81 - 97] Pages: 17

DOI: 10.2174/1570193X19666220328163450

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Vilsmeier-Haack formylation of N-arylacetamides and used them as a key intermediate for preparation of 2-(piperidin-1-yl) and/ or 2-(morpholin-1-yl) quinoline-3- carbaldehydes. these used as precursors for the synthesis of 2-(piperidin-1-yl) and/ or 2-(morpholin- 1-yl) quinoline derivatives through the reaction with active methyl and/ or methylene component, Claisen-Schmidt condensation, one-pot multicomponent reactions (MCRs), reductive amination, Grignard reaction, etc.

Methods: This review demonstrates the synthesis of 2-chloroquinoline-3-carbaldehyde derivatives, through Vilsmeier-Haack formylation of N-arylacetamides that used as a precursor for preparation of 2-(piperidin-1-yl) and/ or 2-(morpholin-1-yl) quinoline- 3-carbaldehydes and reacted them with various reagents to form the 2-(piperidin-1-yl) and/ or 2-(morpholin-1-yl) quinolines derivatives.

Results: Many 2-(piperidin-1-yl) and/ or 2-(morpholin-1-yl) quinolines derivatives were achived through the reaction with active methyl and/ or methylene component, Claisen-Schmidt condensation, one-pot multicomponent reactions (MCRs), reductive amination, Grignard reaction, etc….

Conclusion: Many quinoline ring systems, specifically concerning medicinal chemistry, had been published over the past decade. During this review, we have outlined the synthetic routes and reactions of 2-(piperidin-1-yl) and/ or 2-(morpholin-1-yl) quinoline-3-carbaldehydes. This review implies a section of the synthesis of 2-(piperidin-1-yl) and/ or 2-(morpholin-1-yl) quinoline-3-carbaldehydes which can be prepared via Vilsmeier formylation of N-arylacetamides followed by heating of the formed aldehydes with piperidine or morpholine and two sections on its reactions with different reagents were presented. Eventually, this review focus upon 2-(piperidin-1-yl) and/ or 2-(morpholin-1- yl) quinoline-3-carbaldehydes as an interesting heterocyclic compound that can be utilized as a precursor and building block for the synthesis of an extended range of heterocyclic systems which have a potent pharmacological interest.

Keywords: 2-chloroquinoline-3-carbaldehyde, 2-(piperidin-1-yl) quinoline, 2-(morpholin-1-yl) quinoline, benzoimidazole, Claisen-Schmidt condensation, Vilsmeier-Haack.

« Previous
Graphical Abstract
[1]
Gelband, H.; Panosian, C.B.; Arrow, K.J. Saving lives, buying time: Economics of malaria drugs in an age of resistance.National Academies Press (US): Washington (DC) , 2004.
[2]
Green, R. A report on fifty cases of malaria treated with atebrin. A new synthetic drug. Lancet, 1932, 219(5668), 826-829.
[http://dx.doi.org/10.1016/S0140-6736(00)56672-0]
[3]
Loeb, F.; Clark, W.M.; Coatney, G.R.; Coggeshall, L.T.; Dieuaide, F.R.; Dochez, A.R.; Carden, G.A. Activity of a new antimalarial agent, chloroquine (SN 7618): Statement approved by the Board for coordination of malarial studies. J. Am. Med. Assoc., 1946, 130(16), 1069-1070.
[http://dx.doi.org/10.1001/jama.1946.02870160015006]
[4]
Trenholme, C.M.; Williams, R.L.; Desjardins, R.E.; Frischer, H.; Carson, P.E.; Rieckmann, K.H.; Canfield, C.J. Mefloquine (WR 142,490) in the treatment of human malaria. Science, 1975, 190(4216), 792-794.
[http://dx.doi.org/10.1126/science.1105787] [PMID: 1105787]
[5]
Kidwai, M.; Sapra, P.; Dave, B. A facile method for nucleophilic aromatic substitution of cyclic amine. Synth. Commun., 2000, 30(24), 4479-4488.
[http://dx.doi.org/10.1080/00397910008087076]
[6]
Bhuyan, P.J.; Devi, I.; Kalita, P.K. Synthesis of novel pyrrolo[1',2':1,6]-, and morpholino[1',2':1,6]tetrahydropyrido[2,3- b]-quinoline. Indian Pat. Appl., 2016.
[7]
Ramesh, V.; Ananda Rao, B.; Sharma, P.; Swarna, B.; Thummuri, D.; Srinivas, K.; Naidu, V.G.; Jayathirtha Rao, V. Synthesis and biological evaluation of new rhodanine analogues bearing 2-chloroquinoline and benzo[h]quinoline scaffolds as anticancer agents. Eur. J. Med. Chem., 2014, 83, 569-580.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.013] [PMID: 24996143]
[8]
Afzal, O.; Bawa, S.; Kumar, S.; Kumar, R.; Quamrul Hassan, M. Design, synthesis and evaluation of novel 2-piperidinyl quinoline chalcones/amines as potential antidepressant agents. Lett. Drug Des. Discov., 2013, 10(1), 75-85.
[http://dx.doi.org/10.2174/157018013804142375]
[9]
Subhash, D.; Bhaskar, K. Design, synthesis, molecular docking, and antimicrobial activity of n-{(e)-[2-(morpholin-4-yl) quinolin-3-yl] methylidene} aniline derivatives. Russ. J. Org. Chem., 2020, 56(3), 498-503.
[http://dx.doi.org/10.1134/S1070428020030203]
[10]
Zhu, J.; Song, Z.; Long, D.; Wang, L.; Wang, J. Aromatic compound, pharmaceutical composition thereof and use thereof. PCT Int. Appl. WO, 2019, WO/2019/105234.
[11]
Sathiyamoorthy, S.; Jemima, D.; Pitchai, P.; Makhanya, T.R.; Gengan, R.M. An expedient synthesis of ethyl 5-acetyl-1,2,4,4a,5,6-hexahydrobenzo[g][1,4]oxazino[4,3-a][1,8] naphthyridine-5-carboxylate from 2-cholro-3-formyl quinolone. Der pharma chem., 2018, 10(11), 20-23.
[12]
Rabong, C.; Hametner, C.; Mereiter, K. Scope and limitations of the T-reaction employing some functionalized CH-acids and naturally occurring secondary amines. Heterocycles, 2008, 75(4), 799-838.
[http://dx.doi.org/10.3987/COM-07-11260]
[13]
Subhashini, N.J.P.; Amanaganti, J.; Boddu, L.; Acharya, N.P. Microwave assisted synthesis and antibacterial studies of (E)-3-(2-Morpholinoquinolin-3-yl)-1-Aryl Prop-2-en-1-Ones. J. Chem. Pharm. Res., 2013, 5, 140-147.
[14]
Chikhalia, K.H.; Patel, M.J.; Vashi, D.B. Design, synthesis and evaluation of novel quinolyl chalcones as antibacterial agents. Arkivoc, 2008, 13, 189-197.
[15]
Makawana, J.A.; Patel, M.P.; Patel, R.G. Synthesis and in vitro antimicrobial activity of N-arylquinoline derivatives bearing 2-morpholinoquinoline moiety. Chin. Chem. Lett., 2012, 23(4), 427-430.
[http://dx.doi.org/10.1016/j.cclet.2012.01.017]
[16]
Makawana, J.A.; Patel, M.P.; Patel, R.G. Synthesis and in vitro antimicrobial activity of new 3-(2- morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives. Chem. Pap., 2011, 65(5), 700-706.
[http://dx.doi.org/10.2478/s11696-011-0048-8]
[17]
Karad, S.C.; Purohit, V.B.; Thakor, P.; Thakkar, V.R.; Raval, D.K. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities. Eur. J. Med. Chem., 2016, 112, 270-279.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.016] [PMID: 26900659]
[18]
Patel, N.J.; Bhatt, B.S.; Patel, M.N.; Heteroleptic, N. N-donor pyrazole based Pt(II) and Pd(II) complexes: DNA binding, molecular docking and cytotoxicity studies. Inorg. Chim. Acta, 2019, 498, 119130.
[http://dx.doi.org/10.1016/j.ica.2019.119130]
[19]
Desai, N.R.; Gurunathan, K.; Suchetan, P.A.; Basappa, A.K.D.; Naveen, S.; Lokanath, N.K.; Sreenivasa, S. Synthesis, crystal structure and molecular docking studies of novel 2-(4-(4-substitutedphenylsulfonyl) piperazin-1-yl) quinolone-3-carbaldehyde derivatives. Res. Chem. Intermed., 2017, 43(11), 6131-6154.
[http://dx.doi.org/10.1007/s11164-017-2981-9]
[20]
Zhao, Y.; Li, M.; Li, B.; Zhang, S.; Su, A.; Xing, Y.; Ge, Z.; Li, R.; Yang, B. Discovery and optimization of thienopyridine derivatives as novel urea transporter inhibitors. Eur. J. Med. Chem., 2019, 172, 131-142.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.060] [PMID: 30959323]
[21]
Srivastava, A.; Chandra, A.; Singh, R.M. Thiophene-fused quinoline analogues: Facile synthesis of 3-amino-2-cyanothieno [2, 3-b] quinolines from 2-chloro-3-cyanoquinolines. ChemInform, 2005, 44(5), 2077-2081.
[http://dx.doi.org/10.1002/chin.200605149]
[22]
Marjani, A.P.; Khalafy, J.; Rostampoor, A. The synthesis of new benzo[h]thieno[2, 3‐b] quinoline‐9‐yl (aryl) methanone derivatives. J. Heterocycl. Chem., 2017, 54(1), 648-652.
[http://dx.doi.org/10.1002/jhet.2637]
[23]
Gouda, M.A. Abu‐Hashem, A.A.M.; Abdelgawad, A.A. Recent progress on the chemistry of thieno[3,2-b] quinoline derivatives (Part III). J. Heterocycl. Chem., 2021, 58(4), 908-927.
[http://dx.doi.org/10.1002/jhet.4205]
[24]
Salem, M.A.; Gouda, M.A.; El-Bana, G.G. Chemistry of 2-(piperazin-1-yl) quinoline-3-carbaldehydes. Mini Rev. Org. Chem., 2022, 19(4), 480-495.
[25]
Abu‐Hashem, A. A.; Abdelgawad, A. A. M.Hussein; Hoda, A. R.; Gouda, M. A. Synthetic and reactions routes to tetrahydrothieno[3,2-b] quinoline derivatives (Part IV). Mini Rev. Org. Chem., 2022, 19(1), 74-91.
[http://dx.doi.org/10.2174/1570193X18666210218212719]
[26]
Salem, M.A. Abu‐Hashem, A.A.; Abdelgawad, A.A.; Gouda, M.A. Synthesis and reactivity of thieno [2,3‐b] quinoline derivatives (Part II). J. Heterocycl. Chem., 2021, 58(9), 1705-1740.
[http://dx.doi.org/10.1002/jhet.4269]
[27]
Kalita, P.K.; Baruah, B.; Bhuyan, P.J. Synthesis of novel pyrano [2, 3-b] quinolines from simple acetanilides via intramolecular 1, 3-dipolar cycloaddition. Tetrahedron Lett., 2006, 47(44), 7779-7782.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.086]
[28]
Fang, Y.; Xiao, M.; Hu, A.; Ye, J.; Lian, W.; Liu, A. Design, synthesis, and evaluation of 3‐((4‐(t‐Butyl)‐2‐(2‐benzylidenehydrazinyl)thiazol‐5‐yl)methyl)quinolin‐2(1H)‐ones as neuraminidase inhibitors. Chin. J. Chem., 2016, 34(4), 403-411.
[http://dx.doi.org/10.1002/cjoc.201500738]
[29]
Saravanan, N.; Arthanareeswari, M.; Kamaraj, P.; Sivakumar, B. Efficient synthesis of quinolo-oxepanes through [3+2] cycloaddition reaction of αβ-unsaturated ester with unstabilized azomethine ylides. Asian J. Chem., 2015, 27(10), 3667-3670.
[http://dx.doi.org/10.14233/ajchem.2015.18915]
[30]
Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. J. Chem., 2020, 2020, 1324096.
[http://dx.doi.org/10.1155/2020/1324096]
[31]
Kalluraya, B.; Nayak, J.; Adhikari, A.; Shetty, N.S.; Winter, M. Synthesis and characterization of some novel quinolinothiazines of biological interest. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(8), 1870-1883.
[http://dx.doi.org/10.1080/10426500701792933]
[32]
Subrahmanyam, R.S.; Anna, V.R. Green Synthetic Protocol for (E)-1-Aryl-3-(2-morpholinoquinolin-3-yl)prop-2-en-1-ones and Their Antimicrobial Activity. Asian J. Chem., 2019, 31(9), 1895-1898.
[http://dx.doi.org/10.14233/ajchem.2019.21968]
[33]
Pujari, V.K. Vinnakota, S.; Kakarla, R. K.; Maroju, S.; Ganesh, A.; Pervaram, S. ‏Microwave assisted synthesis and antimicrobial activity of (E)-1- {2/3/4-[(1-Aryl-1 H-1, 2, 3-triazol-4-yl) methoxy]phenyl}-3-(2-morpholinoquinolin-3-yl) prop-2-en-1-ones. Russ. J. Gen. Chem., 2018, 88(7), 1502-1507.
[http://dx.doi.org/10.1134/S1070363218070241]
[34]
Kumar, P.; Mane, U.R.; Gupta, R.C.; Nadkarni, S.S.; Mohanan, A.; Tandon, R.; Munshi, S. 2-Propen-1-ones as heat shock protein (HSP) HSP-70 inducers. PCT Int. Appl. WO, 2005, 2005097746, A2.
[35]
Ashok, D.; Ganesh, A.; Lakshmi, B.V.; Ravi, S. Ultrasound-and microwave-assisted synthesis of (E)-1-aryl-3-[2-(piperidin-1-yl) quinolin-3-yl] prop-2-en-1-ones and (E)-1-aryl-3-[2-(pyrrolidin-1-yl) quinolin-3-yl] prop-2-en-1-ones, and their antimicrobial activity. Russ. J. Gen. Chem., 2014, 84(6), 1237-1242.
[http://dx.doi.org/10.1134/S1070363214060309]
[36]
Mali, J.R.; Bhosle, M.R.; Mahalle, S.R.; Mane, R.A. One-pot multicomponent synthetic route for new quinolidinyl 2, 4-thiazolidinediones. Bull. Korean Chem. Soc., 2010, 31(7), 1859-1862.
[http://dx.doi.org/10.5012/bkcs.2010.31.7.1859]
[37]
Darsi, S.S.; Devi, B.R.; Naidu, A. Synthesis of novel piperidino benzimidazole thiazolidinyl quinoline derivatives. Indian J. Chem., 2015, 54B(1), 142-145. Available from: http://hdl.handle.net/123456789/30323
[38]
Radini, I.A.M.; Elsheikh, T.M.; El-Telbani, E.M.; Khidre, R.E. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules, 2016, 21(7), 909.
[http://dx.doi.org/10.3390/molecules21070909] [PMID: 27428939]
[39]
Devi, I. Baruah, B.; Bhuyan, P.J. α-Cyclisation of tertiary amines: Synthesis of some novel annelated quinolines via a three-component reaction under solvent-free conditions. Synlett, 2006, 2006(16), 2593-2596.
[http://dx.doi.org/10.1055/s-2006-951477]
[40]
Ammar, Y.A.; Abbas, S.Y.; Fouad, S.A.; Salem, M.A.; El-gaby, M.S. Regioselective transmonocyanoacetylation of o-phenylenediamine derivatives: Simple and efficient synthesis of 2-cyanomethylbenzimidazole derivatives. J. Iran. Chem. Soc., 2019, 16(3), 639-643.
[http://dx.doi.org/10.1007/s13738-018-1541-6]
[41]
Sharghi, H.; Aberi, M.; Shiri, P. Highly reusable support‐free copper (II) complex of para‐hydroxy‐substituted salen: Novel, efficient and versatile catalyst for C-N bond forming reactions. Appl. Organomet. Chem., 2017, 31(11), e3761.
[http://dx.doi.org/10.1002/aoc.3761]
[42]
Afzal, O. Bawa, S.; Kumar, S.; Tonk, R.K. ‏Nꞌ-{[2-(Piperidin-1-yl) quinolin-3-yl] methylene} pyridine-4-carbohydrazide. Molbank, 2012, 2012(1), M748.
[http://dx.doi.org/10.3390/M748]
[43]
Chanda, K.; Dutta, M.C.; Vishwakarma, J.N. An efficient microwave assisted solvent-free general route to cyclic enaminones. Indian J. Chem., 2004, 43B(11), 2475-2477. Available from: http://nopr.niscair.res.in/bitstream/123456789/21388/1/IJCB%2043B(11) %202475-2477.pdf
[44]
Masoumi, M.; Hosseini, F.S.; Bayat, M. Synthesis of (E)-2-amino-N'-benzylidenehexahydroquinoline-3-carbohydrazide. Mol. Divers., 2019, 23(3), 593-601.
[http://dx.doi.org/10.1007/s11030-018-9892-6] [PMID: 30471013]
[45]
Bhattacherjee, D.; Thakur, V.; Shil, A.K.; Das, P. Hypervalent iodine‐promoted aromatization of exocyclic β‐enaminones for the synthesis of meta‐N, N‐Diaryl- aminophenols. Adv. Synth. Catal., 2017, 359(13), 2202-2208.
[http://dx.doi.org/10.1002/adsc.201700004]
[46]
Ladani, G.G.; Patel, M.P. Regioselective one-pot three-component synthesis of quinoline based 1,2,4-triazolo[1,5-a]quinoline derivatives. RSC Advances, 2015, 5(94), 76943-76948.
[http://dx.doi.org/10.1039/C5RA15560F]
[47]
Makawana, J.A.; Mungra, D.C.; Patel, M.P.; Patel, R.G. Microwave assisted synthesis and antimicrobial evaluation of new fused pyran derivatives bearing 2-morpholinoquinoline nucleus. Bioorg. Med. Chem. Lett., 2011, 21(20), 6166-6169.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.123] [PMID: 21890359]
[48]
Zhu, J.; Song, Z.; Long, D.; Wang, L.; Wang, J. Aromatic compound pharmaceutical composition and use thereof. US2020/239429 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy