Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

QSAR Modeling of Styrylquinoline Derivatives as HIV-1 Integrase Inhibitors

Author(s): Mouad Mouhsin, Samir Chtita, Mohamed Mbarki, Mustapha Oubenali*, Malika Echajia, Tarik El Ouafy and Ahmed Gamouh

Volume 16, Issue 2, 2022

Published on: 29 April, 2022

Page: [123 - 129] Pages: 7

DOI: 10.2174/2212796816666220318093435

Price: $65

Open Access Journals Promotions 2
Abstract

Background: AIDS is a complicated disease, and the underlying complication makes a total cure impossible. This demands the vigorous need for suitable anti-HIV agents. Styrylquinoline, a quinolone derivative, emerged as a potent HIV-IN inhibitor.

Objective: This study aims to construct an easily transferable and reproducible model that relates the biological activities of styrylquinoline derivatives to their molecular descriptors.

Methods: 2D Quantitative structure-activity relationship (QSAR) studies were carried out on a series of 36 styrylquinoline derivatives.

Results: The technique of recursive feature elimination with random forests was used to select the descriptors rich in information regarding biological activity. The selected descriptors were used in QSAR studies based on multiple linear regression (MLR) and multiple nonlinear regression (MNLR). The performance of models was evaluated by internal and external validations. The values of R2pred and Q2LOO for the MLR model are 0.814 and 0.713, respectively, while the MNLR model has R2pred and Q2LOO values of 0.810 and 0.699, respectively.

Conclusion: The information obtained from 2D-QSAR models will aid in gaining a better understanding of the structural requirements for creating novel HIV-IN inhibitors.

Keywords: QSAR, HIV-1, integrase inhibitory, styrylquinoline, MLR, MNLR.

Graphical Abstract
[1]
World Health Organization. Available from: https://www.who.int/data/gho/data/themes/hiv-aids Accessed on May 13, 2020.
[2]
Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med., 2011, 1(1)a006841
[http://dx.doi.org/10.1101/cshperspect.a006841] [PMID: 22229120]
[3]
Liszewski, M.K.; Yu, J.J.; O’Doherty, U. Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR. Methods, 2009, 47(4), 254-260.
[http://dx.doi.org/10.1016/j.ymeth.2009.01.002] [PMID: 19195495]
[4]
Mekouar, K.; Mouscadet, J.F.; Desmaële, D.; Subra, F.; Leh, H.; Savouré, D.; Auclair, C.; d’Angelo, J. Styrylquinoline derivatives: A new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J. Med. Chem., 1998, 41(15), 2846-2857.
[http://dx.doi.org/10.1021/jm980043e] [PMID: 9667973]
[5]
Mouscadet, J.F.; Desmaële, D. Chemistry and structure-activity relationship of the styrylquinoline-type HIV integrase inhibitors. Molecules, 2010, 15(5), 3048-3078.
[http://dx.doi.org/10.3390/molecules15053048] [PMID: 20657464]
[6]
Hughes, C.C.; Trauner, D. The total synthesis of (-)-amathaspiramide F. Angew. Chem. Int. Ed., 2002, 41(23), 4556-4559.
[http://dx.doi.org/10.1002/1521-3773(20021202)41:23<4556:AID-ANIE4556>3.0.CO;2-E] [PMID: 12458537]
[7]
Dastmalchi, S.; Hamzeh-mivehroud, M.; Sokouti, B. Quantitative structure–activity relationship: A practical approach; CRC Press, 2018, pp. 37-35.
[http://dx.doi.org/10.1201/9781351113076]
[8]
Winkler, D.A. The role of quantitative structure-activity relationships (QSAR) in biomolecular discovery. Brief. Bioinform., 2002, 3(1), 73-86.
[http://dx.doi.org/10.1093/bib/3.1.73] [PMID: 12002226]
[9]
Linkov, I.; Massey, O.; Keisler, J.; Rusyn, I.; Hartung, T. From “weight of evidence” to quantitative data integration using multicriteria decision analysis and Bayesian methods. Altern. Anim. Exp., 2015, 32(1), 3-8.
[http://dx.doi.org/10.14573/altex.1412231] [PMID: 25592482]
[10]
Helguera, A.M.; Combes, R.D.; González, M.P.; Cordeiro, M.N. Applications of 2D descriptors in drug design: A DRAGON tale. Curr. Top. Med. Chem., 2008, 8(18), 1628-1655.
[http://dx.doi.org/10.2174/156802608786786598] [PMID: 19075771]
[11]
Grisoni, F.; Consonni, V.; Todeschini, R. Impact of molecular descriptors on computational models. In: Computational Chemogenomics; Humana Press: New York, NY, 2018, pp. 171-209.
[http://dx.doi.org/10.1007/978-1-4939-8639-2_5]
[12]
Prasanna, S.; Doerksen, R.J. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr. Med. Chem., 2009, 16(1), 21-41.
[http://dx.doi.org/10.2174/092986709787002817] [PMID: 19149561]
[13]
Leonard, J.T.; Roy, K. Exploring molecular shape analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors. Eur. J. Med. Chem., 2008, 43(1), 81-92.
[http://dx.doi.org/10.1016/j.ejmech.2007.02.021] [PMID: 17452064]
[14]
Chem3D, PerkinElmer Informatics. 2010. Available from: http://www.cambridgesoft.com
[15]
Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[16]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 2011, 12(1), 2825-2830.
[17]
QSAR tools, DTC laboratory, India, 2015; Software Available from: https://dtclab.webs.com/soft Accessed on 19 February 2021.
[18]
Ambure, P.; Aher, R.B.; Gajewicz, A.; Puzyn, T.; Roy, K. “NanoBRIDGES” software: Open access tools to perform QSAR and nano-QSAR modeling. Chemom. Intell. Lab. Syst., 2015, 147(1), 1-13.
[http://dx.doi.org/10.1016/j.chemolab.2015.07.007]
[19]
Goodarzi, M.; Dejaegher, B.; Vander Heyden, Y. Feature selection methods in QSAR studies. J. AOAC Int., 2012, 95(3), 636-651.
[http://dx.doi.org/10.5740/jaoacint.SGE_Goodarzi] [PMID: 22816254]
[20]
Granitto, P.M.; Furlanello, C.; Biasioli, F.; Gasperi, F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom. Intell. Lab. Syst., 2006, 83(2), 83-90.
[http://dx.doi.org/10.1016/j.chemolab.2006.01.007]
[21]
Hemphill, E.; Lindsay, J.; Lee, C.; Măndoiu, I.I.; Nelson, E.C. Feature selection and classifier performance on diverse bio-logical datasets. BMC Bioinformatics, 2014, 15, 1-14.
[22]
Roy, K.; Mitra, I. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb. Chem. High Throughput Screen., 2011, 14(6), 450-474.
[http://dx.doi.org/10.2174/138620711795767893] [PMID: 21521150]
[23]
Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Model., 2011, 51(9), 2320-2335.
[http://dx.doi.org/10.1021/ci200211n] [PMID: 21800825]
[24]
Golbraikh, A.; Tropsha, A.; Morton, D.W.; Turner, J.V. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[25]
Horn, F.; Pack, R.; Rieger, M. The autofeat Python library for automated feature engineering and selection. Cellier, P.; Driessens, K. In:Machine Learning and Knowledge Discovery in Databases; ECML PKDD 2019; Communications in Computer and Information Science; Springer: Cham, 2020, 1167, pp. 111-120.
[http://dx.doi.org/10.1007/978-3-030-43823-4_10]
[26]
Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst., 2015, 145, 22-29.
[http://dx.doi.org/10.1016/j.chemolab.2015.04.013]
[27]
Gadaleta, D.; Mangiatordi, G.F.; Catto, M.; Carotti, O. Applicability domain for QSAR models: Where theory meets reality. Int. J. Quant. Struct. Prop. Relatsh., 2016, 1(1), 45-63.
[28]
Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR applicabilty domain estimation by projection of the training set descriptor space: A review. Altern. Lab. Anim., 2005, 33(5), 445-459.
[http://dx.doi.org/10.1177/026119290503300508] [PMID: 16268757]
[29]
Roy, K.; Kar, S.; Das, R.N. Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment; Academic press, 2015.
[30]
Goudarzi, N.; Goodarzi, M.; Chen, T. QSAR prediction of HIV inhibition activity of styrylquinoline derivatives by genetic algorithm coupled with multiple linear regressions. Med. Chem. Res., 2012, 21(4), 437-443.
[http://dx.doi.org/10.1007/s00044-010-9542-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy