Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Natural Polysaccharides Alleviate Neurological Disorders: New Updates

Author(s): Manaf AlMatar*, Essam A. Makky and Aizi Nor Mazila Ramli

Volume 22, Issue 22, 2022

Published on: 02 June, 2022

Page: [2813 - 2819] Pages: 7

DOI: 10.2174/1389557522666220321145840

Price: $65

Open Access Journals Promotions 2
Abstract

Due to their difficulty in pathogenesis, nervous system disease (NSD) therapies have long been challenging problems for researchers. With the rise in the ageing population, the quest for successful NSD therapies has become a hot topic. Polysaccharides demonstrated numerous biological effects in anti-oxidation, anti-inflammation, and immune regulation. In recent years, several studies have been conducted in light of the connection between the properties of polysaccharides and the pathogenesis of neurological conditions. In this review, we aim to discuss the most recent reports on the beneficial properties and mechanisms of polysaccharides for nervous system-related diseases.

Keywords: Polysaccharides, Alzheimer's disease (AD), depression, multiple sclerosis (MS), cerebral ischemia, neurological disorders.

Graphical Abstract
[1]
Nery, T.G.M.; Silva, E.M.; Tavares, R.; Passetti, F. The challenge to search for new nervous system disease biomarker candidates: The opportunity to use the proteogenomics approach. J. Mol. Neurosci., 2019, 67(1), 150-164.
[http://dx.doi.org/10.1007/s12031-018-1220-1] [PMID: 30554402]
[2]
Magistretti, P.J.; Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron, 2015, 86(4), 883-901.
[http://dx.doi.org/10.1016/j.neuron.2015.03.035] [PMID: 25996133]
[3]
Cragnolini, A.B.; Lampitella, G.; Virtuoso, A.; Viscovo, I.; Panetsos, F.; Papa, M.; Cirillo, G. Regional brain susceptibility to neurodegeneration: What is the role of glial cells? Neural Regen. Res., 2020, 15(5), 838-842.
[http://dx.doi.org/10.4103/1673-5374.268897] [PMID: 31719244]
[4]
Franco, R.; Fernández-Suárez, D. Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol., 2015, 131, 65-86.
[http://dx.doi.org/10.1016/j.pneurobio.2015.05.003] [PMID: 26067058]
[5]
Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 2018, 107, 96-108.
[http://dx.doi.org/10.1016/j.biopha.2018.07.136] [PMID: 30086465]
[6]
Xie, J-H.; Jin, M-L.; Morris, G.A.; Zha, X-Q.; Chen, H-Q.; Yi, Y.; Li, J-E.; Wang, Z-J.; Gao, J.; Nie, S-P. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food Sci. Nutr., 2016, 56(Suppl. 1), S60.
[http://dx.doi.org/10.1080/10408398.2015.1069255]
[7]
Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym., 2018, 183, 91-101.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.009] [PMID: 29352896]
[8]
Chen, Y.Y.; Xue, Y.T. Optimization of microwave assisted extraction, chemical characterization and antitumor activities of polysaccharides from Porphyra haitanensis. Carbohydr. Polym., 2019, 206, 179-186.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.093] [PMID: 30553311]
[9]
Wang, J.; Wang, H.; Zhang, H.; Liu, Z.; Ma, C.; Kang, W. Immunomodulation of ADPs-1a and ADPs-3a on RAW264.7 cells through NF-κB/MAPK signaling pathway. Int. J. Biol. Macromol., 2019, 132, 1024-1030.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.031] [PMID: 30959132]
[10]
Sousa, S.G.; Oliveira, L.A.; de Aguiar Magalhães, D.; de Brito, T.V.; Batista, J.A.; Pereira, C.M.C.; de Souza Costa, M.; Mazulo, J.C.R.; de Carvalho Filgueiras, M.; Vasconselos, D.F.P.; da Silva, D.A.; Barros, F.C.N.; Sombra, V.G.; Freitas, A.L.P.; de Paula, R.C.M.; de Andrade Feitosa, J.P.; Dos Reis Barbosa, A.L. Chemical structure and anti-inflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni). Carbohydr. Polym., 2018, 197, 515-523.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.042] [PMID: 30007642]
[11]
Zhang, N.; Wang, Y.; Kan, J.; Wu, X.; Zhang, X.; Tang, S.; Sun, R.; Liu, J.; Qian, C.; Jin, C. In vivo and in vitro anti-inflammatory effects of water-soluble polysaccharide from Arctium lappa. Int. J. Biol. Macromol., 2019, 135, 717-724.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.171] [PMID: 31129217]
[12]
Albuquerque, P.; Coelho, L.C.; Teixeira, J.A.; Carneiro-da-Cunha, M.G. Approaches in biotechnological applications of natural polymers. AIMS Mol. Sci., 2016, 3(3), 386-425.
[http://dx.doi.org/10.3934/molsci.2016.3.386]
[13]
Mondal, M.; Hosain, M. Biodegradable surfactant from natural starch for the reduction of environmental pollution and safety for water living organism IJIRAE, 2014, 1(8), 424.
[14]
Gorelik, E.; Galili, U.; Raz, A. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev., 2001, 20(3-4), 245-277.
[http://dx.doi.org/10.1023/A:1015535427597] [PMID: 12085965]
[15]
Mody, R.; Joshi, S.; Chaney, W. Use of lectins as diagnostic and therapeutic tools for cancer. J. Pharmacol. Toxicol. Methods, 1995, 33(1), 1-10.
[http://dx.doi.org/10.1016/1056-8719(94)00052-6] [PMID: 7727802]
[16]
Ghazarian, H.; Idoni, B.; Oppenheimer, S.B. A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem., 2011, 113(3), 236-247.
[http://dx.doi.org/10.1016/j.acthis.2010.02.004] [PMID: 20199800]
[17]
Shin, S.J.; Nam, Y.; Park, Y.H.; Kim, M-J.; Lee, E.; Jeon, S.G.; Bae, B-S.; Seo, J.; Shim, S-L.; Kim, J-S.; Han, C.K.; Kim, S.; Lee, Y.Y.; Moon, M. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer’s disease. Free Radic. Biol. Med., 2021, 164, 233-248.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.454] [PMID: 33422674]
[18]
Zhou, Y.; Duan, Y.; Huang, S.; Zhou, X.; Zhou, L.; Hu, T.; Yang, Y.; Lu, J.; Ding, K.; Guo, D.; Cao, X.; Pei, G. Polysaccharides from Lycium barbarum ameliorate amyloid pathology and cognitive functions in APP/PS1 transgenic mice. Int. J. Biol. Macromol., 2020, 144, 1004-1012.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.177] [PMID: 31715236]
[19]
Han, Y.; Nan, S.; Fan, J.; Chen, Q.; Zhang, Y. Inonotus obliquus polysaccharides protect against Alzheimer’s disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects. Int. J. Biol. Macromol., 2019, 131, 769-778.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.033] [PMID: 30878614]
[20]
Zhong, J.; Qiu, X.; Yu, Q.; Chen, H.; Yan, C. A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int. J. Biol. Macromol., 2020, 163, 464-475.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.266] [PMID: 32621930]
[21]
He, Y.; Xu, W.; Qin, Y. Structural characterization and neuroprotective effect of a polysaccharide from Corydalis yanhusuo. Int. J. Biol. Macromol., 2020, 157, 759-768.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.180] [PMID: 31987950]
[22]
Li, Z.; Chen, X.; Zhang, Y.; Liu, X.; Wang, C.; Teng, L.; Wang, D. Protective roles of Amanita caesarea polysaccharides against Alzheimer’s disease via Nrf2 pathway. Int. J. Biol. Macromol., 2019, 121, 29-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.216] [PMID: 30290256]
[23]
Zhang, Z.; Wang, X.; Pan, Y.; Wang, G.; Mao, G. The degraded polysaccharide from Pyropia haitanensis represses amyloid beta peptide-induced neurotoxicity and memory in vivo . Int. J. Biol. Macromol., 2020, 146, 725-729.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.243] [PMID: 31739053]
[24]
Hui, H.; Xin, A.; Cui, H.; Jin, H.; Yang, X.; Liu, H.; Qin, B. Anti-aging effects on Caenorhabditis elegans of a polysaccharide, O -acetyl glucomannan, from roots of Lilium davidii var. unicolor Cotton. Int. J. Biol. Macromol., 2020, 155, 846-852.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.206] [PMID: 32229205]
[25]
Qin, X.; Hua, J.; Lin, S.J.; Zheng, H.T.; Wang, J.J.; Li, W.; Ke, J.J.; Cai, H.B. Astragalus polysaccharide alleviates cognitive impairment and β-amyloid accumulation in APP/PS1 mice via Nrf2 pathway. Biochem. Biophys. Res. Commun., 2020, 531(3), 431-437.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.122] [PMID: 32800555]
[26]
Chen, P.; He, D.; Zhang, Y.; Yang, S.; Chen, L.; Wang, S.; Zou, H.; Liao, Z.; Zhang, X.; Wu, M. Sargassum fusiforme polysaccharides activate antioxidant defense by promoting Nrf2-dependent cytoprotection and ameliorate stress insult during aging. Food Funct., 2016, 7(11), 4576-4588.
[http://dx.doi.org/10.1039/C6FO00628K] [PMID: 27722689]
[27]
Chen, B-J.; Shi, M-J.; Cui, S.; Hao, S-X.; Hider, R.C.; Zhou, T. Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation. Int. J. Biol. Macromol., 2016, 92, 715-722.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.082] [PMID: 27471085]
[28]
Chen, H.; Cong, Q.; Du, Z.; Liao, W.; Zhang, L.; Yao, Y.; Ding, K. Sulfated fucoidan FP08S2 inhibits lung cancer cell growth in vivo by disrupting angiogenesis via targeting VEGFR2/VEGF and blocking VEGFR2/Erk/VEGF signaling. Cancer Lett., 2016, 382(1), 44-52.
[http://dx.doi.org/10.1016/j.canlet.2016.08.020] [PMID: 27569654]
[29]
Zhang, R.; Zhang, X.; Tang, Y.; Mao, J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydr. Polym., 2020, 228, 115381.
[http://dx.doi.org/10.1016/j.carbpol.2019.115381] [PMID: 31635744]
[30]
Liu, H.; Ying, M.; Shi, W.; Xie, J.; Yang, J.; Wang, Z. Effect of Sargassum fusiforme polysaccharides with different relative molecular weights on learning and memory ability in mice model of memory impairment induced by raceanisodamine. Shipin Kexue. Shipin Kexue, 2018, 39(1), 221.
[31]
Penninx, B.W. Depression and cardiovascular disease: Epidemiological evidence on their linking mechanisms. Neurosci. Biobehav. Rev., 2017, 74(Pt B), 277-286.
[http://dx.doi.org/10.1016/j.neubiorev.2016.07.003] [PMID: 27461915]
[32]
Buigues, C.; Padilla-Sánchez, C.; Garrido, J.F.; Navarro-Martínez, R.; Ruiz-Ros, V.; Cauli, O. The relationship between depression and frailty syndrome: A systematic review. Aging Ment. Health, 2015, 19(9), 762-772.
[http://dx.doi.org/10.1080/13607863.2014.967174] [PMID: 25319638]
[33]
Zhang, E.; Liao, P. Brain-derived neurotrophic factor and post-stroke depression. J. Neurosci. Res., 2020, 98(3), 537-548.
[http://dx.doi.org/10.1002/jnr.24510] [PMID: 31385340]
[34]
Lanfumey, L.; Hamon, M. Neurobiological approach to depression: New data. Therapie, 2005, 60(5), 431-440.
[http://dx.doi.org/10.2515/therapie:2005064]
[35]
Coyle, J.T.; Duman, R.S. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron, 2003, 38(2), 157-160.
[http://dx.doi.org/10.1016/S0896-6273(03)00195-8] [PMID: 12718851]
[36]
Wang, J.; Flaisher-Grinberg, S.; Li, S.; Liu, H.; Sun, L.; Zhou, Y.; Einat, H. Antidepressant-like effects of the active acidic polysaccharide portion of ginseng in mice. J. Ethnopharmacol., 2010, 132(1), 65-69.
[http://dx.doi.org/10.1016/j.jep.2010.07.042] [PMID: 20673793]
[37]
McEwen, B.S.; Nasca, C.; Gray, J.D. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 2016, 41(1), 3-23.
[http://dx.doi.org/10.1038/npp.2015.171] [PMID: 26076834]
[38]
Muneer, A. Wnt and GSK3 signaling pathways in bipolar disorder: Clinical and therapeutic implications. Clin. Psychopharmacol. Neurosci., 2017, 15(2), 100-114.
[http://dx.doi.org/10.9758/cpn.2017.15.2.100] [PMID: 28449557]
[39]
Cryan, J.F.; Page, M.E.; Lucki, I. Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology (Berl.), 2005, 182(3), 335-344.
[http://dx.doi.org/10.1007/s00213-005-0093-5] [PMID: 16001105]
[40]
Takashima, A. GSK-3β and memory formation. Front. Mol. Neurosci., 2012, 5, 47.
[http://dx.doi.org/10.3389/fnmol.2012.00047] [PMID: 22536172]
[41]
Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants Arch. Int. Pharmacodyn. Ther., 1977, 229(2), 327-336.
[PMID: 596982]
[42]
Ghorbani, M.M.; Farazmandfar, T.; Nasirikenari, M.; Abediankenari, S.; Meamarian, A.; Shahbazi, M. Evaluation of IL-17 serum level, brain inflammation and demyelination in experimental autoimmune encephalomyelitis C57BL/6 mice model with different doses of myelin oligodendrocyte glycoprotein. Iran. J. Allergy Asthma Immunol., 2019, 18(3), 300-309.
[http://dx.doi.org/10.18502/ijaai.v18i3.1123] [PMID: 31522437]
[43]
Garg, N.; Smith, T.W. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav., 2015, 5(9), e00362.
[http://dx.doi.org/10.1002/brb3.362] [PMID: 26445701]
[44]
Chu, F.; Shi, M.; Zheng, C.; Shen, D.; Zhu, J.; Zheng, X.; Cui, L. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neuroimmunol., 2018, 318, 1-7.
[http://dx.doi.org/10.1016/j.jneuroim.2018.02.015] [PMID: 29606295]
[45]
Bing, S.J.; Ha, D.; Hwang, I.; Park, E.; Ahn, G.; Song, J.Y.; Jee, Y. Protective effects on central nervous system by acidic polysaccharide of Panax ginseng in relapse-remitting experimental autoimmune encephalomyelitis-induced SJL/J Mice. Am. J. Chin. Med., 2016, 44(6), 1099-1110.
[http://dx.doi.org/10.1142/S0192415X16500610] [PMID: 27627913]
[46]
Hossain, M.J.; Morandi, E.; Tanasescu, R.; Frakich, N.; Caldano, M.; Onion, D.; Faraj, T.A.; Erridge, C.; Gran, B. The soluble form of toll-like receptor 2 is elevated in serum of multiple sclerosis patients: A novel potential disease biomarker. Front. Immunol., 2018, 9(MAR), 457.
[http://dx.doi.org/10.3389/fimmu.2018.00457] [PMID: 29593720]
[47]
Zhou, X.Q.; Zeng, X.N.; Kong, H.; Sun, X.L. Neuroprotective effects of berberine on stroke models in vitro and in vivo . Neurosci. Lett., 2008, 447(1), 31-36.
[http://dx.doi.org/10.1016/j.neulet.2008.09.064] [PMID: 18838103]
[48]
Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab., 2001, 21(1), 2-14.
[http://dx.doi.org/10.1097/00004647-200101000-00002] [PMID: 11149664]
[49]
Crack, P.J.; Taylor, J.M. Reactive oxygen species and the modulation of stroke. Free Radic. Biol. Med., 2005, 38(11), 1433-1444.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.01.019] [PMID: 15890617]
[50]
Ma, S.; Liu, X.; Cheng, B.; Jia, Z.; Hua, H.; Xin, Y. Chemical characterization of polysaccharides isolated from Scrophularia ningpoensis and its protective effect on the cerebral ischemia/reperfusin injury in rat model. Int. J. Biol. Macromol., 2019, 139, 955-966.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.040] [PMID: 31400420]
[51]
Lam, C-S.; Tipoe, G.L.; So, K-F.; Fung, M-L. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea. PLoS One, 2015, 10(2), e0117990.
[http://dx.doi.org/10.1371/journal.pone.0117990] [PMID: 25714473]
[52]
Hu, C.; Li, J.; Yang, D.; Pan, Y.; Wan, H. A neuroprotective polysaccharide from Hyriopsis cumingii. J. Nat. Prod., 2010, 73(9), 1489-1493.
[http://dx.doi.org/10.1021/np1001847] [PMID: 20825225]
[53]
Gokce, E.C.; Kahveci, R.; Atanur, O.M.; Gürer, B.; Aksoy, N.; Gokce, A.; Sargon, M.F.; Cemil, B.; Erdogan, B.; Kahveci, O. Neuroprotective effects of Ganoderma lucidum polysaccharides against traumatic spinal cord injury in rats. Injury, 2015, 46(11), 2146-2155.
[http://dx.doi.org/10.1016/j.injury.2015.08.017] [PMID: 26298021]
[54]
Zhang, Q.; Xia, Y.; Luo, H.; Huang, S.; Wang, Y.; Shentu, Y.; Mahaman, Y.A.R.; Huang, F.; Ke, D.; Wang, Q.; Liu, R.; Wang, J.Z.; Zhang, B.; Wang, X. Codonopsis pilosula polysaccharide attenuates tau hyperphosphorylation and cognitive impairments in hTau infected mice. Front. Mol. Neurosci., 2018, 11, 437.
[http://dx.doi.org/10.3389/fnmol.2018.00437] [PMID: 30542264]
[55]
Wan, L.; Zhang, Q.; Luo, H.; Xu, Z.; Huang, S.; Yang, F.; Liu, Y.; Mahaman, Y.A.R.; Ke, D.; Wang, Q.; Liu, R.; Wang, J.Z.; Shu, X.; Wang, X. Codonopsis pilosula polysaccharide attenuates Aβ toxicity and cognitive defects in APP/PS1 mice. Aging (Albany NY), 2020, 12(13), 13422-13436.
[http://dx.doi.org/10.18632/aging.103445] [PMID: 32652518]
[56]
Gong, J.; Sun, F.; Li, Y.; Zhou, X.; Duan, Z.; Duan, F.; Zhao, L.; Chen, H.; Qi, S.; Shen, J. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway. Neuropharmacology, 2015, 91, 123-134.
[http://dx.doi.org/10.1016/j.neuropharm.2014.11.020] [PMID: 25510970]
[57]
Gao, Q-H.; Fu, X.; Zhang, R.; Wang, Z.; Guo, M. Neuroprotective effects of plant polysaccharides: A review of the mechanisms. Int. J. Biol. Macromol., 2018, 106, 749-754.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.075] [PMID: 28818727]
[58]
Zhao, W.; Pan, X.; Li, T.; Zhang, C.; Shi, N. Lycium barbarum polysaccharides protect against trimethyltin chloride-induced apoptosis via sonic hedgehog and PI3K/Akt signaling pathways in mouse neuro-2a cells Oxid. Med. Cell. Longev., 2016, 2016, 9826726.
[59]
Lei, T.; Li, H.; Fang, Z.; Lin, J.; Wang, S.; Xiao, L.; Yang, F.; Liu, X.; Zhang, J.; Huang, Z.; Liao, W. Polysaccharides from Angelica sinensis alleviate neuronal cell injury caused by oxidative stress. Neural Regen. Res., 2014, 9(3), 260-267.
[http://dx.doi.org/10.4103/1673-5374.128218] [PMID: 25206810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy