[4]
Mehra, N.K.; Jain, K. Functionalized carbon nanotubes and their drug delivery applications. Nanostruc. Drug Deliv., 2014, 4, 328.
[9]
Rahman, G.; Najaf, Z.; Mehmood, A.; Bilal, S.; Shah, A.H.A.; Mian, S.A.; Ali, G. An overview of the recent progress in the synthesis and applications of carbon nanotubes. C. - J. Carbon Res., 2019, 5C, 3.
[10]
Hirlekar, R.; Manohar, Y.; Harshal, G.; Mohit, V.; Vilasrao, K. Carbon nanotubes and its applications: A review. Asian J. Pharm. Clin. Res., 2009, 2, 17.
[24]
Zhao, X.; Wang, M.; Ohkohchi, M.; Ando, Y. Bull. Res. Inst. Meijo Univ., 1996, 1, 7.
[42]
Kim, H.H.; Kim, H.J. The preparation of carbon nanotubes by DC arc discharge process using Xylene-Ferrocene as a floating ctalyst pre-susor. IEEE Nanotechnology Materials and Devices Conference, Proceedings, 2006, pp. 496-497.
[51]
Saravanan, M.S.S.; Babu, S.P.K.; Sivaprasad, K.; Jagannatham, M. Techno-economics of carbon nanotubes produced by open air arc dis-charge method. Int. J. Eng. Sci. Technol., 2010, 2, 100.
[55]
Hosseini, A.A.; Allahyari, M.; Besheli, S.D. Synthesis of carbon nanotubes, nano fibbers and nano union by electric arc discharge method using nacl accuse as solution and Fe and Ni particles and catalysts. Int. J. Sci. Environ. Technol., 2012, 1, 217.
[56]
Teymourzadeh, M.; Kangarlou, H. Synthesis of multi-walled carbon nanotubes in an arc discharge using hydrocarbons precursor as car-bon sources. World Appl. Sci. J., 2012, 18, 879.
[75]
Fujiwara, Y.; Maehashi, K.; Ohno, Y.; Inoue, K.; Matsumoto, K. Position-controlled growth of single-walled carbon nanotubes by laserir-radiated chemical vapor deposition. Jpn. J. Appl. Phys., 2005, 144, 1581-1584.
[80]
Kasuya, K.; Nagato, K.; Jin, Y.; Morii, H. Rapid and localized synthesis of single-walled carbon nanotubes on flat surface by laser-assisted chemical vapor deposition. Jpn. J. Appl. Phys. Part 2, 2007, 46, L333-L335.
[102]
Benjamin, J.S. Dispersion strengthened superalloys by mechanical alloying. Metall. Trans., 1970, 1, 2943.
[103]
Gou, J.; Zhuge, J.; Liang, F. Manufacturing Techniques for Polymer Matrix Composites (PMCs); Woodhead Publishing, 2012.
[111]
Smiljanic, O. Method and apparatus for producing single-wall carbon nanotubes. US Patent, US7585482B2.
[116]
Zajíčková, L.; Jašek, O.; Synek, P.; Eliáš, M.; Kudrle, V.; Kadlečíková, M.; Breza, J.; Hanzlíková, R. Synthesis of carbon nanotubes in MW plasma torch with different methods of catalyst layer preparation and their applications. Nanocon., 2009, 10, 20.
[122]
Laplaze, D.; Bernier, P.; Barbedette, L.; Lambert, J.M.; Flamant, G.; Brunelle, A.; Della-Negra, S. Production of fullerenes from solar ener-gy. Acad C.R. Sci. Paris, 1994, 318, 733.
[127]
Sengupta, J. Handbook of Nanomaterials for Industrial Applications; Elsevier, 2018.
[140]
Dae, C.J.L.; Kim, W.; Lee, T.J.; Choi, Y.C.; Park, Y.S.; Lee, Y.H.; Choi, W.B.; Lee, N.S.; Park, G-S.; Kim, J.M. Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett., 1999, 312(5), 461-468.
[177]
Heejun, B.; Yong, K.S.; Soonil, K.K.H.L. Growth of ultra long multiwall carbon nanotube arrays by aerosol-assisted chemical vapor deposition. J. Nanosci. Nanotechnol., 2010, 10(9), 6116-6119.
[192]
Manafi, S.; Rahaei, M.B.; Elli, Y.; Joughehdoust, S. High-yield synthesis of multi-walled carbon nanotube by hydrothermal method. Can. J. Chem., 2010, 88, 283-286.
[193]
Krishnamurthy, G.; Namitha, R. A novel method of synthesis of carbon nanotube by hydrothermal process. Int. J. Sci. Res., 2013, 1, 358-362.
[194]
Abbaslooa, S.; Ojaghi-Ilkhchi, M.; Mozammel, M. 5th International Biennial Conference on Ultrafine Grained and Nanostructured Materials, UFGNSM, 2015.
[196]
Razali, M.H.; Ahmad, A.; Azaman, M.A.; Amin, K.A.M. Physicochemical properties of carbon nanotubes (CNT’s) synthesized at low temperature using simple hydrothermal method. Int. J. Appl. Chem., 2016, 12(3), 273-280.
[198]
Jagadish, K.; Srikantaswamy, S.; Abhilash, M.R.; Nayan, M.B.; Rajendraprasad, S. Akshata, hydrothermal synthesis of multiwall carbon nanotubes using polystyrene: Purification and characterization. IJRASET, 2018, 6(2), 2085-2089.
[199]
Biró, L.P.; Horváth, Z.E.; Koós, A.A.; Osváth, Z.; Vértesy, Z.; Darabont, A.; Kertész, K.; Neamju, C.; Sárközi, Z.; Tapaszt, L. Direct syn-thesis of multi-walled and single-walled carbon nanotubes by spray-pyrolysis. J. Optoelectron. Adv. Mater., 2003, 5(3), 661-666.
[200]
Darabont, A.; Nemes-Incze, P.; Kertész, K.; Tapasztó, L.; Koós, A.A.; Osváth, Z.; Sárközi, Z.; Vértesy, Z.; Horváth, Z.E.; Biró, L.P. Syn-thesis of carbon nanotubes by spray pyrolysis and their investigation by electron microscopy. J. Optoelectron. Adv. Mater., 2005, 7(2), 631-636.
[201]
Nemes-Incze, P. Daróczi, N.; Sárközi, Z.; Koós, A.A.; Kertész, K.; Ţiprigan, O.; Horváth, Z.E.; Darabont, A.; Biró, L.P. Synthesis of bamboo-structured multiwalled carbon nanotubes by spray pyrolysis method, using a mixture of benzene and pyridine. J. Optoelectron. Adv. Mater., 2007, 9(5), 1525-1529.
[202]
Rosi, M.; Noor, F.A.; Yulkifli, L.; Zaenufar, L.; Abdullah, M. Khairurrijal. Synthesis of carbon nanotubes from a mixture of ferrocene and benzene by spray pyrolisis. Proceeding of 2nd International Conference on Mathematics and Natural Sciences (ICMNS), 2008.
[206]
Young-Soo, P.; Mong-Young, H.; Sin-Jae, K.; Seung-Hee, L.; Kay-Hyeok, A. Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method. Carbon lett., 2011, 12(2), 102-106.
[252]
Suriani, A.B.; Asli, N.A.; Salina, M.; Mamat, M.H.; Aziz, A.A.; Falina, A.N.; Maryam, M.; Shamsudin, M.S.; Nor, R.M.; Abdullah, S.B.; Rusop, M. Effect of iron and cobalt catalysts on the growth of carbon nanotubes from palm oil precursor. IOP Conf. Ser. Mater. Sci. Eng., 2013, 46, 12014.
[256]
Sakthivel, S.; Baskaran, V. Structural study on synthesis of carbon nanotubes using caster oil by the vertical spray pyrolysis method. J. Pure Appl. Ind. Phys., 2015, 5, 67.