Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Current Synthetic Methodologies of Carbon Nanotubes: A Review

Author(s): Shobhana sharma*

Volume 20, Issue 1, 2023

Published on: 10 June, 2022

Page: [55 - 80] Pages: 26

DOI: 10.2174/1570193X19666220224093459

Price: $65

Open Access Journals Promotions 2
Abstract

Carbon Nanotubes (CNTs) possess a unique one-dimensional molecular geometry with a large surface area. Recently, CNTs have become a thrust area of research as they play a crucial role in molecular engineering due to their excellent mechanical, electrical, and thermal properties. CNTs have a wide range of applications in various fields due to their unique properties. The Multiple Walled Carbon Nanotubes (MWCNTs) are thermally, mechanically, and structurally stronger than single-walled carbon nanotubes (SWCNTs). The sublimation of carbon in an inert atmosphere is the basis of synthetic methods of CNTs like the solar method, laser ablation, and electric arc discharge. Specific chemical methods like CVD, electrolysis, catalytic decomposition of hydrocarbons, heat treatment of a polymer, ball milling, etc., can also be used to prepare CNTs. Attempts have been made in the present review to discuss all synthetic methods of CNTs, their discoverers, the importance of techniques, various parameters that affect the process in detail, and the mechanism for the growth of CNTs. This article aims to provide a comprehensive pathway for researchers who deal with the synthetic methodology of carbon nanotubes. This review is also interesting for readers of material science and nanochemistry.

Keywords: Carbon nanotubes, catalyst, parameters, multiple walled carbon nanotubes, single-walled carbon nanotubes, nanomaterials.

Graphical Abstract
[1]
Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.; Kizek, R. Methods for carbon nanotubes synthesis review. J. Mater. Chem., 2011, 21(40), 15872-15884.
[http://dx.doi.org/10.1039/c1jm12254a]
[2]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[3]
Jasti, R.; Bertozzi, C.R. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem. Phys. Lett., 2010, 494(1-3), 1-7.
[http://dx.doi.org/10.1016/j.cplett.2010.04.067] [PMID: 21224898]
[4]
Mehra, N.K.; Jain, K. Functionalized carbon nanotubes and their drug delivery applications. Nanostruc. Drug Deliv., 2014, 4, 328.
[5]
Wu, H-C.; Chang, X.; Liu, L.; Zhao, F.; Zhao, Y. Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem., 2010, 20(6), 1036-1052.
[http://dx.doi.org/10.1039/B911099M]
[6]
He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon nanotubes: Applications in pharmacy and medicine. BioMed Res. Int., 2013, 2013, 578290.
[http://dx.doi.org/10.1155/2013/578290] [PMID: 24195076]
[7]
Simon, J.; Flahaut, E.; Golzio, M.; Simon, J. Overview of carbon nanotubes for biomedical applications. Materials (Basel), 2019, 12(4), 624.
[http://dx.doi.org/10.3390/ma12040624] [PMID: 30791507]
[8]
Alshehri, R.; Ilyas, A.M.; Hasan, A.; Arnaout, A.; Ahmed, F.; Memic, A. Carbon nanotubes: Applications in pharmacy and medicine. J. Med. Chem., 2016, 59, 8149.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01770] [PMID: 27142556]
[9]
Rahman, G.; Najaf, Z.; Mehmood, A.; Bilal, S.; Shah, A.H.A.; Mian, S.A.; Ali, G. An overview of the recent progress in the synthesis and applications of carbon nanotubes. C. - J. Carbon Res., 2019, 5C, 3.
[10]
Hirlekar, R.; Manohar, Y.; Harshal, G.; Mohit, V.; Vilasrao, K. Carbon nanotubes and its applications: A review. Asian J. Pharm. Clin. Res., 2009, 2, 17.
[11]
Paradise, M.; Goswami, T. Carbon nanotubes - Production and industrial applications. Mater. Des., 2007, 28(5), 1477-1489.
[http://dx.doi.org/10.1016/j.matdes.2006.03.008]
[12]
Ong, Y. T.; Ahmad, A. L.; Zein, S. H. S.; Tan, S. H. A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz. J. Chem. Eng., 2010, 27, 227À.
[http://dx.doi.org/10.1590/S0104-66322010000200002]
[13]
Liu, J.; Jiang, D.; Fu, Y.; Wang, T. Carbon nanotubes for electronics manufacturing and packaging: From growth to integration. Adv. Manu-fact., 2013, 1(1), 13-27.
[http://dx.doi.org/10.1007/s40436-013-0007-4]
[14]
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 2014, 9(1), 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[15]
Szabó, A.; Perri, C.; Csató, A.; Giordano, G.; Vuono, D.; Nagy, J.B. Synthesis methods of carbon nanotubes and related materials. Materials (Basel), 2010, 3(5), 3092-3140.
[http://dx.doi.org/10.3390/ma3053092]
[16]
Das, R.; Shahnavaz, Z.; Ali, M.E.; Islam, M.M.; Abd Hamid, S.B.; Islam, M.M.; Hamid, S.B.A. Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res. Lett., 2016, 11(1), 510.
[http://dx.doi.org/10.1186/s11671-016-1730-0] [PMID: 27864819]
[17]
Mulvihill, M.J.; Beach, E.S.; Zimmerman, J.B.; Anastas, P.T. Green chemistry and green engineering: A framework for sustaina- ble tech-nology development. Annu. Rev. Environ. Resour., 2011, 36(1), 271-293.
[http://dx.doi.org/10.1146/annurev-environ-032009-095500]
[18]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12(5), 743-754.
[http://dx.doi.org/10.1039/b921171c]
[19]
Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 2015, 8(11), 7278-7308.
[http://dx.doi.org/10.3390/ma8115377] [PMID: 28793638]
[20]
Kumar, M.; Ando, Y. Carbon nanotubes from camphor. An environment-friendly nanotechnology. J. Phys. Conf. Ser., 2007, 61, 643-646.
[http://dx.doi.org/10.1088/1742-6596/61/1/129]
[21]
Kroto, H.W.; Heath, J.R.; O’ Brien, S.C.; Curl, R.F.; Smalley, R.E.C. This week’s citation classic, buckminsterfull. Nature, 1985, 318, 162.
[http://dx.doi.org/10.1038/318162a0]
[22]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[http://dx.doi.org/10.1038/354056a0]
[23]
Saifuddin, N.; Raziah, A.Z.; Junizah, A.R. Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem., 2013, 676815, 1-18.
[http://dx.doi.org/10.1155/2013/676815]
[24]
Zhao, X.; Wang, M.; Ohkohchi, M.; Ando, Y. Bull. Res. Inst. Meijo Univ., 1996, 1, 7.
[25]
Kateb, B.; Heiss, J.D. The textbook of Nanoneuroscience and Nanoneurosurgery, 1st ed; CRC Press, Taylor & Francis, 2013.
[http://dx.doi.org/10.1201/b15274]
[26]
Sharma, R.; Sharma, A.K.; Sharma, V.; Harkin-Jones, E. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng., 2015, 2(1), 1094017.
[http://dx.doi.org/10.1080/23311916.2015.1094017]
[27]
Ando, Y.; Iijima, S. Preparation of carbon nanotubes by arc-discharge evaporation. Jpn. J. Appl. Phys., 1993, 32((Part 2, No.1A/B), L107-L109.
[http://dx.doi.org/10.1143/JJAP.32.L107]
[28]
Zhao, X.; Ohkohchi, M.; Wang, M.; Iijima, S.; Ichihashi, T.; Ando, Y. Preparation of high-grade carbon nanotubes by hydrogen arc dis-charge. Carbon, 1997, 35(6), 775-781.
[http://dx.doi.org/10.1016/S0008-6223(97)00033-X]
[29]
Ebbesen, T.W.; Ajayan, P.M. Large-scale synthesis of carbon nanotubes. Nature, 1992, 358(6383), 220-222.
[http://dx.doi.org/10.1038/358220a0]
[30]
Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363(6430), 603-605.
[http://dx.doi.org/10.1038/363603a0]
[31]
Bethune, D.S.; Klang, C.H.; Vries, M.S.D.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363(6430), 605-607.
[http://dx.doi.org/10.1038/363605a0]
[32]
Seraphin, S.; Zhou, D. Single-walled carbon nanotubes produced at high-yield by mixed catalysts. Appl. Phys. Lett., 1994, 64(16), 2087-2089.
[http://dx.doi.org/10.1063/1.111691]
[33]
Wang, M.; Zhao, X.L.; Ohkohchi, M.; Ando, Y. Carbon nanotubes grown on the surface of cathode deposit by arc discharge. Fuller. Sci. Technol., 1996, 4(5), 1027-1039.
[http://dx.doi.org/10.1080/10641229608001160]
[34]
Journet, C.; Maser, W.K.; Bernier, P.; Loiseau, A.; Chapelle, M.L.D.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J.E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388(6644), 756-758.
[http://dx.doi.org/10.1038/41972]
[35]
Shi, Z.J.; Lian, Y.F.; Zhou, X.H.; Gu, Z.N.; Zhang, Y.G.; Iijima, S.; Zhou, L.; Yue, K.T.; Zhang, S. Mass-production of single-wall carbon nanotubes by arc discharge method. Carbon, 1999, 37(9), 1449-1453.
[http://dx.doi.org/10.1016/S0008-6223(99)00007-X]
[36]
Zhao, X.; Ohkohchi, M.; Shimoyama, H.; Ando, Y. Morphology of carbon allotropes prepared by hydrogen arc discharge. J. Cryst. Growth, 1999, 198, 934-938.
[http://dx.doi.org/10.1016/S0022-0248(98)00995-6]
[37]
Hutchison, J.L.; Kiselev, N.A.; Krinichnaya, E.P.; Krestinin, A.V.; Loutfy, R.O.; Morawsky, A.P.; Muradyan, V.E.; Obraztsova, E.D.; Sloan, J.; Terekhov, S.V.; Zakharov, D.Z. Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon, 2001, 39(5), 761-770.
[http://dx.doi.org/10.1016/S0008-6223(00)00187-1]
[38]
Anazawa, K.; Shimotani, K.; Manabe, C.; Watanabe, H.; Shimizu, M. High-purity carbon nanotubes synthesis method by an arc discharg-ing in magnetic field. Appl. Phys. Lett., 2002, 81(4), 739-741.
[http://dx.doi.org/10.1063/1.1491302]
[39]
Sugai, T.; Yoshida, H.; Shimada, T.; Okazaki, T.; Shinohara, H.; Bandow, S. New synthesis of high-quality double-walled carbon nano-tubes by high-temperature pulsed arc discharge. Nano Lett., 2003, 3(6), 769-773.
[http://dx.doi.org/10.1021/nl034183+]
[40]
Jung, S. H.; Kim, M. R.; Jeong, S. H.; Kim, S. U.; Lee, O. J.; Lee, K. H.; Suh, J. H.; Park, C. K. High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen. Appl Phys A Mater Sci Proc, 2003, 76, 285-286.
[http://dx.doi.org/10.1007/s00339-002-1718-8]
[41]
Huang, H.J.; Kajiura, H.; Tsutsui, S.; Murakami, Y.; Ata, M. High-quality double-walled carbon nanotube super bundles grown in a hy-drogen-free atmosphere. J. Phys. Chem. B, 2003, 107(34), 8794-8798.
[http://dx.doi.org/10.1021/jp0349435]
[42]
Kim, H.H.; Kim, H.J. The preparation of carbon nanotubes by DC arc discharge process using Xylene-Ferrocene as a floating ctalyst pre-susor. IEEE Nanotechnology Materials and Devices Conference, Proceedings, 2006, pp. 496-497.
[43]
Qiu, H.X.; Shi, Z.J.; Guan, L.H.; You, L.P.; Gao, M.; Zhang, S.L.; Qiu, J.; Gu, Z. High-efficient synthesis of double-walled carbon nano-tubes by arc discharge method using chloride as a promoter. Carbon, 2006, 44(3), 516-521.
[http://dx.doi.org/10.1016/j.carbon.2005.08.021]
[44]
Liu, Q.; Ren, W.; Li, F.; Cong, H.; Cheng, H-M. Synthesis and high thermal stability of double-walled carbon nanotubes using nickel for-mate dihydrate as catalyst precursor. J. Phys. Chem. C, 2007, 111(13), 5006-5013.
[http://dx.doi.org/10.1021/jp068672k]
[45]
Song, X.; Liu, Y.; Zhu, J. Zhu, Multi-walled carbon nanotubes produced by hydrogen DC arc discharge at elevated environment tempera-ture. Mater. Lett., 2007, 61(2), 389-391.
[http://dx.doi.org/10.1016/j.matlet.2006.04.068]
[46]
Yoshida, H.; Sugai, T.; Shinohara, H. Fabrication, purification, and characterization of double-wall carbon nanotubes via pulsed arc dis-charge. J. Phys. Chem. C, 2008, 112(50), 19908-19915.
[http://dx.doi.org/10.1021/jp806529v]
[47]
Joshi, R.; Engstler, J.; Nair, P.K.; Haridoss, P.; Schneider, J. High yield formation of carbon nanotubes using a rotating cathode in open air. Diamond Related Mat, 2008, 17(6), 913-919.
[http://dx.doi.org/10.1016/j.diamond.2008.01.004]
[48]
Xing, G.; Jia, S.L.; Shi, Z.Q. Influence of magnetic field parallel to the arc on the formation of carbon nano-materials by arc discharge in water. Carbon, 2009, 47(8), 2131-2133.
[http://dx.doi.org/10.1016/j.carbon.2009.03.067]
[49]
Chen, B.; Inoue, S.; Ando, Y. Raman spectroscopic and thermogravimetric studies of high-crystallinity SWCNTs synthesized by FH-arc discharge method. Diamond Related Mat, 2009, 18(5-8), 975-978.
[http://dx.doi.org/10.1016/j.diamond.2009.01.026]
[50]
Zhao, T.; Liu, Y.; Li, T.; Zhao, X. Current and arc pushing force effects on the synthesis of single-walled carbon nanotubes by arc dis-charge. J. Nanosci. Nanotechnol., 2010, 10(6), 4078-4081.
[http://dx.doi.org/10.1166/jnn.2010.1980] [PMID: 20355418]
[51]
Saravanan, M.S.S.; Babu, S.P.K.; Sivaprasad, K.; Jagannatham, M. Techno-economics of carbon nanotubes produced by open air arc dis-charge method. Int. J. Eng. Sci. Technol., 2010, 2, 100.
[52]
Kiadehia, D.; Jahanshahi, M.; Mozdianfard, M.R.; Vakili-Nezhaad, G.H.R.; Seresht, R.J. Influence of the solution temperature on carbon nanotube formation by arc discharge method. J. Exp. Nanosci., 2011, 6(4), 432-440.
[http://dx.doi.org/10.1080/17458080.2010.507254]
[53]
Su, Y.J.; Yang, Z.; Wei, H.; Kong, E.S.W.; Zhang, Y.F. Synthesis of single-walled carbon nanotubes with selective diameter distributions using DC arc discharge under CO mixed atmosphere. Appl. Surf. Sci., 2011, 257(7), 3123-3127.
[http://dx.doi.org/10.1016/j.apsusc.2010.10.127]
[54]
Su, Y.J.; Zhang, Y.Z.; Wei, H.; Yang, Z.; Kong, E.S.W.; Zhang, Y.F. Diameter-control of single-walled carbon nanotubes produced by magnetic field-assisted arc discharge. Carbon, 2012, 50(7), 2556-2562.
[http://dx.doi.org/10.1016/j.carbon.2012.02.013]
[55]
Hosseini, A.A.; Allahyari, M.; Besheli, S.D. Synthesis of carbon nanotubes, nano fibbers and nano union by electric arc discharge method using nacl accuse as solution and Fe and Ni particles and catalysts. Int. J. Sci. Environ. Technol., 2012, 1, 217.
[56]
Teymourzadeh, M.; Kangarlou, H. Synthesis of multi-walled carbon nanotubes in an arc discharge using hydrocarbons precursor as car-bon sources. World Appl. Sci. J., 2012, 18, 879.
[57]
Zhao, J.; Wei, L.; Peng, C.; Su, Y.; Yang, Z.; Zhang, L.; Wei, H.; Zhang, Y. A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes. Biosens. Bioelectron., 2013, 47, 86-91.
[http://dx.doi.org/10.1016/j.bios.2013.02.032] [PMID: 23562730]
[58]
Jeong, M.S.; Han, J.H.; Choi, Y.C. Influence of the purification process on the semiconducting content of single-walled carbon nanotubes synthesized by arc discharge. Carbon, 2013, 57, 338-345.
[http://dx.doi.org/10.1016/j.carbon.2013.01.081]
[59]
Khattab, Y.A.; Osman, T.A.; Zaki, M. Effects of increasing electrodes on CNTs yield synthesized by using arc-discharge technique. J. Nanomater., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/392126]
[60]
Chaudhary, K.T.; Rizvi, Z.H.; Bhatti, K.A.; Ali, J.; Yupapin, P.P. Multiwalled carbon nanotube synthesis using arc discharge with hydro-carbon as feedstock. J. Nanomater., 2013, 2013, 1-13.
[http://dx.doi.org/10.1155/2013/105145]
[61]
Mohammad, M.I.; Moosa, A.A.; Potgieter, J.H.; Ismael, M.K. Carbon nanotubes synthesis via arc discharge with a yttria catalyst. Int. Sch. Res. Notices, 2013, 2013, 785160.
[http://dx.doi.org/10.1155/2013/785160]
[62]
Xu, K.; Li, Y.F.; Xu, C.M.; Gao, J.S.; Liu, H.W.; Yang, H.T.; Richard, P. Controllable synthesis of single-, double- and triple-walled car-bon nanotubes from asphalt. Chem. Eng. J., 2013, 225, 210-215.
[http://dx.doi.org/10.1016/j.cej.2013.03.096]
[63]
Fang, L.; Sheng, L.M.; An, K.; Yu, L.M.; Ren, W.; Ando, Y.L.; Zhao, X. Effect of adding W to Fe catalyst on the synthesis of SWCNTs by arc discharge. Physica E, 2013, 50, 116-121.
[http://dx.doi.org/10.1016/j.physe.2013.03.005]
[64]
Su, Y.J.; Zhou, P.; Zhao, J.; Yang, Z.; Zhang, Y.F. Large-scale synthesis of few-walled carbon nanotubes by DC arc discharge in low-pressure flowing air. Mater. Res. Bull., 2013, 48(9), 3232-3235.
[http://dx.doi.org/10.1016/j.materresbull.2013.04.092]
[65]
Su, Y.J.; Wei, H.; Li, T.T.; Geng, H.J.; Zhang, Y.F. Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc dis-charge. Mater. Res. Bull., 2014, 50, 23-25.
[http://dx.doi.org/10.1016/j.materresbull.2013.10.013]
[66]
Zhang, Y.L.; Hou, P.X.; Liu, C.; Cheng, H.M. De-bundling of single-wall carbon nanotubes induced by an electric field during arc dis-charge synthesis. Carbon, 2014, 74, 370-373.
[http://dx.doi.org/10.1016/j.carbon.2014.03.020]
[67]
Sari, A.H.; Khazali, A.; Parhizgar, S.S. Synthesis and characterization of long-CNTs by electrical arc discharge in deionized water and NaCl solution. Int. Nano Lett., 2018, 8(1), 19-23.
[http://dx.doi.org/10.1007/s40089-018-0227-5]
[68]
Roslan, M.S.; Chaudhary, K.T.; Doylend, N.; Agam, A.; Kamarulzaman, R.; Haider, Z.; Mazalan, E.; Ali, J. Growth of wall-controlled MWCNTs by magnetic field assisted arc discharge plasma. J. Saudi Chem. Soc., 2019, 23(2), 171-181.
[http://dx.doi.org/10.1016/j.jscs.2018.06.003]
[69]
Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D.T.; Smalley, R.E. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett., 1995, 243(1-2), 49-54.
[http://dx.doi.org/10.1016/0009-2614(95)00825-O]
[70]
Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y.H.; Kim, S.G.; Rinzler, A.G.; Colbert, D.T.; Scuseria, G.E.; Tománek, D.; Fischer, J.E.; Smalley, R.E. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274), 483-487.
[http://dx.doi.org/10.1126/science.273.5274.483] [PMID: 8662534]
[71]
Rao, A.M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P.C.; Williams, K.A.; Fang, S.; Subbaswamy, K.R.; Menon, M.; Thess, A.; Smalley, R.E.; Dresselhaus, G.; Dresselhaus, M.S. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275(5297), 187-191.
[http://dx.doi.org/10.1126/science.275.5297.187] [PMID: 8985007]
[72]
Burgt, Y.V.D. Laser-assisted growth of carbon nanotubes—A review. J. Laser Appl., 2014, 26(3), 032001.
[http://dx.doi.org/10.2351/1.4869257]
[73]
Rohmund, F.; Morjan, R-E.; Ledoux, G.; Huisken, F.; Alexandrescu, R. Carbon nanotube films grown by laser-assisted chemical vapor deposition. J. Vac. Sci. Technol. B, 2002, 20(3), 802.
[http://dx.doi.org/10.1116/1.1469013]
[74]
Alexandrescu, R.; Crunteanu, A.; Morjan, R-E.; Morjan, I.; Rohmund, F.; Falk, L.K.L.; Ledoux, G.; Huisken, F. Synthesis of carbon nano-tubes by CO2-laser-assisted chemical vapour deposition. Infrared Phys. Technol., 2003, 44(1), 43-50.
[http://dx.doi.org/10.1016/S1350-4495(02)00158-5]
[75]
Fujiwara, Y.; Maehashi, K.; Ohno, Y.; Inoue, K.; Matsumoto, K. Position-controlled growth of single-walled carbon nanotubes by laserir-radiated chemical vapor deposition. Jpn. J. Appl. Phys., 2005, 144, 1581-1584.
[76]
Kwok, K.; Chiu, W.K.S. Growth of carbon nanotubes by open-air laser-induced chemical vapor deposition. Carbon, 2005, 43(2), 437-446.
[http://dx.doi.org/10.1016/j.carbon.2004.10.005]
[77]
Bondi, S.N.; Lackey, W.J.; Johnson, R.W.; Wang, X.; Wang, Z.L. Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization. Carbon, 2006, 44(8), 1393-1403.
[http://dx.doi.org/10.1016/j.carbon.2005.11.023]
[78]
Shi, J.; Lu, Y.F.; Yi, K.J.; Lin, Y.S.; Liou, S.H.; Hou, J.B.; Wang, X.W. Direct synthesis of single-walled carbon nanotubes bridging metal electrodes by laser-assisted chemical vapor deposition. Appl. Phys. Lett., 2006, 89(8), 083105.
[http://dx.doi.org/10.1063/1.2338005]
[79]
Shi, J.; Lu, Y.F.; Wang, H.; Yi, K.J.; Lin, Y.S.; Zhang, R.; Liou, S.H. Synthesis of suspended carbon nanotubes on silicon inverseopal structures by laser-assisted chemical vapour deposition. Nanotechnology, 2006, 17(15), 3822-3826.
[http://dx.doi.org/10.1088/0957-4484/17/15/036]
[80]
Kasuya, K.; Nagato, K.; Jin, Y.; Morii, H. Rapid and localized synthesis of single-walled carbon nanotubes on flat surface by laser-assisted chemical vapor deposition. Jpn. J. Appl. Phys. Part 2, 2007, 46, L333-L335.
[81]
Morjan, I.; Soare, I.; Alexandrescu, R.; Morjan, R-E.; Gavrila-Florescu, L.; Prodan, G.; Sandu, I.; Popovici, E.; Dumitrache, F.; Voicu, I.; Scarisoreanu, M. Morjan, Carbon nanotubes growth from C2H2 and C2H4/NH3 by catalytic LCVD on supported iron-carbon nanocompo-sites. R.-E. Physica E, 2007, 37(1-2), 26-33.
[http://dx.doi.org/10.1016/j.physe.2006.10.009]
[82]
Morjan, I.; Soare, I.; Alexandrescu, R.; Gavrila-Florescu, L.; Morjan, R-E.; Prodan, G.; Fleaca, C.; Sandu, I.; Voicu, I.; Dumitrache, F.; Popovici, E. Carbon nanotubes grown by catalytic CO2 laser-induced chemical vapor deposition on core-shell Fe/C composite nanoparti-cles. Infrared Phys. Technol., 2008, 51(3), 186-197.
[http://dx.doi.org/10.1016/j.infrared.2007.07.001]
[83]
Chen, Z.; Wei, Y.; Luo, C.; Jiang, K.; Zhang, L.; Li, Q.; Fan, S.; Gao, J. Laser direct writing carbon nanotube arrays on transparent sub-strates. Appl. Phys. Lett., 2007, 90(13), 133108.
[http://dx.doi.org/10.1063/1.2717530]
[84]
Longtin, R.; Carignan, L-P.; Fauteux, C.; Therriault, D.; Pegna, J. Selective area synthesis of aligned carbon nanofibers by laser-assisted catalytic chemical vapor deposition. Diamond Related Mat, 2007, 16(8), 1541-1549.
[http://dx.doi.org/10.1016/j.diamond.2006.12.055]
[85]
Longtin, R.; Fauteux, C.; Carignan, L-P.; Therriault, D.; Pegna, J. Pegna, laser-assisted synthesis of carbon nanofibers: From arrays to thin films and coatings. Surf. Coat. Tech., 2008, 202(12), 2661-2669.
[http://dx.doi.org/10.1016/j.surfcoat.2007.09.045]
[86]
Cao, L.; Barsic, D.N.; Guichard, A.R.; Brongersma, M.L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett., 2007, 7(11), 3523-3527.
[http://dx.doi.org/10.1021/nl0722370] [PMID: 17963415]
[87]
Chiashi, S.; Kohno, M.; Takata, Y.; Maruyama, S. Localized synthesis of single-walled carbon nanotubes on silicon substrates by a laser heating catalytic CVD. J. Phys. Conf. Ser., 2007, 59, 155-158.
[http://dx.doi.org/10.1088/1742-6596/59/1/033]
[88]
Liu, Z.; Styers-Barnett, D.J.; Puretzky, A.A.; Rouleau, C.M.; Yuan, D.; Ivanov, I.N.; Xiao, K.; Liu, J.; Geohegan, D.B. Pulsed laser CVD investigations of single-wall carbon nanotube growth dynamics. Appl. Phys., A Mater. Sci. Process., 2008, 93(4), 987-993.
[http://dx.doi.org/10.1007/s00339-008-4804-8]
[89]
Park, J.B.; Jeong, M.S.; Jeong, S.H. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transpar-ent substrate. Appl. Surf. Sci., 2009, 255(8), 4526-4530.
[http://dx.doi.org/10.1016/j.apsusc.2008.11.070]
[90]
Chrzanowska, J. Małolepszy, A.; Mazurkiewicz, M.; Kowalewski, T.A.; Szymanski, Z.; Stobinski, L. Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys. Status Solidi, B Basic Res., 2015, 252(8), 1860-1867.
[http://dx.doi.org/10.1002/pssb.201451614]
[91]
Park, J.B.; Jeong, S.H.; Jeong, M.S.; Lim, S.C.; Lee, I.H.; Lee, Y.H. The rapid growth of vertically aligned carbon nanotubes using laser heating. Nanotechnology, 2009, 20(18), 185604.
[http://dx.doi.org/10.1088/0957-4484/20/18/185604] [PMID: 19420620]
[92]
Park, J.B.; Jeong, S.H.; Jeong, M.S. Position-controlled synthesis of single-walled carbon nanotubes on a transparent substrate by laser-induced chemical vapor deposition. Appl. Surf. Sci., 2010, 257(2), 641-649.
[http://dx.doi.org/10.1016/j.apsusc.2010.07.056]
[93]
Haluška, M.; Bellouard, Y.; Dietzel, A. Time dependent growth of vertically aligned carbon nanotube forest using a laser activated catalyti-cal CVD method. Phys. Status Solidi, B Basic Res., 2008, 245(10), 1927-1930.
[http://dx.doi.org/10.1002/pssb.200879576]
[94]
Haluška, M.; Bellouard, Y.; van de Burgt, Y.; Dietzel, A. In situ monitoring of single-wall carbon nanotube laser assisted growth. Nanotechnology, 2010, 21(7), 75602.
[http://dx.doi.org/10.1088/0957-4484/21/7/075602] [PMID: 20081289]
[95]
Burgt, Y.V.D.; Bellouard, Y.; Mandamparambil, R.; Haluška, M.; Dietzel, A. Closed-loop control of laser assisted chemical vapor deposi-tion growth of carbon nanotubes. J. Appl. Phys., 2012, 112(3), 034904.
[http://dx.doi.org/10.1063/1.4745874]
[96]
Hung, W.H.; Hsu, I-K.; Bushmaker, A.; Kumar, R.; Theiss, J.; Cronin, S.B. Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition. Nano Lett., 2008, 8(10), 3278-3282.
[http://dx.doi.org/10.1021/nl801666u] [PMID: 18771333]
[97]
Xiong, W.; Zhou, Y.S.; Mahjouri-Samani, M.; Yang, W.Q.; Yi, K.J.; He, X.N.; Liou, S.H.; Lu, Y.F. Self-aligned growth of single-walled carbon nanotubes using optical near-field effects. Nanotechnology, 2009, 20(2), 025601.
[http://dx.doi.org/10.1088/0957-4484/20/2/025601] [PMID: 19417270]
[98]
Mahjouri-Samani, M.; Zhou, Y.S.; Xiong, W.; Gao, Y.; Mitchell, M.; Jiang, L.; Lu, Y.F. Diameter modulation by fast temperature control in laser-assisted chemical vapor deposition of single-walled carbon nanotubes. Nanotechnology, 2010, 21(39), 395601.
[http://dx.doi.org/10.1088/0957-4484/21/39/395601] [PMID: 20808037]
[99]
Ruan, W.; Wang, Z.; Li, J.; Jiang, K.; Liu, L. Synthesis of carbon nanotubes on suspending microstructures by rapid local laser heating. IEEE Sens. J., 2011, 11(12), 3424-3425.
[http://dx.doi.org/10.1109/JSEN.2011.2161280]
[100]
Uchida, T.; Yoshida, Y. Development of a laser-assisted chemical vapor deposition system for the growth of carbon nanotubes. J. Laser Micro Nanoeng., 2011, 6(3), 214-219.
[http://dx.doi.org/10.2961/jlmn.2011.03.0008]
[101]
Bock, M.C.D.; Denk, R.; Wirth, C.T.; Goldberg-Oppenheimer, P.; Hofmann, S.; Baumberg, J. Optical feedback mechanisms in laser in-duced growth of carbon nanotube forests. Appl. Phys. Lett., 2012, 100(1), 013112.
[http://dx.doi.org/10.1063/1.3670328]
[102]
Benjamin, J.S. Dispersion strengthened superalloys by mechanical alloying. Metall. Trans., 1970, 1, 2943.
[103]
Gou, J.; Zhuge, J.; Liang, F. Manufacturing Techniques for Polymer Matrix Composites (PMCs); Woodhead Publishing, 2012.
[104]
Liu, F.; Zhang, X.; Cheng, J.; Tu, J.; Kong, F.; Huang, W.; Chen, C. Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon, 2003, 41(13), 2527-2532.
[http://dx.doi.org/10.1016/S0008-6223(03)00302-6]
[105]
Pierard, N.; Fonseca, A.; Colomer, J-F.; Bossuot, C.; Benoit, J-M.; Tendeloo, G.V.; Pirard, J-P.; Nagy, J.B. Ball milling effect on the struc-ture of single-wall carbon nanotubes. Carbon, 2004, 42(8-9), 1691-1697.
[http://dx.doi.org/10.1016/j.carbon.2004.02.031]
[106]
Kukovecz, Á.; Kanyó, T.; Kónya, Z.; Kiricsi, I. Long-time low-impact ball milling of multi-wall carbon nanotubes. Carbon, 2005, 43(5), 994-1000.
[http://dx.doi.org/10.1016/j.carbon.2004.11.030]
[107]
Tucho, W.M.; Mauroy, H.; Walmsley, J.C.; Deledda, S.; Holmestad, R.; Hauback, B.C. The effects of ball milling intensity on morphology of multiwall carbon nanotubes. Scr. Mater., 2010, 63(6), 637-640.
[http://dx.doi.org/10.1016/j.scriptamat.2010.05.039]
[108]
Forró, L.; Gaal, R.; Grimaldi, C. Mionić M.; Ribič P.R.; Smajda, R.; Magrez, A. Tuning the length dispersion of multi-walled carbon nanotubes by ball milling. AIP Adv., 2013, 3(9), 092117.
[http://dx.doi.org/10.1063/1.4821802]
[109]
In, E.E.; Güler, Ö.; Aksoy, M.; Güler, S.H. Effect of milling time on the formation of carbon nanotube by mechano-thermal method. Bull. Mater. Sci., 2015, 38(4), 857-863.
[http://dx.doi.org/10.1007/s12034-015-0952-6]
[110]
Smiljanic, O.; Stansfield, B.L.; Dodelet, J-P.; Serventi, A.; Désilets, S. Gas-phase synthesis of SWCNT by an atmospheric pressure plasma jet. Chem. Phys. Lett., 2002, 356(3-4), 189-193.
[http://dx.doi.org/10.1016/S0009-2614(02)00132-X]
[111]
Smiljanic, O. Method and apparatus for producing single-wall carbon nanotubes. US Patent, US7585482B2.
[112]
Szymanski, L.; Kolacinski, Z.; Wiak, S.; Raniszewski, G.; Pietrzak, L. Synthesis of carbon nanotubes in thermal plasma reactor at atmos-pheric pressure. Nanomaterials (Basel), 2017, 7(2), 45.
[http://dx.doi.org/10.3390/nano7020045] [PMID: 28336880]
[113]
Pacheco, M.; Pacheco, J.; Valdivia, M.; Bernal, L.; Valdivia, R.; Huczko, A.; Lange, H.; Cruz, A.; López-Callejas, R. Synthesis of carbon nanostructures by using thermal plasma torch. Braz. J. Phys., 2004, 34(4b), 1684-1688.
[http://dx.doi.org/10.1590/S0103-97332004000800032]
[114]
Hong, Y.C.; Uhm, H.S. Production of carbon nanotubes by microwave plasma torch at atmospheric pressure. Phys. Plasmas, 2005, 12(5), 053504.
[http://dx.doi.org/10.1063/1.1914805]
[115]
Asinovsky, E.I.; Amirov, R.H.; Isakaev, E.K.; Kiselev, V.I. Thermal plasma torch for synthesis of carbon nanotubes. High Temp. Mater. Process., 2006, 10(2), 197-206.
[http://dx.doi.org/10.1615/HighTempMatProc.v10.i2.30]
[116]
Zajíčková, L.; Jašek, O.; Synek, P.; Eliáš, M.; Kudrle, V.; Kadlečíková, M.; Breza, J.; Hanzlíková, R. Synthesis of carbon nanotubes in MW plasma torch with different methods of catalyst layer preparation and their applications. Nanocon., 2009, 10, 20.
[117]
Lim, S.H.; Luo, Z.; Shen, Z.; Lin, J. Plasma-assisted synthesis of carbon nanotubes. Nanoscale Res. Lett., 2010, 5(9), 1377-1386.
[http://dx.doi.org/10.1007/s11671-010-9710-2] [PMID: 20802785]
[118]
Amirov, R.H.; Isakaev, E.K.; Shavelkina, M.B.; Shatalova, T.B. Synthesis of carbon nanotubes by high current divergent anode-channel plasma torch. J. Phys. Conf. Ser., 2014, 550, 012023.
[http://dx.doi.org/10.1088/1742-6596/550/1/012023]
[119]
Shavelkina, M.B.; Ivanov, P.P.; Amirov, R.K.; Bocharov, A.N.; Drachev, A.I.; Shavelkin, M.A. Plasma pyrolysis of ethanol for the pro-duction of carbon nanostructures. High Energy Chem., 2021, 55(6), 531-536.
[http://dx.doi.org/10.1134/S001814392106014X]
[120]
Chibante, L.P.F.; Thess, A.; Alford, J.M.; Diener, M.D.; Smalley, R.E. Solar generation of the fullerenes. J. Phys. Chem., 1993, 97(34), 8696-8700.
[http://dx.doi.org/10.1021/j100136a007]
[121]
Fields, C.L.; Pitts, J.R.; Hale, M.J.; Bingham, C.; Lewandowski, A.; King, D.E. Formation of fullerenes in highly concentrated solar flux. J. Phys. Chem., 1993, 97(34), 8701-8702.
[http://dx.doi.org/10.1021/j100136a008]
[122]
Laplaze, D.; Bernier, P.; Barbedette, L.; Lambert, J.M.; Flamant, G.; Brunelle, A.; Della-Negra, S. Production of fullerenes from solar ener-gy. Acad C.R. Sci. Paris, 1994, 318, 733.
[123]
Journet, C.; Picher, M.; Jourdain, V. Carbon nanotube synthesis: From large-scale production to atom-by-atom growth. Nanotechnology, 2012, 23(14), 142001.
[http://dx.doi.org/10.1088/0957-4484/23/14/142001] [PMID: 22433510]
[124]
Seo, J.W.; Magrez, A.; Milas, M.; Lee, K.; Lukovac, V.; Forro, L. Catalytically grown carbon nanotubes: From synthesis to toxicity. J. Phys. D Appl. Phys., 2007, 40(6), 109.
[http://dx.doi.org/10.1088/0022-3727/40/6/R01]
[125]
Endo, M.; Takeuchi, K.; Igarashi, S.; Kobori, K.; Shiraishi, M.; Kroto, H.W. The production and structure of pyrolytic carbon nanotubes. J. Phys. Chem. Solids, 1993, 54(12), 1841-1848.
[http://dx.doi.org/10.1016/0022-3697(93)90297-5]
[126]
Paradise, M.T.; Goswami, T. Goswami, Carbon nanotubes-production and industrial application. Mater. Des., 2007, 28(5), 1477-1489.
[http://dx.doi.org/10.1016/j.matdes.2006.03.008]
[127]
Sengupta, J. Handbook of Nanomaterials for Industrial Applications; Elsevier, 2018.
[128]
Wang, H.; Yamada, C.; Liu, J.; Liu, B.; Tu, X.; Zheng, M.; Zhou, C.; Homma, Y. Re-growth of single-walled carbon nanotube by hot-wall and cold-wall chemical vapor deposition. Carbon, 2015, 95, 497-502.
[http://dx.doi.org/10.1016/j.carbon.2015.08.039]
[129]
Finnie, P.; Li-Pook-Than, A.; Lefebvre, J.; Austing, D.G. Optimization of methane cold wall chemical vapor deposition for the production of single walled carbon nanotubes and devices. Carbon, 2006, 44(15), 3199-3206.
[http://dx.doi.org/10.1016/j.carbon.2006.06.039]
[130]
Chaisitsak, S.; Nukeaw, J.; Tuantranont, A. Parametric study of atmospheric-pressure single-walled carbon nanotubes growth by ferro-cene-ethanol mist CVD. Diamond Related Mat, 2007, 16(11), 1958-1966.
[http://dx.doi.org/10.1016/j.diamond.2007.09.013]
[131]
Nozaki, T.; Ohnishi, K.; Okazaki, K.; Kortshagen, U. Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pres-sure non-thermal plasma CVD. Carbon, 2007, 45(2), 364-374.
[http://dx.doi.org/10.1016/j.carbon.2006.09.009]
[132]
Shukrullah, S.; Naz, M.Y.; Mohamed, N.M.; Ibrahim, K.A.; Ghaffar, A. AbdEl-Salam, N.M. Production of bundled CNTs by floating a compound catalyst in an atmospheric pressure horizontal CVD reactor. Results Phys., 2019, 12, 1163-1171.
[http://dx.doi.org/10.1016/j.rinp.2019.01.001]
[133]
Ikuno, T.; Katayama, M.; Yamauchi, N.; Wongwiriyapan, W.; Mong, K. Selective growth of straight carbon nanotubes by low-pressure thermal chemical vapor deposition. Jpn. J. Appl. Phys., 2004, 43(2), 860-863.
[http://dx.doi.org/10.1143/JJAP.43.860]
[134]
Kasumov, Y.A.; Shailos, A.; Khodos, I.I.; Volkov, V.T.; Levashov, V.I.; Matveev, V.N.; Guéron, S.; Kobylko, M.; Kociak, M.; Bouchiat, H.; Agache, V.; Rollier, A.S.; Buchaillot, L.; Bonnot, A.M.; Kasumov, A.Y. CVD growth of carbon nanotubes at very low pressure of acetylene. Appl. Phys., A Mater. Sci. Process., 2007, 88(4), 687-691.
[http://dx.doi.org/10.1007/s00339-007-4028-3]
[135]
Gohier, A.; Minea, T.M.; Point, S.; Mevellec, J-Y.; Jimenez, J.; Djouadi, M.A.; Granier, A. Early stages of the carbon nanotube growth by low pressure CVD and PE-CVD. Diamond Related Mat, 2009, 18(1), 61-65.
[http://dx.doi.org/10.1016/j.diamond.2008.09.022]
[136]
Nikolaev, P.; Bronikowski, M.J.; Bradley, R.K.; Rohmund, F.; Colbert, D.T.; Smith, K.A.; Smalley, R.E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 1999, 313(1-2), 91-97.
[http://dx.doi.org/10.1016/S0009-2614(99)01029-5]
[137]
Yang, H.; Mercier, P.; Wang, S.C.; Akins, D.L. High-pressure synthesis of carbon nanotubes with a variety of morphologies. Chem. Phys. Lett., 2005, 416(1-3), 18-21.
[http://dx.doi.org/10.1016/j.cplett.2005.09.041]
[138]
Baddour, C.E.; Fadlallah, F.; Nasuhoglu, D.; Mitra, R.; Vandsburger, L.; Meunier, J-L. A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst. Carbon, 2009, 47(1), 313-347.
[http://dx.doi.org/10.1016/j.carbon.2008.10.038]
[139]
Maruyama, T.; Kondo, H.; Ghosh, R.; Kozawa, A.; Naritsuka, S.; Iizumi, Y.; Okazaki, T.; Iijima, S. Single-walled carbon nanotube synthe-sis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum. Carbon, 2016, 96(1), 6-13.
[http://dx.doi.org/10.1016/j.carbon.2015.09.010]
[140]
Dae, C.J.L.; Kim, W.; Lee, T.J.; Choi, Y.C.; Park, Y.S.; Lee, Y.H.; Choi, W.B.; Lee, N.S.; Park, G-S.; Kim, J.M. Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett., 1999, 312(5), 461-468.
[141]
Liao, H.; Hafner, J.H. Low-temperature single-wall carbon nanotube synthesis by thermal chemical vapor deposition. J. Phys. Chem. B, 2004, 108(22), 6941-6943.
[http://dx.doi.org/10.1021/jp048566n]
[142]
Wei, S.; Kang, W.P.; Davidson, J.L.; Huang, J.H. Aligned carbon nanotubes fabricated by thermal CVD at atmospheric pressure using Co as catalyst with NH3 as reactive gas. Diamond Related Mat, 2006, 15(11-12), 1828-1833.
[http://dx.doi.org/10.1016/j.diamond.2006.09.010]
[143]
Chiu, C-C.; Tsai, T-Y.; Tai, N-H.; Lee, C-Y. Synthesis of ultra long vertically aligned carbon nanotubes using the rapid heating and cooling system in the thermal chemical vapor deposition process. Surf. Coat. Tech., 2006, 200(10), 3215-3219.
[http://dx.doi.org/10.1016/j.surfcoat.2005.07.016]
[144]
Ghosh, R.; Maruyama, T.; Kondo, H.; Kimoto, K.; Nagai, T.; Iijima, S. Synthesis of single-walled carbon nanotubes on graphene layers. Chem. Commun. (Camb.), 2015, 51(43), 8974-8977.
[http://dx.doi.org/10.1039/C5CC02208H] [PMID: 25930246]
[145]
Shah, K.A.; Najar, F.A.; Sharda, T.; Sreenivas, K. Synthesis of multi-walled carbon nanotubes by thermal CVD technique on Pt-W-MgO catalyst. J. Taibah Univ. Sci., 2018, 12(2), 230-234.
[http://dx.doi.org/10.1080/16583655.2018.1451114]
[146]
Mo, Y.H.; Fazle, K.A.K.M.; Nahm, K-S. The growth mechanism of carbon nanotubes from thermal cracking of acetylene over nickel cata-lyst supported on alumina. Synth. Met., 2001, 122(2), 443-447.
[http://dx.doi.org/10.1016/S0379-6779(00)00565-8]
[147]
Morales, F.M.; Méndez, D.; Ben, T.; Molina, S.I.; Araújo, D.; García, R. Structural study of micro and nanotubes synthesized by rapid thermal chemical vapor deposition. Mikrochim. Acta, 2004, 145, 129-132.
[http://dx.doi.org/10.1007/s00604-003-0141-y]
[148]
Ihm, K.; Kang, T-H.; Lee, D.H.; Park, S-Y.; Kim, K-J.; Kim, B.; Yang, J.H.; Park, C.Y. Oxygen contaminants affecting on the electronic structures of the carbon nano tubes grown by rapid thermal chemical vapor deposition. Surf. Sci., 2006, 600(18), 3729-3733.
[http://dx.doi.org/10.1016/j.susc.2006.01.075]
[149]
Chun, K.Y.; Jung, S.I.; Choi, H.Y.; Kim, J.U.; Lee, C.J. Thin multi-walled carbon nanotubes synthesized by rapid thermal chemical vapor deposition and their field emission properties. J. Nanosci. Nanotechnol., 2009, 9(3), 2148-2154.
[http://dx.doi.org/10.1166/jnn.2009.023] [PMID: 19435094]
[150]
Chaisitsak, S.; Yamada, A.; Konagai, M. Hot filament enhanced CVD synthesis of carbon nanotubes by using a carbon filament. Diamond Related Mat, 2004, 13(3), 438-444.
[http://dx.doi.org/10.1016/S0925-9635(03)00572-7]
[151]
Chen, X.; Wang, R.; Xu, J.; Yu, D. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemi-cal vapor deposition. Micron, 2004, 35(6), 455-460.
[http://dx.doi.org/10.1016/j.micron.2004.02.006] [PMID: 15120130]
[152]
Kondo, D.; Sato, S.; Awano, Y. Low-temperature synthesis of single-walled carbon nanotubes with a narrow diameter distribution using size-classified catalyst nanoparticles. Chem. Phys. Lett., 2006, 422(4-6), 481-487.
[http://dx.doi.org/10.1016/j.cplett.2006.03.017]
[153]
Choi, S.; Lee, S.; Koh, K.H. Hot filament effects on CVD of carbon nanotubes. Phys. Status Solidi Rapid Res. Lett., 2007, 1(4), 156-158.
[http://dx.doi.org/10.1002/pssr.200701089]
[154]
Chiu, C-C.; Yoshimura, M.; Ueda, K. Synthesis of carbon nanotubes by microwave plasma-enhanced hot filament chemical vapor deposi-tion. Diamond Related Mat, 2008, 17(4-5), 611-614.
[http://dx.doi.org/10.1016/j.diamond.2007.08.031]
[155]
Pasha, M.A.; Shafiekhani, A.; Vesaghi, O.E. Hot filament CVD of Fe-Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas. Appl. Surf. Sci., 2009, 256(5), 1365-1371.
[http://dx.doi.org/10.1016/j.apsusc.2009.08.090]
[156]
Yilmaz, M.; Raina, S.; Hua, S.; Weng, H.; Kang, P. Growing micropatterned CNT arrays on aluminum substrates using hot-filament CVD process. Mater. Lett., 2017, 209, 376-378.
[http://dx.doi.org/10.1016/j.matlet.2017.08.061]
[157]
Ducati, C.; Alexandrou, I.; Chhowalla, M.; Robertson, J.; Amaratunga, G.A.J. The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. J. Appl. Phys., 2004, 95(11), 6387-6391.
[http://dx.doi.org/10.1063/1.1728293]
[158]
Bell, M.S.; Teo, K.B.K.; Lacerda, R.G.; Milne, W.I.; Hash, D.B.; Meyyappan, M. Carbon nanotubes by plasma-enhanced chemical vapor deposition. Pure Appl. Chem., 2006, 78(6), 1117-1125.
[http://dx.doi.org/10.1351/pac200678061117]
[159]
Maschmann, M.R.; Amama, P.B.; Goyal, A.; Iqbal, Z.; Gat, R.; Fisher, T.S. Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes. Carbon, 2006, 44(1), 10-18.
[http://dx.doi.org/10.1016/j.carbon.2005.07.027]
[160]
Thapa, A.; Neupane, S.; Guo, R.; Jungjohann, K.L.; Pete, D.; Li, W. Direct growth of vertically aligned carbon nanotubes on stainless steel by plasma enhanced chemical vapor deposition. Diamond Related Mat, 2018, 90, 144-153.
[http://dx.doi.org/10.1016/j.diamond.2018.10.012]
[161]
Ho, G.W.; Andrew, T.S.W.; Lin, J.W.C. Tjiu, Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition. Thin Solid Films, 2001, 388(1-2), 73-77.
[http://dx.doi.org/10.1016/S0040-6090(01)00828-8]
[162]
Yabe, Y.; Ohtake, Y.; Ishitobi, T.; Show, Y.; Izumi, T.; Yamauchi, H. Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method. Diamond Related Mat, 2004, 13(4-8), 1292-1295.
[http://dx.doi.org/10.1016/j.diamond.2003.11.067]
[163]
Kato, T.; Jeong, G-H.; Hirata, T.; Hatakeyama, R. Structure control of carbon nanotubes using radio-frequency plasma enhanced chemical vapor deposition. Thin Solid Films, 2004, 457(1), 2-6.
[http://dx.doi.org/10.1016/j.tsf.2003.12.002]
[164]
Wang, H.; Moore, J.J. Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon, 2012, 50(3), 1235-1242.
[http://dx.doi.org/10.1016/j.carbon.2011.10.041]
[165]
Tanemura, M.; Iwata, K.; Takahashi, K.; Fujimoto, Y.; Okuyama, F.; Sugie, H.; Filip, V. Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters. J. Appl. Phys., 2001, 90(3), 1529-1533.
[http://dx.doi.org/10.1063/1.1382848]
[166]
Bang, Y.Y.; Je, T.J.; Whang, K.H.; Chang, W.S. Synthesis of vertically aligned carbon nanotubes by dc PECVD. Key Eng. Mater., 2006, 326-328, 333-336.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.326-328.333]
[167]
Cojocaru, C.S.; Kim, D.; Pribat, D.; Bourée, J-E. Synthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma-enhanced chemical vapor deposition. Thin Solid Films, 2006, 501(1-2), 227-232.
[http://dx.doi.org/10.1016/j.tsf.2005.07.162]
[168]
Qin, L.C.; Zhou, D.; Krauss, A.; Gruen, D.M. Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett., 1998, 72(26), 3437-3439.
[http://dx.doi.org/10.1063/1.121658]
[169]
Choi, Y.C.; Shin, Y.M.; Lee, Y.H.; Lee, B.S.; Park, G-S.; Choi, W.B.; Lee, N.S.; Kim, J.M. Controlling the diameter, growth rate, and densi-ty of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett., 2000, 76(17), 2367-2369.
[http://dx.doi.org/10.1063/1.126348]
[170]
Hinkov, I.; Farhat, S.; Lungu, C.; Gicquel, A.; Silva, F.; Mesbahi, A.; Brinza, O.; Porosnicu, C.; Anghel, A. Microwave plasma enhanced chemical vapor deposition of carbon nanotubes. J. Surf. Eng. Mater. Adv. Technol., 2014, 4(4), 196-209.
[http://dx.doi.org/10.4236/jsemat.2014.44023]
[171]
Li, D.; Tong, L.; Gao, B. Synthesis of multiwalled carbon nanotubes on stainless steel by atmospheric pressure microwave plasma chemi-cal vapor deposition. Appl. Sci. (Basel), 2020, 10(13), 4468.
[http://dx.doi.org/10.3390/app10134468]
[172]
Bae, E.J.; Min, Y-S.; Kang, D.; Ko, J-H.; Park, W. Low-temperature growth of single-walled carbon nanotubes by plasma enhanced chemi-cal vapor deposition. Chem. Mater., 2005, 17(20), 5141-5145.
[http://dx.doi.org/10.1021/cm050889o]
[173]
Peltekis, N.; Mausser, M.; Kumar, S.; McEvoy, N.; Murray, C.; Duesberg, G.S. Remote plasma‐assisted CVD growth of carbon nanotubes in an optimised rapid thermal reactor. Chem. Vap. Depos., 2012, 18(1-3), 17-21.
[http://dx.doi.org/10.1002/cvde.201106925]
[174]
Boi, F.S.; Mountjoy, G.; Wilson, R.M.; Uklinska, Z.; Sawiak, L.J.; Baxendale, M. Multiwall carbon nanotubes continuously filled with micrometre-length ferromagnetic α-Fe nanowires. Carbon, 2013, 64(1), 351-358.
[http://dx.doi.org/10.1016/j.carbon.2013.07.085]
[175]
Hampel, S.; Leonhardt, A.; Selbmann, D.; Biedermann, K.; Elefant, D.; Mu¨ller, Ch.; Gemming, T.; Bu¨chner, B. Growth and characteriza-tion of filled carbon nanotubes with ferromagnetic properties. Carbon, 2006, 44(11), 2316-2322.
[http://dx.doi.org/10.1016/j.carbon.2006.02.015]
[176]
Son, S.Y.; Lee, D.H.; Kim, S.D.; Sung, S.W.; Park, Y.S.; Han, J.H. Synthesis of multi-walled carbon nanotube in a gas-solid fluidized bed. Korean J. Chem. Eng., 2006, 23(5), 838-841.
[http://dx.doi.org/10.1007/BF02705937]
[177]
Heejun, B.; Yong, K.S.; Soonil, K.K.H.L. Growth of ultra long multiwall carbon nanotube arrays by aerosol-assisted chemical vapor deposition. J. Nanosci. Nanotechnol., 2010, 10(9), 6116-6119.
[178]
Meysami, S.S.; Dillon, F.; Koós, A.A.; Aslam, Z.; Grobert, N. Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: II. An analytical study. Carbon, 2013, 58, 159-169.
[http://dx.doi.org/10.1016/j.carbon.2013.02.041]
[179]
Mosquera, E.; Diaz-Droguett, D.E.; Carvajal, N.; Roble, M.; Morel, M.; Espinoza, R. Characterization and hydrogen storage in multi-walled carbon nanotubes grown by aerosol-assisted CVD method. Diamond Related Mat, 2014, 43, 66-71.
[http://dx.doi.org/10.1016/j.diamond.2014.01.016]
[180]
Czosnek, C.; Baran, P.; Grzywacz, P.; Baran, P.; Janik, J.F. Ro’z˙ycka, A.; Sitarz, M.; Jelen, P. Generation of carbon nanostructures with diverse morphologies by the catalytic aerosol-assisted vapor-phase synthesis method. C. R. Chim., 2015, 18(11), 1198-1204.
[http://dx.doi.org/10.1016/j.crci.2015.03.007]
[181]
Sagu, J.S.; Gamage, K.; Wijayantha, U.; Bohm, M.; Bohm, S.; Rout, T.K. Aerosol-assisted chemical vapor deposition of multi-walled car-bon nanotubes on steel substrates for application in supercapacitors. Adv. Eng. Mater., 2016, 18(6), 1059-1065.
[http://dx.doi.org/10.1002/adem.201500585]
[182]
Kumar, U.; Yadav, B.C. Synthesis of carbon nanotubes by direct liquid injection chemical vapor deposition method and its relevance for developing an ultra-sensitive room temperature based CO2 sensor. J. Taiwan Inst. Chem. Eng., 2019, 96, 652-663.
[http://dx.doi.org/10.1016/j.jtice.2019.01.002]
[183]
Esquenazi, G.L.; Brinson, B.; Barron, A.R. Catalytic growth of carbon nanotubes by direct liquid injection CVD using the nanocluster. J. Carbon Res. C, 2018, 4(1), 17. [HxPMo12O40⊂H4Mo72Fe30(O2CMe)15O254 (H2O)98-y(EtOH)y].
[http://dx.doi.org/10.3390/c4010017]
[184]
Hsu, W.K.; Hare, J.P.; Terrones, M.; Kroto, H.W.; Walton, D.R.M.; Harris, P.J.H. Condensed-phase nanotubes. Nature, 1995, 377(6551), 687.
[http://dx.doi.org/10.1038/377687a0]
[185]
Ren, J.; Li, F-F.; Lau, J.; González-Urbina, L.; Licht, S. One-pot synthesis of carbon nanofibers from CO2. Nano Lett., 2015, 15(9), 6142-6148.
[http://dx.doi.org/10.1021/acs.nanolett.5b02427] [PMID: 26237131]
[186]
Novoselova, I.; Oliinyk, N.F.; Volkov, S.; Konchits, A.; Yanchuk, I.B.; Yefanov, V.S.; Kolesnik, S.P.; Karpets, M.V. Electrolytic synthe-sis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Physica E, 2008, 40(7), 2231-2237.
[http://dx.doi.org/10.1016/j.physe.2007.10.069]
[187]
Anagappan, S.; Thirumal, V.; Ramkumar, K.; Visuvasam, A. Synthesis of carbon nanotubes by molten salt technique. Chem. Sci. Trans., 2013, 2(2), 575-583.
[http://dx.doi.org/10.7598/cst2013.394]
[188]
Wu, H.; Li, Z.; Ji, D.; Liu, Y.; Li, L.; Yuan, D.; Zhang, Z.; Ren, J.; Lefler, M.; Wang, B.; Licht, S. One-pot synthesis of nanostructured carbon materials from carbon dioxide via electrolysis in molten carbonate salts. Carbon, 2016, 106, 208-217.
[http://dx.doi.org/10.1016/j.carbon.2016.05.031]
[189]
Arcaro, S.; Guaglianoni, W.; Alves, A.K.; Bergmann, C.P. The effect of CaCO3 in the formation of carbon nanotubes via electrolysis of molten Li2CO3/CaCO3 mixtures. Int. J. Appl. Ceram. Technol., 2022, 19(1), 451-458.
[http://dx.doi.org/10.1111/ijac.13889]
[190]
Gogotsi, Y.; Libera, J.A.; Yoshimura, M. Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res., 2000, 15(12), 2591-2594.
[http://dx.doi.org/10.1557/JMR.2000.0370]
[191]
Manafi, S.; Nadali, H.; Irani, H.R. Low temperature synthesis of multi-walled carbon nanotubes via sonochemical/hydrothermal method. Mater. Lett., 2008, 62(26), 4175-4176.
[http://dx.doi.org/10.1016/j.matlet.2008.05.072]
[192]
Manafi, S.; Rahaei, M.B.; Elli, Y.; Joughehdoust, S. High-yield synthesis of multi-walled carbon nanotube by hydrothermal method. Can. J. Chem., 2010, 88, 283-286.
[193]
Krishnamurthy, G.; Namitha, R. A novel method of synthesis of carbon nanotube by hydrothermal process. Int. J. Sci. Res., 2013, 1, 358-362.
[194]
Abbaslooa, S.; Ojaghi-Ilkhchi, M.; Mozammel, M. 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM, 2015.
[195]
Kumar, D.; Singh, K.; Verma, V.; Bhatti, H.S. Low-temperature hydrothermal synthesis and functionalization of multiwalled carbon nano-tubes. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci., 2016, 90(2), 139-148.
[http://dx.doi.org/10.1007/s12648-015-0741-5]
[196]
Razali, M.H.; Ahmad, A.; Azaman, M.A.; Amin, K.A.M. Physicochemical properties of carbon nanotubes (CNT’s) synthesized at low temperature using simple hydrothermal method. Int. J. Appl. Chem., 2016, 12(3), 273-280.
[197]
Murali, S.; Perumal, S.K. Synthesis of nanotubes under carbon environment at low temperature using hydrothermal method. Optik (Stuttg.), 2018, 162, 81-85.
[http://dx.doi.org/10.1016/j.ijleo.2018.01.106]
[198]
Jagadish, K.; Srikantaswamy, S.; Abhilash, M.R.; Nayan, M.B.; Rajendraprasad, S. Akshata, hydrothermal synthesis of multiwall carbon nanotubes using polystyrene: Purification and characterization. IJRASET, 2018, 6(2), 2085-2089.
[199]
Biró, L.P.; Horváth, Z.E.; Koós, A.A.; Osváth, Z.; Vértesy, Z.; Darabont, A.; Kertész, K.; Neamju, C.; Sárközi, Z.; Tapaszt, L. Direct syn-thesis of multi-walled and single-walled carbon nanotubes by spray-pyrolysis. J. Optoelectron. Adv. Mater., 2003, 5(3), 661-666.
[200]
Darabont, A.; Nemes-Incze, P.; Kertész, K.; Tapasztó, L.; Koós, A.A.; Osváth, Z.; Sárközi, Z.; Vértesy, Z.; Horváth, Z.E.; Biró, L.P. Syn-thesis of carbon nanotubes by spray pyrolysis and their investigation by electron microscopy. J. Optoelectron. Adv. Mater., 2005, 7(2), 631-636.
[201]
Nemes-Incze, P. Daróczi, N.; Sárközi, Z.; Koós, A.A.; Kertész, K.; Ţiprigan, O.; Horváth, Z.E.; Darabont, A.; Biró, L.P. Synthesis of bamboo-structured multiwalled carbon nanotubes by spray pyrolysis method, using a mixture of benzene and pyridine. J. Optoelectron. Adv. Mater., 2007, 9(5), 1525-1529.
[202]
Rosi, M.; Noor, F.A.; Yulkifli, L.; Zaenufar, L.; Abdullah, M. Khairurrijal. Synthesis of carbon nanotubes from a mixture of ferrocene and benzene by spray pyrolisis. Proceeding of 2nd International Conference on Mathematics and Natural Sciences (ICMNS), 2008.
[203]
Alonso-Nuñez, G.; Lara-Romero, J.; Paraguay-Delgado, F.; Sanchez-Castañeda, M.; Jiménez-Sandoval, S. Temperature optimisation of CNT synthesis by spray pyrolysis of alpha-pinene as the carbon source. J. Exp. Nanosci., 2010, 5(1), 52-60.
[http://dx.doi.org/10.1080/17458080903251786]
[204]
Khatri, I.; Kishi, N.; Zhang, J.; Soga, T.; Jimbo, T.; Adhikari, S.; Aryal, H.R.; Umeno, M. Synthesis and characterization of carbon nano-tubes via ultrasonic spray pyrolysis method on zeolite. Thin Solid Films, 2010, 518(23), 6756-6760.
[http://dx.doi.org/10.1016/j.tsf.2010.06.018]
[205]
Ionescu, M.I.; Zhang, Y.; Li, R.; Sun, X.; Abou-Rachid, H.; Lussier, L-S. Hydrogen-free spray pyrolysis chemical vapor deposition meth-od for the carbon nanotube growth: Parametric studies. Appl. Surf. Sci., 2011, 257(15), 6843-6849.
[http://dx.doi.org/10.1016/j.apsusc.2011.03.011]
[206]
Young-Soo, P.; Mong-Young, H.; Sin-Jae, K.; Seung-Hee, L.; Kay-Hyeok, A. Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method. Carbon lett., 2011, 12(2), 102-106.
[207]
Annu, A.; Bhattacharya, B.; Singh, P.K.; Shukla, P.K.; Rhee, H-W. Carbon nanotube using spray pyrolysis: Recent scenario. J. Alloys Compd., 2017, 691, 970-982.
[http://dx.doi.org/10.1016/j.jallcom.2016.08.246]
[208]
Uriza-Vega, E.; Herrera-Ramírez, M.; López-Meléndez, C.; Estrada-Guel, I.; Martínez-Franco, E.; Martínez-Sánchez, R.; Carreño-Gallardo, C. Synthesis and characterization of carbon nanotubes via spray pyrolysis method. Microsc. Microanal. (S 1), 2017, 23, 1928-1929.
[http://dx.doi.org/10.1017/S1431927617010303]
[209]
Zamudio-Hernández, A.; Sánchez-Cuevas, J. J.; Mercado-Zúñiga, C.; Zárate-Medina, J.; Rosas, G. Synthesis of multi-walled carbon nano-tubes by spray pyrolysis method. Microsc. Microanal. (S 2), 2020, 26, 2436-2438.
[http://dx.doi.org/10.1017/S1431927620021571]
[210]
Yacamàn, M.J.; Yoshida, M.M.; Rendon, L.; Santiesteban, J.G. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett., 1993, 62(2), 202-204.
[http://dx.doi.org/10.1063/1.109315]
[211]
Song, X.Y.; Cao, W.; Ayers, M.R.; Hunt, A.J. Carbon nanostructures in silica aerogel composites. J. Mater. Res., 1995, 10(2), 251-254.
[http://dx.doi.org/10.1557/JMR.1995.0251]
[212]
Vasenkov, A.V.; Sengupta, D.; Frenklach, M. Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth. J. Phys. Chem. B, 2009, 113(7), 1877-1882.
[http://dx.doi.org/10.1021/jp808346h] [PMID: 19173570]
[213]
Yahyazadeh, A.; Khoshandam, B. Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron-molybdenum alloy thin layer catalysts. Results Phys., 2017, 7, 3826-3837.
[http://dx.doi.org/10.1016/j.rinp.2017.10.001]
[214]
Henao, W.; Cazaña, F.; Tarifa, P.; Romeo, E.; Latorre, N.; Sebastian, V.; Delgado, J.J.; Monzón, A. Selective synthesis of carbon nano-tubes by catalytic decomposition of methane using Co-Cu/cellulose derived carbon catalysts: A comprehensive kinetic study. Chem. Eng. J., 2021, 404, 126103.
[http://dx.doi.org/10.1016/j.cej.2020.126103]
[215]
Rodriguez, N.M.; Kim, M.S.; Baker, R.T.K. Carbon nanofibers: A unique catalyst support medium. J. Phys. Chem., 1994, 98(50), 13108-13111.
[http://dx.doi.org/10.1021/j100101a003]
[216]
Han, C.Y.; Xiao, Z-L.; Wang, H.H.; Lin, X-M.; Trasobares, S.; Cook, R.E. Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors. J. Nanomater., 2009, 562376, 1-11.
[http://dx.doi.org/10.1155/2009/562376]
[217]
Li, Y.L.; Yu, Y.D.; Liang, Y. A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis. J. Mater. Res., 1997, 12(7), 1678-1680.
[http://dx.doi.org/10.1557/JMR.1997.0229]
[218]
Zhu, H-L.; Bai, Y-J.; Cui, H-Z.; Liu, L. Facile synthesis of carbon nanotubes via low temperature pyrolysis of ferrocene. J. Cryst. Growth, 2014, 404, 44-47.
[http://dx.doi.org/10.1016/j.jcrysgro.2014.06.048]
[219]
Moothi, K.; Simate, G.S.; Falcon, R.; Iyuke, S.E.; Meyyappan, M. Carbon nanotube synthesis using coal pyrolysis. Langmuir, 2015, 31(34), 9464-9472.
[http://dx.doi.org/10.1021/acs.langmuir.5b01894] [PMID: 26262467]
[220]
Peigney, A.; Laurent, C.; Dobigeon, F.; Rousset, A. Carbon nanotubes grown in situ by a novel catalytic method. J. Mater. Res., 1997, 12(3), 613-615.
[http://dx.doi.org/10.1557/JMR.1997.0092]
[221]
Chen, C.; Chen, Y.; Zhu, S.; Dai, J.; Pastel, G.; Yao, Y.; Liu, D.; Wang, Y.; Wan, J.; Li, T.; Luo, W.; Hu, L. Catalyst-free in situ carbon nanotube growth in confined space via high temperature gradient. Research, 2018, 2018, 1793784.
[http://dx.doi.org/10.1155/2018/1793784] [PMID: 31549023]
[222]
Tang, T.; Chen, X.; Meng, X.; Chen, H.; Ding, Y. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew. Chem. Int. Ed., 2005, 44(10), 1517-1520.
[http://dx.doi.org/10.1002/anie.200461506] [PMID: 15678431]
[223]
Howard, J.; Kinnon, B.M.; Johnson, J.T.; Makarovsky, M.E.; Lafleur, Y.A.L. Production of C-60 and C-70 fullerenes in benzene oxygen flames. J. Phys. Chem., 1992, 96(16), 6657-6662.
[http://dx.doi.org/10.1021/j100195a026]
[224]
Wal, R.L.V. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes. Chem. Phys. Lett., 2000, 324(1-3), 217-223.
[http://dx.doi.org/10.1016/S0009-2614(00)00492-9]
[225]
Wal, R.L.V.; Hall, L.J.; Berger, G.M. Optimization of flame synthesis for carbon nanotubes using supported catalyst. J. Phys. Chem. B, 2002, 106(51), 13122-13132.
[http://dx.doi.org/10.1021/jp020614l]
[226]
Height, M.J.; Howard, J.B.; Tester, J.W.; Sande, J.B.V. Flame synthesis of single-walled carbon nanotubes. Carbon, 2004, 42(11), 2295-2307.
[http://dx.doi.org/10.1016/j.carbon.2004.05.010]
[227]
Nakazawa, S.; Yokomori, T.; Mizomoto, M. Flame synthesis of carbon nanotubes in a wall stagnation flow. Chem. Phys. Lett., 2005, 403(1-3), 158-162.
[http://dx.doi.org/10.1016/j.cplett.2004.12.091]
[228]
Li, C.; Fang, G.; Liu, N.; Yang, X.; Zhao, X. Flame-synthesis of carbon nanotubes on silicon substrates and their field emission proper-ties. Diamond Related Mat, 2008, 17(6), 1015-1020.
[http://dx.doi.org/10.1016/j.diamond.2008.03.030]
[229]
Chu, H.; Han, W.; Ren, F.; Xiang, L.; Wei, Y.; Zhang, C. Flame synthesis of carbon nanotubes on different substrates in methane diffusion flames. ES Energy & Environment, 2018, 2, 73-81.
[http://dx.doi.org/10.30919/esee8c165]
[230]
Kumar, M.; Ando, Y. Camphor-a botanical precursor producing garden of carbon nanotubes. Diamond Related Mat, 2003, 12(3-7), 998-1002.
[http://dx.doi.org/10.1016/S0925-9635(02)00341-2]
[231]
Kumar, M.; Ando, Y. Single-wall and multi-wall carbon nanotubes from camphor-A botanical hydrocarbon. Diamond Related Mat, 2003, 12(10-11), 1845-1850.
[http://dx.doi.org/10.1016/S0925-9635(03)00217-6]
[232]
Kumar, M.; Ando, Y. A simple method of producing aligned carbon nanotubes from an unconventional precursor-Camphor. Chem. Phys. Lett., 2003, 374(5-6), 521-526.
[http://dx.doi.org/10.1016/S0009-2614(03)00742-5]
[233]
Kumar, M.; Kakamu, K.; Okazaki, T.; Ando, Y. Field emission from camphor Pyrolyzed carbon nanotubes. Chem. Phys. Lett., 2004, 385(3-4), 161-165.
[http://dx.doi.org/10.1016/j.cplett.2003.12.064]
[234]
Kumar, M.; Ando, Y. Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon, 2005, 43(3), 533-540.
[http://dx.doi.org/10.1016/j.carbon.2004.10.014]
[235]
Musso, S.; Fanchini, G.; Tagliaferro, A. Growth of vertically aligned carbon nanotubes by CVD by evaporation of carbon precursors. Diamond Related Mat, 2005, 14(3-7), 784-789.
[http://dx.doi.org/10.1016/j.diamond.2004.12.030]
[236]
Afre, R.A.; Soga, T.; Jimbo, T.; Kumar, M.; Ando, Y.; Sharon, M. Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil. Chem. Phys. Lett., 2005, 414(1-3), 6-10.
[http://dx.doi.org/10.1016/j.cplett.2005.08.040]
[237]
Afre, R.A.; Soga, T.; Jimbo, T.; Kumar, M.; Ando, Y.; Sharon, M.; Somani, P.R.; Umeno, M. Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies. Microporous Mesoporous Mater., 2006, 96(1-3), 184-190.
[http://dx.doi.org/10.1016/j.micromeso.2006.06.036]
[238]
Musso, S.; Porro, S.; Giorcelli, M.; Chiodoni, A.; Ricciardi, C.; Tagliaferro, A. Macroscopic growth of carbon nanotube mats and their mechanical properties. Carbon, 2007, 45(5), 1133-1136.
[http://dx.doi.org/10.1016/j.carbon.2006.12.019]
[239]
Ghosh, P.; Afre, R.A.; Soga, T.; Jimbo, T. A simple method of producing single-walled carbon nanotubes from a natural precursor: Euca-lyptus oil. Mater. Lett., 2007, 61(17), 3768-3770.
[http://dx.doi.org/10.1016/j.matlet.2006.12.030]
[240]
Ghosh, P.; Soga, T.; Afre, R.A.; Jimbo, T. Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocarbon: Turpen-tine oil. J. Alloys Compd., 2008, 462(1-2), 289-293.
[http://dx.doi.org/10.1016/j.jallcom.2007.08.027]
[241]
Ghosh, P.; Soga, T.; Tanemura, M.; Zamri, M.; Jimbo, T.; Katoh, R.; Sumiyama, K. Vertically aligned carbon nanotubes from natural pre-cursors by spray pyrolysis method and their field electron emission properties. Appl. Phys., A Mater. Sci. Process., 2009, 94(1), 51-56.
[http://dx.doi.org/10.1007/s00339-008-4856-9]
[242]
Suriani, A.B.; Azira, A.A.; Nik, S.F.; Md Nor, R.; Rusop, M. Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mater. Lett., 2009, 63(30), 2704-2706.
[http://dx.doi.org/10.1016/j.matlet.2009.09.048]
[243]
Kudin, T.I.T.; Zainal, N.F.A.; Ali, A.M.M.; Abdullah, S.; Rusop, M.; Sulaiman, M.A.; Yahya, M.Z.A. Electrochemical performance of anode material from palm oils derived carbon nanotubes for lithium ion batteries. Mater. Res. Innov., 2009, 13(3), 269-271.
[http://dx.doi.org/10.1179/143307509X440497]
[244]
Awasthi, K.; Kumar, R.; Tiwari, R.S.; Srivastava, O.N. Large scale synthesis of bundles of aligned carbon nanotubes using a natural pre-cursor: Turpentine oil. J. Exp. Nanosci., 2010, 5(6), 498-508.
[http://dx.doi.org/10.1080/17458081003664159]
[245]
Karthikeyan, S.; Mahalingam, P. Synthesis and characterization of multi-walled carbon nanotubes from biodiesel oil: Green nanotechnolo-gy route. Inter. J. Green Nanotech. Phys. Chem., 2010, 2(2), 39.
[http://dx.doi.org/10.1080/19430876.2010.532421]
[246]
Paul, S.; Samdarshi, S.K. A green precursor for carbon nanotube synthesis. N. Carbon Mater., 2011, 26(2), 85-88.
[http://dx.doi.org/10.1016/S1872-5805(11)60068-1]
[247]
Raziah, A.Z.; Junizah, A.R.; Saifuddin, N. Synthesis of carbon nanotubes using natural carbon precursor: Castor oil. In: AIP Conf. Proc; , 2012; 1482, p. 564-567.
[http://dx.doi.org/10.1063/1.4757535]
[248]
Maryam, M.; Suriani, A.; Shamsudin, M.; Mahmood, M.R. Synthesis of carbon nanotubes from palm oil precursor by aerosol-assisted catalytic CVD method. Appl. Mech. Mater., 2012, 229-231, 247-251.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.229-231.247]
[249]
Mishra, N.; Das, G.; Ansaldo, A.; Genovese, A.; Malerba, M.; Povia, M.; Ricci, D.; Fabrizio, E.D.; Zitti, E.D.; Sharon, M. Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J. Anal. Appl. Pyrolysis, 2012, 94, 91-98.
[http://dx.doi.org/10.1016/j.jaap.2011.11.012]
[250]
Shamsudin, M.S.; Mohammad, M.; Zobir, S.A.M.; Asli, N.A.; Bakar, S.A.; Abdullah, S.; Yahya, S.Y.S.; Mahmood, M.R. Synthesis and nucleation-growth mechanism of almost catalyst-free carbon nanotubes grown from Fe-filled sphere-like graphene-shell surface. J. Nanostructure Chem., 2013, 3(1), 13.
[http://dx.doi.org/10.1186/2193-8865-3-13]
[251]
Angulakshmi, V.S.; Rajasekar, K.; Sathiskumar, C.; Karthikeyan, S. Growth of vertically aligned carbon nanotubes on a silicon substrate by a spray pyrolysis method. N. Carbon Mater., 2013, 28(4), 284-287.
[http://dx.doi.org/10.1016/S1872-5805(13)60082-7]
[252]
Suriani, A.B.; Asli, N.A.; Salina, M.; Mamat, M.H.; Aziz, A.A.; Falina, A.N.; Maryam, M.; Shamsudin, M.S.; Nor, R.M.; Abdullah, S.B.; Rusop, M. Effect of iron and cobalt catalysts on the growth of carbon nanotubes from palm oil precursor. IOP Conf. Ser. Mater. Sci. Eng., 2013, 46, 12014.
[253]
Salifairus, M.; Rusop, M. Synthesis of carbon nanotubes by chemical vapour deposition of camphor oil over ferrocene and aluminum isopropoxide catalyst. Adv. Mat. Res., 2013, 667, 213-217.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.667.213]
[254]
Yousefi, A.T.; Bagheri, S.; Shinji, K.; Rouhi, J.; Rusop, M.M.; Ikeda, S. Highly oriented vertically aligned carbon nanotubes via chemical vapour deposition for key potential application in CNT ropes. Mater. Res. Innov., 2015, 19(3), 212-216.
[http://dx.doi.org/10.1179/1433075X14Y.0000000246]
[255]
Kumar, R.; Singh, R.K.; Kumar, P.; Dubey, P.K.; Tiwari, R.S.; Srivastava, O.N. Clean and efficient synthesis of graphene nanosheets and rectangular aligned-carbon nanotubes bundles using green botanical hydrocarbon precursor. Sci. Adv. Mater., 2014, 6(1), 76-83.
[http://dx.doi.org/10.1166/sam.2014.1682]
[256]
Sakthivel, S.; Baskaran, V. Structural study on synthesis of carbon nanotubes using caster oil by the vertical spray pyrolysis method. J. Pure Appl. Ind. Phys., 2015, 5, 67.
[257]
Sebag, M.G.; Saulo, B.; Bragança, R. HeckLuiz, N.; Filho, C.P.D.S. Synthesis of carbon nanostructures by the pyrolysis of wood sawdust in a tubular reactor. J. Mater. Res. Technol., 2017, 6(2), 171-177.
[http://dx.doi.org/10.1016/j.jmrt.2016.11.003]
[258]
Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Fadzlinatul, M.Y.; Salifairus, M.J.; Asli, N.A. Synthesis of carbon nano-tubes from palm oil on stacking and non-stacking substrate by thermal-CVD method. AIP Conf. Proc., 2018, 1963, 020027.
[http://dx.doi.org/10.1063/1.5036873]
[259]
Hakim, Y.Z.; Yulizar, Y.; Nurcahyo, A.; Surya, M. Green synthesis of carbon nanotubes from coconut shell waste for the adsorption of Pb (II) ions. Acta Chimica Asiana, 2019, 1(1), 6-10.
[http://dx.doi.org/10.29303/aca.v1i1.2]
[260]
Kumar, U.; Sikarwar, S.; Sonker, R.; Yadav, B.C. Carbon nanotube: Synthesis and application in solar cell. J. Inorg. Organomet. Polym. Mater., 2016, 26(6), 1231-1242.
[http://dx.doi.org/10.1007/s10904-016-0401-z]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy