Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Antifungal Role of Common Indian Spices & Herbs: A Narrative Review

Author(s): Pratyusha Vavilala*, Aayushi Deo, Divya Prakash, Muskan Tiwari and Vibhuti Aggarwal

Volume 18, Issue 8, 2022

Published on: 17 May, 2022

Page: [715 - 727] Pages: 13

DOI: 10.2174/1573401318666220328103029

Price: $65

Open Access Journals Promotions 2
Abstract

A large variety of spices can be found in kitchens worldwide. The usage varies from region to region as per the cuisine. They hold nutritional values and are being exploited for their anticancer, antifungal, antibacterial, antiulcer, anti-inflammatory properties. This study highlights some of the commonly used Indian spices for their antifungal properties and summarizes their potential antifungal activity. Fungal diseases are deep-rooted and cause acute/chronic infections in humans, mainly Aspergillus and Candida species. As the tropical climate provides a breeding ground for fungal infections, such regions share a huge load of mycoses. Various spices have been shown to be effective in treating fungal diseases. The current study focuses on the potential anti-fungal role of the spices and reviews the current literature on the possible mechanism of action of the active compounds of these spices relative to commonly used antifungal drugs. The spices consist of essential oils that inhibit mycotoxin biosynthesis or disrupt and inhibit cell wall formation and efflux pumps and are comparable to the currently available antifungal drugs.

Keywords: Aspergillus, antifungals, Candida albicans, medicinal foods, spices, plant food science.

Graphical Abstract
[1]
Walsh TJ, Dixon DM. Chapter 75 Spectrum of Mycoses Med Microbiol. 4th edition. Galveston, TX: University of Texas Medical Branch at Galveston 1996.
[2]
de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, et al. Candida infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Front Microbiol 2018; 9: 1351.
[http://dx.doi.org/10.3389/fmicb.2018.01351] [PMID: 30018595]
[3]
Panackal AA, Bennett JE, Williamson PR. Treatment options in invasive aspergillosis. Curr Treat Options Infect Dis 2014; 6(3): 309-25.
[http://dx.doi.org/10.1007/s40506-014-0016-2] [PMID: 25328449]
[4]
Gersbach PV, Reddy N. Non-invasive localization of thymol accumulation in Carum copticum (Apiaceae) fruits by chemical shift selective magnetic resonance imaging. Ann Bot (Lond) 2002; 90(2): 253-7.
[http://dx.doi.org/10.1093/aob/mcf179] [PMID: 12197523]
[5]
Bairwa R, Sodha RS, Rajawat BS. Trachyspermum ammi. Pharmacogn Rev 2012; 6(11): 56-60.
[http://dx.doi.org/10.4103/0973-7847.95871] [PMID: 22654405]
[6]
Davidson A. The oxford companion to food. 2nd ed. Oxford University Press 2006.
[http://dx.doi.org/10.1093/acref/9780192806819.001.0001]
[7]
Singh G, Maurya S, Catalan C, De Lampasona MP. Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. J Agric Food Chem 2004; 52(11): 3292-6.
[http://dx.doi.org/10.1021/jf035211c] [PMID: 15161185]
[8]
Khan N, Shreaz S, Bhatia R, et al. Anticandidal activity of curcumin and methyl cinnamaldehyde. Fitoterapia 2012; 83(3): 434-40.
[http://dx.doi.org/10.1016/j.fitote.2011.12.003] [PMID: 22178679]
[9]
Sharifzadeh A, Shokri H. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans. Avicenna J Phytomed 2016; 6(2): 215-22.
[PMID: 27222835]
[10]
Gemeda N, Woldeamanuel Y, Asrat D, Debella A. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production: A potential source of botanical food preservative. Asian Pac J Trop Biomed 2014; 4(Suppl. 1): S373-81.
[http://dx.doi.org/10.12980/APJTB.4.2014C857] [PMID: 25183114]
[11]
Hajare SS, Hajare SN, Sharma A. Aflatoxin inactivation using aqueous extract of ajowan (Trachyspermum ammi) seeds. J Food Sci 2005; 70(1): C29-34.
[http://dx.doi.org/10.1111/j.1365-2621.2005.tb09016.x]
[12]
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils--a review. Food Chem Toxicol 2008; 46(2): 446-75.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[13]
Nychas GJE. Natural antimicrobials from plants. In: Gould GW, Ed. New Methods of Food Preservation. Boston, MA: Springer US 1995; pp. 58-89.
[http://dx.doi.org/10.1007/978-1-4615-2105-1_4]
[14]
Cavaleiro C, Pinto E, Gonçalves MJ, Salgueiro L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J Appl Microbiol 2006; 100(6): 1333-8.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02862.x] [PMID: 16696681]
[15]
Ahmad A, Khan A, Yousuf S, Khan LA, Manzoor N. Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia 2010; 81(8): 1157-62.
[http://dx.doi.org/10.1016/j.fitote.2010.07.020] [PMID: 20659536]
[16]
Lima LHA, Pinheiro CG, de Moraes LM, de Freitas SM, Torres FA. Xylitol dehydrogenase from Candida tropicalis: Molecular cloning of the gene and structural analysis of the protein. Appl Microbiol Biotechnol 2006; 73(3): 631-9.
[http://dx.doi.org/10.1007/s00253-006-0525-0] [PMID: 16896602]
[17]
Xu J, Zhou F, Ji B-P, Pei R-S, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 2008; 47(3): 174-9.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02407.x] [PMID: 19552781]
[18]
Horváth G, Kovács K, Kocsis B, Kustos I. Effect of Thyme (Thymus vulgaris L.) essential oil and its main constituents on the outer membrane protein composition of erwinia strains studied with microfluid chip technology. Chromatographia 2009; 70(11-12): 1645-50.
[http://dx.doi.org/10.1365/s10337-009-1374-7]
[19]
Chaieb K, Hajlaoui H, Zmantar T, et al. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother Res 2007; 21(6): 501-6.
[http://dx.doi.org/10.1002/ptr.2124] [PMID: 17380552]
[20]
Cortés-Rojas DF, de Souza CRF, Oliveira WP. Clove (Syzygium aromaticum): A precious spice. Asian Pac J Trop Biomed 2014; 4(2): 90-6.
[http://dx.doi.org/10.1016/S2221-1691(14)60215-X] [PMID: 25182278]
[21]
Núñez L, D’Aquino M, Chirife J. Antifungal properties of clove oil (Eugenia caryophylata) in sugar solution. Braz J Microbiol 2001; 32.
[22]
Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida aspergillus and dermatophyte species. J Med Microbiol 2009; 58(Pt 11): 1454-62.
[http://dx.doi.org/10.1099/jmm.0.010538-0] [PMID: 19589904]
[23]
Marchese A, Barbieri R, Coppo E, et al. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit Rev Microbiol 2017; 43(6): 668-89.
[http://dx.doi.org/10.1080/1040841X.2017.1295225] [PMID: 28346030]
[24]
Jahanshiri Z, Shams-Ghahfarokhi M, Allameh A, Razzaghi-Abyaneh M. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway. World J Microbiol Biotechnol 2015; 31(7): 1071-8.
[http://dx.doi.org/10.1007/s11274-015-1857-7] [PMID: 25896772]
[25]
Nam H, Kim M-M. Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem Toxicol 2013; 55: 106-12.
[http://dx.doi.org/10.1016/j.fct.2012.12.050] [PMID: 23313798]
[26]
Romagnoli C, Andreotti E, Maietti S, Mahendra R, Mares D. Antifungal activity of essential oil from fruits of Indian Cuminum cyminum. Pharm Biol 2010; 48(7): 834-8.
[http://dx.doi.org/10.3109/13880200903283715] [PMID: 20645785]
[27]
Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusant Biosci 2015; 7(1): 55-9.
[http://dx.doi.org/10.13057/nusbiosci/n070110]
[28]
Moghadam ZA, Hosseini H, Hadian Z, et al. Evaluation of the antifungal activity of cinnamon, clove, thymes, zataria multiflora, cumin and caraway essential oils against ochratoxigenic Aspergillus ochraceus. J Pharm Res Int 2019; 26(1): 1-16.
[http://dx.doi.org/10.9734/jpri/2019/v26i130126]
[29]
Ghasemi G, Fattahi M, Alirezalu A, Ghosta Y. Antioxidant and antifungal activities of a new chemovar of cumin (Cuminum cyminum L.). Food Sci Biotechnol 2018; 28(3): 669-77.
[http://dx.doi.org/10.1007/s10068-018-0506-y] [PMID: 31093424]
[30]
Prasad S, Aggarwal BB. Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine. In: Benzie IFF, Wachtel-Galor S, Eds. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. Boca Raton, FL: CRC Press/Taylor & Francis 2011. http://www.ncbi.nlm.nih.gov/books/NBK92752/
[http://dx.doi.org/10.1201/b10787-14]
[31]
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. In: Aggarwal BB, Surh YJ, Shishodia S, Eds. The molecular targets and therapeutic uses of curcumin in health and disease advances in experimental medicine and biology. Boston, MA: Springer US 2007; pp. 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1]
[32]
Anand N. Antifungal, contraceptive, anti-cancer, mosquito repellent properties of Azadirachta indica: A review. TEXILA Int J BASIC Med Sci 2017; 2(1): 50-4.
[http://dx.doi.org/10.21522/TIJBMS.2016.02.01.Art006]
[33]
Neelofar K, Shreaz S, Rimple B, Muralidhar S, Nikhat M, Khan LA. Curcumin as a promising anticandidal of clinical interest. Can J Microbiol 2011; 57(3): 204-10.
[http://dx.doi.org/10.1139/W10-117] [PMID: 21358761]
[34]
Chen E, Benso B, Seleem D, et al. Fungal-host interaction: Curcumin modulates proteolytic enzyme activity of Candida albicans and inflammatory host response in vitro. Int J Dent 2018; 2018: 2393146.
[http://dx.doi.org/10.1155/2018/2393146] [PMID: 30186325]
[35]
Sharma M, Manoharlal R, Shukla S, et al. Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob Agents Chemother 2009; 53(8): 3256-65.
[http://dx.doi.org/10.1128/AAC.01497-08] [PMID: 19470507]
[36]
Zhang Y, Henning SM, Lee R-P, et al. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking. Int J Food Sci Nutr 2015; 66(3): 260-5.
[http://dx.doi.org/10.3109/09637486.2014.1000837] [PMID: 25582173]
[37]
Atai Z, Atapour M, Mohseni M. Inhibitory effect of ginger extract on Candida albicans. Am J Appl Sci 2009; 6(6): 1067-9.
[http://dx.doi.org/10.3844/ajassp.2009.1067.1069]
[38]
Murugesan A, Sivapathasundharam B. Inhibitory effects of ginger extract on Candida albicans, Staphylococcus aureus and Lactobacillus acidophilus. Int Dent Med J Adv Res 2016; 2015(2): 1-5.
[http://dx.doi.org/10.15713/ins.idmjar.42]
[39]
Mohd Yusof YA. Gingerol and its role in chronic diseases. In: Gupta SC, Prasad S, Aggarwal BB, Eds. Drug discovery from mother nature advances in experimental medicine and biology. Cham: Springer International Publishing 2016; pp. 177-207.
[http://dx.doi.org/10.1007/978-3-319-41342-6_8]
[40]
Beristain-Bauza SDC, Hernández-Carranza P, Cid-Pérez TS, Ávila-Sosa R, Ruiz-López II, Ochoa-Velasco CE. (Zingiber officinale) and its application in food products. Food Rev Int 2019; 35(5): 407-26.
[http://dx.doi.org/10.1080/87559129.2019.1573829]
[41]
Takahashi M, Inouye S, Abe S. Anti-Candida and radical scavenging activities of essential oils and oleoresins of Zingiber officinale Roscoe and essential oils of other plants belonging to the family Zingiberaceae. Drug Discov Ther 2011; 5(5): 238-45.
[http://dx.doi.org/10.5582/ddt.2011.v5.5.238] [PMID: 22466370]
[42]
Lee J-H, Kim Y-G, Choi P, Ham J, Park JG, Lee J. Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition. Front Cell Infect Microbiol 2018; 8: 299.
[http://dx.doi.org/10.3389/fcimb.2018.00299] [PMID: 30211127]
[43]
Aghazadeh M, Zahedi Bialvaei A, Aghazadeh M, et al. Survey of the antibiofilm and antimicrobial effects of Zingiber officinale (in vitro study). Jundishapur J Microbiol 2016; 9(2): e30167.
[http://dx.doi.org/10.5812/jjm.30167] [PMID: 27127591]
[44]
Rinanda T, Isnanda RP. Zulfitri, chemical analysis of red ginger (Zingiber officinale roscoe var rubrum ) essential oil and its antibiofilm activity against Candida albicans Nat Prod Commun 2018. 13: 1934578X1801301.
[http://dx.doi.org/10.1177/1934578X1801301206]
[45]
Moon Y-S, Lee H-S, Lee S-E. Inhibitory effects of three monoterpenes from ginger essential oil on growth and aflatoxin production of Aspergillus flavus and their gene regulation in aflatoxin biosynthesis. Appl Biol Chem 2018; 61(2): 243-50.
[http://dx.doi.org/10.1007/s13765-018-0352-x]
[46]
Chen T, Lu J, Kang B, et al. Antifungal activity and action mechanism of ginger oleoresin against Pestalotiopsis microspora isolated from Chinese olive fruits. Front Microbiol 2018; 9: 2583.
[http://dx.doi.org/10.3389/fmicb.2018.02583] [PMID: 30425698]
[47]
Huang Y, Zhao J, Zhou L, et al. Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 2010; 15(11): 7558-69.
[http://dx.doi.org/10.3390/molecules15117558] [PMID: 21030909]
[48]
Wong Y, Lee P, Nurdiyana W. Extraction and antioxidative activity of essential oil from star anise Illicium verum. Orient J Chem 2014; 30(3): 1159-71.
[http://dx.doi.org/10.13005/ojc/300329]
[49]
Patra JK, Das G, Bose S, et al. Star anise (Illicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phytother Res 2020; 34(6): 1248-67.
[http://dx.doi.org/10.1002/ptr.6614] [PMID: 31997473]
[50]
Nazzaro F, Fratianni F, Coppola R, Feo VD. Essential oils and antifungal activity. Pharmaceuticals 2017; 10(4): 86.
[http://dx.doi.org/10.3390/ph10040086]
[51]
Aly SE, Sabry BA, Shaheen MS, Hathout AS. Assessment of antimycotoxigenic and antioxidant activity of star anise (Illicium verum) in vitro. J Saudi Soc Agric Sci 2016; 15(1): 20-7.
[http://dx.doi.org/10.1016/j.jssas.2014.05.003]
[52]
Alzohairy MA. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid Based Complement Alternat Med 2016; 20167382506.
[http://dx.doi.org/10.1155/2016/7382506] [PMID: 27034694]
[53]
Lakshmi T, Krishnan V, Rajendran R, Madhusudhanan N. Azadirachta indica: A herbal panacea in dentistry - An update. Pharmacogn Rev 2015; 9(17): 41-4.
[http://dx.doi.org/10.4103/0973-7847.156337] [PMID: 26009692]
[54]
Polaquini SRB, Svidzinski TIE, Kemmelmeier C, Gasparetto A. Effect of aqueous extract from Neem (Azadirachta indica A. Juss) on hydrophobicity, biofilm formation and adhesion in composite resin by Candida albicans. Arch Oral Biol 2006; 51(6): 482-90.
[http://dx.doi.org/10.1016/j.archoralbio.2005.11.007] [PMID: 16412377]
[55]
Ospina SDI, Hoyos SRA, Orozco SF, Arango AM, Gómez LLF. Antifungal activity of neem (Azadirachta indica: Meliaceae) extracts against dermatophytes. Acta Biol Colomb 2015; 20(3): 201-7.
[http://dx.doi.org/10.15446/abc.v20n3.45225]
[56]
Allameh A, Razzaghi AM, Shams M, Rezaee MB, Jaimand K. Effects of neem leaf extract on production of aflatoxins and activities of fatty acid synthetase, isocitrate dehydrogenase and glutathione S-transferase in Aspergillus parasiticus. Mycopathologia 2002; 154(2): 79-84.
[http://dx.doi.org/10.1023/A:1015550323749] [PMID: 12086104]
[57]
Bhatnagar D, McCormick SP. The inhibitory effect of neem (Azadirachta indica) leaf extracts on aflatoxin synthesis in Aspergillus parasiticus. J Am Oil Chem Soc 1988; 65(7): 1166-8.
[http://dx.doi.org/10.1007/BF02660575]
[58]
Ghorbanian M, Razzaghi-Abyaneh M, Allameh A, Shams-Ghahfarokhi M, Qorbani M. Study on the effect of neem (Azadirachta indica A. juss) leaf extract on the growth of Aspergillus parasiticus and production of aflatoxin by it at different incubation times. Mycoses 2008; 51(1): 35-9.
[http://dx.doi.org/10.1111/j.1439-0507.2007.01440.x]
[59]
Purnama I, Montesqrit M, Harnentis H. (Azadiractha indica a. juss) and storage time to rejected corn quality, int. J Environ Agric Biotechnol 2019; 4: 1888-95.
[http://dx.doi.org/10.22161/ijeab.46.39]
[60]
Razzaghi-Abyaneh M, Allameh A, Tiraihi T, Shams-Ghahfarokhi M, Ghorbanian M. Morphological alterations in toxigenic Aspergillus parasiticus exposed to neem (Azadirachta indica) leaf and seed aqueous extracts. Mycopathologia 2005; 159(4): 565-70.
[http://dx.doi.org/10.1007/s11046-005-4332-4] [PMID: 15983743]
[61]
Kačániová M, Galovičová L, Ivanišová E, et al. Antioxidant, antimicrobial and antibiofilm activity of coriander (Coriandrum sativum L.) essential oil for its application in foods. Foods 2020; 9(3): 282.
[http://dx.doi.org/10.3390/foods9030282] [PMID: 32143314]
[62]
Furletti VF, Teixeira IP, Obando-Pereda G, et al. Action of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm formation. Evid Based Complement Alternat Med 2011; •••: 2011985832.
[http://dx.doi.org/10.1155/2011/985832] [PMID: 21660258]
[63]
Freires I de A, Murata RM, Furletti VF, et al. Coriandrum sativum L. (Coriander) essential oil: Antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS One 2014; 9(6): e99086.
[http://dx.doi.org/10.1371/journal.pone.0099086] [PMID: 24901768]
[64]
Kapoor IPS, Singh B, Singh G, Isidorov V, Szczepaniak L. Chemistry, antifungal and antioxidant activities of cardamom (Amomum subulatum) essential oil and oleoresins. Int J Essent Oil Ther 2008; 2: 29-40.
[65]
Abdullah A, Asghar A, Butt MS, Shahid M, Huang Q. Evaluating the antimicrobial potential of green cardamom essential oil focusing on quorum sensing inhibition of Chromobacterium violaceum. J Food Sci Technol 2017; 54(8): 2306-15.
[http://dx.doi.org/10.1007/s13197-017-2668-7] [PMID: 28740287]
[66]
Nagulapalli VKC, Swaroop A, Bagchi D, Bishayee A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol Nutr Food Res 2017; 61(6): 1600950.
[http://dx.doi.org/10.1002/mnfr.201600950] [PMID: 28266134]
[67]
Akbari S, Abdurahman NH, Yunus RM, Alara OR, Abayomi OO. Extraction, characterization and antioxidant activity of fenugreek (Trigonella-foenum graecum) seed oil. Mater Sci Energy Technol 2019; 2(2): 349-55.
[http://dx.doi.org/10.1016/j.mset.2018.12.001]
[68]
Oddepally R, Guruprasad L. Isolation, purification, and characterization of a stable defensin-like antifungal peptide from Trigonella foenum-graecum (fenugreek) seeds. Biochemistry (Mosc) 2015; 80(3): 332-42.
[http://dx.doi.org/10.1134/S0006297915030086] [PMID: 25761687]
[69]
Yadav UCS, Baquer NZ. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm Biol 2014; 52(2): 243-54.
[http://dx.doi.org/10.3109/13880209.2013.826247] [PMID: 24102093]
[70]
Karri V, Bharadwaja KP. Tandem combination of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) generates a more potent antifungal protein. Funct Integr Genomics 2013; 13(4): 435-43.
[http://dx.doi.org/10.1007/s10142-013-0334-3] [PMID: 24022215]
[71]
Othman M, Saada H, Matsuda Y. Antifungal activity of some plant extracts and essential oils against fungi‐infested organic archaeological artefacts. Archaeometry 2020; 62(1): 187-99.
[http://dx.doi.org/10.1111/arcm.12500]
[72]
El Khoury R, Atoui A, Mathieu F, et al. Antifungal and antiochratoxigenic activities of essential oils and total phenolic extracts: A comparative study. Antioxidants 2017; 6(3): 44.
[http://dx.doi.org/10.3390/antiox6030044] [PMID: 28698493]
[73]
Nasrollahi Z, Yadegari MH, Roudbar MS, et al. Fluconazole resistance Candida albicans in females with recurrent vaginitis and pir1 overexpression. Jundishapur J Microbiol 2015; 8(9): e21468.
[http://dx.doi.org/10.5812/jjm.21468] [PMID: 26495107]
[74]
Kartsonis NA, Nielsen J, Douglas CM. Caspofungin: The first in a new class of antifungal agents. Drug Resist Updat 2003; 6(4): 197-218.
[http://dx.doi.org/10.1016/S1368-7646(03)00064-5] [PMID: 12962685]
[75]
Patterson TF. Advances and challenges in management of invasive mycoses. Lancet 2005; 366(9490): 1013-25.
[http://dx.doi.org/10.1016/S0140-6736(05)67381-3] [PMID: 16168784]
[76]
Shahrajabian MH, Sun W, Cheng Q. Chinese star anise and anise, magic herbs in traditional Chinese medicine and modern pharmaceutical science. Asian J Med Biol Res 2019; 5(3): 162-79.
[http://dx.doi.org/10.3329/ajmbr.v5i3.43584]
[77]
Yadav AS, Bhatnagar D. Chemo-preventive effect of Star anise in N-nitrosodiethylamine initiated and phenobarbital promoted hepato-carcinogenesis. Chem Biol Interact 2007; 169(3): 207-14.
[http://dx.doi.org/10.1016/j.cbi.2007.06.032] [PMID: 17658503]
[78]
Goswami N, Chatterjee S. Assessment of free radical scavenging potential and oxidative DNA damage preventive activity of Trachyspermum ammi L. (carom) and Foeniculum vulgare Mill. (fennel) seed extracts. BioMed Res Int 2014; 2014: 582767.
[http://dx.doi.org/10.1155/2014/582767] [PMID: 25143939]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy