Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Natural Compounds as Integrative Therapy for Liver Protection against Inflammatory and Carcinogenic Mechanisms: From Induction to Molecular Biology Advancement

Author(s): Antara Banerjee, Sushmitha Sriramulu, Roberto Catanzaro, Fang He, Yashna Chabria, Baskar Balakrishnan, Sruthi Hari, Antonio Ayala, Mario Muñoz, Surajit Pathak* and Francesco Marotta*

Volume 23, Issue 3, 2023

Published on: 18 March, 2022

Page: [216 - 231] Pages: 16

DOI: 10.2174/1566524022666220316102310

Price: $65

conference banner
Abstract

The liver is exposed to several harmful substances that bear the potential to cause excessive liver damage ranging from hepatitis and non-alcoholic fatty liver disease to extreme cases of liver cirrhosis and hepatocellular carcinoma. Liver ailments have been effectively treated from very old times with Chinese medicinal herbal formulations and later also applied by controlled trials in Japan. However, these traditional practices have been hardly well characterized in the past till in the last decades when more qualified studies have been carried out. Modern advances have given rise to specific molecular targets which are specifically good candidates for affecting the intricate mechanisms that play a role at the molecular level. These therapeutic regimens that mainly affect the progression of the disease by inhibiting the gene expression levels or by blocking essential molecular pathways or releasing cytokines may prove to play a vital role in minimizing the tissue damage. This review, therefore, tries to throw light upon the variation in the therapies for the treatment of benign and malignant liver disease from ancient times to the current date. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of benign chronic liver diseases as well as prevention and treatment of HCC is still warranted.

Keywords: Hepatitis, NAFLD, NASH, HCC, hepatoprotection, Sho-saiko-to, YHK, FOLHK, marine biology, Celergen Caviarlieri.

[1]
Yamaguchi M, Saito SY, Nishiyama R, et al. Caffeine suppresses the activation of hepatic stellate cells cAMP-independently by antagonizing adenosine receptors. Biol Pharm Bull 2017; 40(5): 658-64.
[http://dx.doi.org/10.1248/bpb.b16-00947] [PMID: 28458351]
[2]
Wu J. Utilization of animal models to investigate nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Oncotarget 2016; 7(27): 42762-76.
[http://dx.doi.org/10.18632/oncotarget.8641] [PMID: 27072576]
[3]
Russo MW, Wei JT, Thiny MT, et al. Digestive and liver diseases statistics. Gastroenterology 2004; 126(5): 1448-53.
[http://dx.doi.org/10.1053/j.gastro.2004.01.025] [PMID: 15131804]
[4]
Ledda C, Loreto C, Zammit C, et al. Non-infective occupational risk factors for hepatocellular carcinoma: A review (Review). Mol Med Rep 2017; 15(2): 511-33.
[http://dx.doi.org/10.3892/mmr.2016.6046] [PMID: 28000892]
[5]
Yang JD, Roberts LR. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol 2010; 7(8): 448-58.
[http://dx.doi.org/10.1038/nrgastro.2010.100] [PMID: 20628345]
[6]
Avila MA, Berasain C, Sangro B, Prieto J. New therapies for hepatocellular carcinoma. Oncogene 2006; 25(27): 3866-84.
[http://dx.doi.org/10.1038/sj.onc.1209550] [PMID: 16799628]
[7]
Ma L, Wang B, Long Y, Li H. Effect of traditional Chinese medicine combined with Western therapy on primary hepatic carcinoma: A systematic review with meta-analysis. Front Med 2017; 11(2): 191-202.
[http://dx.doi.org/10.1007/s11684-017-0512-0] [PMID: 28349301]
[8]
Meng MB, Wen QL, Cui YL, She B, Zhang RM. Meta-analysis: Traditional Chinese medicine for improving immune response in patients with unresectable hepatocellular carcinoma after transcatheter arterial chemoembolization. Explore (NY) 2011; 7(1): 37-43.
[http://dx.doi.org/10.1016/j.explore.2010.10.002] [PMID: 21194671]
[9]
Abdelmoneem MA, Mahmoud M, Zaky A, et al. Dual-targeted casein micelles as green nanomedicine for synergistic phytotherapy of hepatocellular carcinoma. J Control Release 2018; 287: 78-93.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.026] [PMID: 30138716]
[10]
Wu C, Kan H, Hu M, et al. Compound Astragalus and Salvia miltiorrhiza extract inhibits hepatocarcinogenesis via modulating TGF-β/TβR and Imp7/8. Exp Ther Med 2018; 16(2): 1052-60.
[http://dx.doi.org/10.3892/etm.2018.6292] [PMID: 30112050]
[11]
Hu B, An HM, Wang SS, Chen JJ, Xu L. Preventive and therapeutic effects of Chinese herbal compounds against hepatocellular carcinoma. Molecules 2016; 21(2): 142.
[http://dx.doi.org/10.3390/molecules21020142] [PMID: 26828466]
[12]
Hu Y, Wang S, Wu X, et al. Chinese herbal medicine-derived compounds for cancer therapy: A focus on hepatocellular carcinoma. J Ethnopharmacol 2013; 149(3): 601-12.
[http://dx.doi.org/10.1016/j.jep.2013.07.030] [PMID: 23916858]
[13]
Pathak S, Banerjee A, Paul S, Khuda-Bukhsh AR. Protective potentials of a plant extract (Lycopodium clavatum) on mice chronically fed hepato-carcinogens. Indian J Exp Biol 2009; 47(7): 602-7.
[PMID: 19761046]
[14]
Roubalová L, Dinkova-Kostova AT, Biedermann D, Křen V, Ulrichová J, Vrba J. Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H: Quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia 2017; 119: 115-20.
[http://dx.doi.org/10.1016/j.fitote.2017.04.012] [PMID: 28450126]
[15]
Stellavato A, Pirozzi AVA, de Novellis F, et al. In vitro assessment of nutraceutical compounds and novel nutraceutical formulations in a liver-steatosis-based model. Lipids Health Dis 2018; 17(1): 24.
[http://dx.doi.org/10.1186/s12944-018-0663-2] [PMID: 29402273]
[16]
Colica C, Boccuto L, Abenavoli L. Silymarin: An option to treat non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23(47): 8437-8.
[http://dx.doi.org/10.3748/wjg.v23.i47.8437] [PMID: 29309065]
[17]
Gu HR, Park SC, Choi SJ, et al. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells. Clin Mol Hepatol 2015; 21(1): 49-59.
[http://dx.doi.org/10.3350/cmh.2015.21.1.49] [PMID: 25834802]
[18]
Zhang S, Yang Y, Liang Z, et al. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells. PLoS One 2013; 8(12): e83699.
[http://dx.doi.org/10.1371/journal.pone.0083699] [PMID: 24386256]
[19]
Afrin R, Arumugam S, Rahman A, et al. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation. Int Immunopharmacol 2017; 44: 174-82.
[http://dx.doi.org/10.1016/j.intimp.2017.01.016] [PMID: 28110063]
[20]
Wang L, Han L, Tao Z, et al. The Curcumin derivative WZ35 activates ROS-dependent JNK to suppress hepatocellular carcinoma metastasis. Food Funct 2018; 9(5): 2970-8. Epub ahead of print
[http://dx.doi.org/10.1039/C8FO00314A] [PMID: 29766185]
[21]
Bahman AA, Abaza MSI, Khoushiash SI, Al-Attiyah RJ. Sequence-dependent effect of sorafenib in combination with natural phenolic compounds on hepatic cancer cells and the possible mechanism of action. Int J Mol Med 2018; 42(3): 1695-715.
[http://dx.doi.org/10.3892/ijmm.2018.3725] [PMID: 29901131]
[22]
Zhang S, Tang D, Zang W, et al. Synergistic inhibitory effect of traditional Chinese medicine astragaloside IV and Curcumin on tumor growth and angiogenesis in an orthotopic nude-mouse model of human hepatocellular carcinoma. Anticancer Res 2017; 37: 465-73.
[23]
Bamia C, Lagiou P, Jenab M, et al. Coffee, tea and decaffeinated coffee in relation to hepatocellular carcinoma in a European population: Multicentre, prospective cohort study. Int J Cancer 2015; 136(8): 1899-908.
[http://dx.doi.org/10.1002/ijc.29214] [PMID: 25219573]
[24]
Petrick JL, Freedman ND, Graubard BI, et al. Coffee consumption and risk of hepatocellular carcinoma and intrahepatic cholangiocarcinoma by sex: The liver cancer pooling project. Cancer Epidemiol Biomarkers Prev 2015; 24(9): 1398-406.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0137] [PMID: 26126626]
[25]
Bravi F, Bosetti C, Tavani A, Gallus S, La Vecchia C. Coffee reduces risk for hepatocellular carcinoma: An updated meta-analysis. Clin Gastroenterol Hepatol 2013; 11(11): 1413-1421.e1.
[http://dx.doi.org/10.1016/j.cgh.2013.04.039] [PMID: 23660416]
[26]
Ruhl CE, Everhart JE. Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 2005; 128(1): 24-32.
[http://dx.doi.org/10.1053/j.gastro.2004.09.075] [PMID: 15633120]
[27]
Ruhl CE, Everhart JE. Coffee and tea consumption are associated with a lower incidence of chronic liver disease in the United States. Gastroenterology 2005; 129(6): 1928-36.
[http://dx.doi.org/10.1053/j.gastro.2005.08.056] [PMID: 16344061]
[28]
Dong S, Kong J, Kong J, et al. Low concentration of caffeine inhibits the progression of the hepatocellular carcinoma via Akt signaling pathway. Anticancer Agents Med Chem 2015; 15(4): 484-92.
[http://dx.doi.org/10.2174/1871520615666150209110832] [PMID: 25666502]
[29]
Leung WW, Ho SC, Chan HL, Wong V, Yeo W, Mok TS. Moderate coffee consumption reduces the risk of hepatocellular carcinoma in hepatitis B chronic carriers: A case-control study. J Epidemiol Community Health 2011; 65(6): 556-8.
[http://dx.doi.org/10.1136/jech.2009.104125] [PMID: 20693491]
[30]
Arauz J, Moreno MG, Cortés-Reynosa P, Salazar EP, Muriel P. Coffee attenuates fibrosis by decreasing the expression of TGF-β and CTGF in a murine model of liver damage. J Appl Toxicol 2013; 33(9): 970-9.
[http://dx.doi.org/10.1002/jat.2788] [PMID: 22899499]
[31]
reedman ND, Curto TM, Lindsay KL, Wright EC, Sinha R, Everhart JE. HALT-C TRIAL GROUP. Coffee consumption is associated with response to peginterferon and ribavirin therapy in patients with chronic hepatitis C. Gastroenterology 2011; 140: 1961-9.
[http://dx.doi.org/10.1053/j.gastro.2011.02.061]
[32]
Molloy JW, Calcagno CJ, Williams CD, Jones FJ, Torres DM, Harrison SA. Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology 2012; 55(2): 429-36.
[http://dx.doi.org/10.1002/hep.24731] [PMID: 21987293]
[33]
Setiawan VW, Wilkens LR, Lu SC, Hernandez BY, Le Marchand L, Henderson BE. Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterology 2015; 148(1): 118-25.
[http://dx.doi.org/10.1053/j.gastro.2014.10.005] [PMID: 25305507]
[34]
Godos J, Micek A, Marranzano M, Salomone F, Rio DD, Ray S. coffee consumption and risk of biliary tract cancers and liver cancer: A dose-response meta-analysis of prospective cohort studies. Nutrients 2017; 9(9): E950.
[http://dx.doi.org/10.3390/nu9090950] [PMID: 28846640]
[35]
Barrea L, Muscogiuri G, Di Somma C, et al. Coffee consumption, metabolic syndrome and clinical severity of psoriasis: Good or bad stuff? Arch Toxicol 2018; 92: 1831-45.
[36]
Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 2008; 22(7): 851-8.
[http://dx.doi.org/10.1002/ptr.2384] [PMID: 18567057]
[37]
Li Z, Kim HJ, Park MS, Ji GE. Effects of fermented ginseng root and ginseng berry on obesity and lipid metabolism in mice fed a high-fat diet. J Ginseng Res 2018; 42(3): 312-9.
[http://dx.doi.org/10.1016/j.jgr.2017.04.001] [PMID: 29983612]
[38]
Yuan D, Xiang T, Huo Y, et al. Preventive effects of total saponins of Panax japonicus on fatty liver fibrosis in mice. Arch Med Sci 2018; 14(2): 396-406.
[http://dx.doi.org/10.5114/aoms.2016.63260] [PMID: 29593815]
[39]
Chen XJ, Liu WJ, Wen ML, et al. Ameliorative effects of compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats. Sci Rep 2017; 7: 41144.
[http://dx.doi.org/10.1038/srep41144] [PMID: 28106137]
[40]
Wei X, Chen Y, Huang W. Ginsenoside Rg1 ameliorates liver fibrosis via suppressing epithelial to mesenchymal transition and reactive oxygen species production in vitro and in vivo. Biofactors 2018.
[http://dx.doi.org/10.1002/biof.1432] [PMID: 29761840]
[41]
Zhang X, Zhang S, Sun Q, et al. Compound K induces endoplasmic reticulum stress and apoptosis in human liver cancer cells by regulating STAT3. Molecules 2018; 23(6): E1482.
[http://dx.doi.org/10.3390/molecules23061482] [PMID: 29921768]
[42]
Zhou B, Wang J, Yan Z. Ginsenoside Rg3 attenuates hepatoma VEGF overexpression after hepatic artery embolization in an orthotopic transplantation hepatocellular carcinoma rat model. OncoTargets Ther 2014; 7: 1945-54.
[http://dx.doi.org/10.2147/OTT.S69830] [PMID: 25364265]
[43]
Chen Z, Li C, Yang C, Zhao R, Mao X, Yu J. Lipid regulation effects of raw and processed notoginseng radix et rhizome on steatotic hepatocyte L02 cell. BioMed Res Int 2016; 2016: 2919034.
[http://dx.doi.org/10.1155/2016/2919034] [PMID: 27642594]
[44]
Song G, Guo S, Wang W, et al. Intestinal metabolite compound K of ginseng saponin potently attenuates metastatic growth of hepatocellular carcinoma by augmenting apoptosis via a Bid-mediated mitochondrial pathway. J Agric Food Chem 2010; 58(24): 12753-60.
[http://dx.doi.org/10.1021/jf103814f] [PMID: 21121651]
[45]
Kim TW. Ginseng for liver injury: Friend or foe? Medicines (Basel) 2016; 3(4): E33.
[http://dx.doi.org/10.3390/medicines3040033] [PMID: 28930143]
[46]
Chou ST, Hsiang CY, Lo HY, et al. Exploration of anti-cancer effects and mechanisms of Zuo-Jin-Wan and its alkaloid components in vitro and in orthotopic HepG2 xenograft immunocompetent mice. BMC Complement Altern Med 2017; 17(1): 121-6.
[http://dx.doi.org/10.1186/s12906-017-1586-6] [PMID: 28219365]
[47]
La X, Zhang L, Li Z, Yang P, Wang Y. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells. Oncotarget 2017; 8(13): 20909-24.
[http://dx.doi.org/10.18632/oncotarget.14959] [PMID: 28157699]
[48]
Huang Y, Wang K, Gu C, et al. Berberine, a natural plant alkaloid, synergistically sensitizes human liver cancer cells to sorafenib. Oncol Rep 2018; 40(3): 1525-32.
[http://dx.doi.org/10.3892/or.2018.6552] [PMID: 30015938]
[49]
Wang X, Wang N, Li H, et al. Up-regulation of PAI-1 and down-regulation of uPA are involved in suppression of invasiveness and motility of hepatocellular carcinoma cells by a natural compound berberine. Int J Mol Sci 2016; 17(4): 577.
[http://dx.doi.org/10.3390/ijms17040577] [PMID: 27092498]
[50]
Wang X, Wang Q, Liu Z, Zheng X. Preparation, pharmacokinetics and tumour-suppressive activity of berberineliposomes. J Pharm Pharmacol 2017; 69(6): 625-32.
[51]
Eissa LA, Kenawy HI, El-Karef A, Elsherbiny NM, El-Mihi KA. Antioxidant and anti-inflammatory activities of berberine attenuate hepatic fibrosis induced by thioacetamide injection in rats. Chem Biol Interact 2018; 294: 91-100.
[http://dx.doi.org/10.1016/j.cbi.2018.08.016] [PMID: 30138605]
[52]
Feng WW, Kuang SY, Tu C, et al. Natural products berberine and Curcumin exhibited better ameliorative effects on rats with non-alcohol fatty liver disease than lovastatin. Biomed Pharmacother 2018; 99: 325-33.
[http://dx.doi.org/10.1016/j.biopha.2018.01.071] [PMID: 29353208]
[53]
Bie B, Sun J, Guo Y, et al. Baicalein: A review of its anti-cancer effects and mechanisms in hepatocellular carcinoma. Biomed Pharmacother 2017; 93: 1285-91.
[http://dx.doi.org/10.1016/j.biopha.2017.07.068] [PMID: 28747003]
[54]
Han Z, Zhu S, Han X, Wang Z, Wu S, Zheng R. Baicalein inhibits hepatocellular carcinoma cells through suppressing the expression of CD24. Int Immunopharmacol 2015; 29(2): 416-22.
[http://dx.doi.org/10.1016/j.intimp.2015.10.021] [PMID: 26548344]
[55]
Liang RR, Zhang S, Qi JA, et al. Preferential inhibition of hepatocellular carcinoma by the flavonoid Baicalein through blocking MEK-ERK signaling. Int J Oncol 2012; 41(3): 969-78.
[http://dx.doi.org/10.3892/ijo.2012.1510] [PMID: 22684543]
[56]
Hong M, Cheng H, Song L, et al. Wogonin suppresses the activity of matrix metalloproteinase-9 and inhibits migration and invasion in human hepatocellular carcinoma. Molecules 2018; 23(2): E384.
[http://dx.doi.org/10.3390/molecules23020384] [PMID: 29439451]
[57]
Park HS, Park KI, Hong GE, et al. Korean Scutellaria baicalensis georgi methanol extracts inhibits metastasis via the forkhead box m1 activity in hepatocellular carcinoma cells. J Ethnopharmacol 2014; 155(1): 847-51.
[http://dx.doi.org/10.1016/j.jep.2014.05.053] [PMID: 24910406]
[58]
Ha KT, Kim JK, Kang SK, et al. Inhibitory effect of Sihoga-Yonggol-Moryo-Tang on matrix metalloproteinase-2 and -9 activities and invasiveness potential of hepatocellular carcinoma. Pharmacol Res 2004; 50(3): 279-85.
[http://dx.doi.org/10.1016/j.phrs.2004.02.006] [PMID: 15225671]
[59]
Dai J, Liang K, Zhao S, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci USA 2018; 115(26): E5896-905.
[http://dx.doi.org/10.1073/pnas.1801745115] [PMID: 29891721]
[60]
Zhang Z, Liu T, Yu M, Li K, Li W. The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. J Exp Clin Cancer Res 2018; 37(1): 7.
[http://dx.doi.org/10.1186/s13046-018-0678-6] [PMID: 29334999]
[61]
Yu VW, Ho WS. Tetrandrine inhibits hepatocellular carcinoma cell growth through the caspase pathway and G2/M phase. Oncol Rep 2013; 29(6): 2205-10.
[http://dx.doi.org/10.3892/or.2013.2352] [PMID: 23525490]
[62]
Lan J, Wang N, Huang L, et al. Design and synthesis of novel tetrandrine derivatives as potential anti-tumor agents against human hepatocellular carcinoma. Eur J Med Chem 2017; 127: 554-66.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.008] [PMID: 28109948]
[63]
Cheng CY, Su CC. Tanshinone IIA inhibits Hep-J5 cells by increasing calreticulin, caspase 12 and GADD153 protein expression. Int J Mol Med 2010; 26(3): 379-85.
[PMID: 20664954]
[64]
Lee WY, Chiu LC, Yeung JH. Cytotoxicity of major tanshinones isolated from Danshen (Salvia miltiorrhiza) on HepG2 cells in relation to glutathione perturbation. Food Chem Toxicol 2008; 46(1): 328-38.
[http://dx.doi.org/10.1016/j.fct.2007.08.013] [PMID: 17892911]
[65]
Ren X, Wang C, Xie B, et al. Tanshinone IIA induced cell death via miR30b-p53-PTPN11/SHP2 signaling pathway in human hepatocellular carcinoma cells. Eur J Pharmacol 2017; 796: 233-41.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.046] [PMID: 27894814]
[66]
Chiu CM, Huang SY, Chang SF, Liao KF, Chiu SC. Synergistic antitumor effects of tanshinone IIA and sorafenib or its derivative SC-1 in hepatocellular carcinoma cells. OncoTargets Ther 2018; 11: 1777-85.
[http://dx.doi.org/10.2147/OTT.S161534] [PMID: 29636623]
[67]
Wang WQ, Liu L, Sun HC, et al. Tanshinone IIA inhibits metastasis after palliative resection of hepatocellular carcinoma and prolongs survival in part via vascular normalization. J Hematol Oncol 2012; 5: 69.
[http://dx.doi.org/10.1186/1756-8722-5-69] [PMID: 23137165]
[68]
Wang X, Chen Y, Han QB, et al. Proteomic identification of molecular targets of gambogic acid: Role of stathmin in hepatocellular carcinoma. Proteomics 2009; 9(2): 242-53.
[http://dx.doi.org/10.1002/pmic.200800155] [PMID: 19086098]
[69]
Park MS, Kim NH, Kang CW, Oh CW, Kim GD. Antimetastatic effects of gambogic acid are mediated via the actin cytoskeleton and NF-κB pathways in SK-HEP1 cells. Drug Dev Res 2015; 76(3): 132-42.
[http://dx.doi.org/10.1002/ddr.21249] [PMID: 25959042]
[70]
Shen K, Xi Z, Xie J, et al. Guttiferone K suppresses cell motility and metastasis of hepatocellular carcinoma by restoring aberrantly reduced profilin 1. Oncotarget 2016; 7(35): 56650-63.
[http://dx.doi.org/10.18632/oncotarget.10992] [PMID: 27494863]
[71]
Young-Je K, Myung-Sook C, Yong BP, Ryong KS, Lee M-K, Jung UJ. Garcinia cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World J Gastroenterol 2013; 19: 4689-701.
[http://dx.doi.org/10.3748/wjg.v19.i29.4689]
[72]
Tsai S-Y, Chung P-C, Owaga EE, et al. Alpha-mangostin from mangosteen (Garciniamangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis. Nutr Metab (Lond) 2016; 13: 88.
[http://dx.doi.org/10.1186/s12986-016-0148-0] [PMID: 27980597]
[73]
Toppo E, Darvin SS, Esakkimuthu S, et al. Effect of two andrographolide derivatives on cellular and rodent models of non-alcoholic fatty liver disease. Biomed Pharmacother 2017; 95: 402-11.
[http://dx.doi.org/10.1016/j.biopha.2017.08.071] [PMID: 28863380]
[74]
Ding L, Li J, Song B, et al. Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway. J Pharmacol Exp Ther 2014; 351(2): 474-83.
[http://dx.doi.org/10.1124/jpet.114.217968] [PMID: 25204338]
[75]
Tu YS, Sun DM, Zhang JJ, et al. Preparation and characterisation of andrographolide niosomes and its anti-hepatocellular carcinoma activity. J Microencapsul 2014; 31(4): 307-16.
[http://dx.doi.org/10.3109/02652048.2013.843727] [PMID: 24124885]
[76]
Bo S, Ponzo V, Ciccone G, et al. Six months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind, placebo-controlled trial. Pharmacol Res 2016; 111: 896-905.
[http://dx.doi.org/10.1016/j.phrs.2016.08.010] [PMID: 27520400]
[77]
Bishayee A, Politis T, Darvesh AS. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev 2010; 36(1): 43-53.
[http://dx.doi.org/10.1016/j.ctrv.2009.10.002] [PMID: 19910122]
[78]
Zhang B, Yin X, Sui S. Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol Rep 2018; 40(5): 2758-65.
[http://dx.doi.org/10.3892/or.2018.6648]
[79]
Liu Z, Peng Q, Li Y, Gao Y. Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition. BMB Rep 2018; 51(9): 474-9.
[http://dx.doi.org/10.5483/BMBRep.2018.51.9.114] [PMID: 30103844]
[80]
Xia J, Rong L, Sawakami T, et al. Shufeng jiedu capsule and its active ingredients induce apoptosis, inhibit migration and invasion, and enhances doxorubicin therapeutic efficacy in hepatocellular carcinoma. Biomed Pharmacother 2018; 99: 921-30.
[http://dx.doi.org/10.1016/j.biopha.2018.01.163] [PMID: 29710492]
[81]
Zhu P, Li J, Fu X, Yu Z. Schisandra fruits for the management of drug-induced liver injury in China: A review. Phytomedicine 2019; 59: 152760.
[http://dx.doi.org/10.1016/j.phymed.2018.11.020] [PMID: 31004881]
[82]
Yuan R, Tao X, Liang S, et al. Protective effect of acidic polysaccharide from Schisandra chinensis on acute ethanol-induced liver injury through reducing CYP2E1-dependent oxidative stress. Biomed Pharmacother 2018; 99: 537-42.
[http://dx.doi.org/10.1016/j.biopha.2018.01.079] [PMID: 29902864]
[83]
Zeng X, Li X, Xu C, et al. Schisandra sphenanthera extract (Wuzhi Tablet) protects against chronic-binge and acute alcohol-induced liver injury by regulating the NRF2-ARE pathway in mice. Acta Pharm Sin B 2017; 7(5): 583-92.
[http://dx.doi.org/10.1016/j.apsb.2017.04.002] [PMID: 28924552]
[84]
Zhang H, Chen Q, Dahan A, et al. Transcriptomic analyses reveal the molecular mechanisms of schisandrin B alleviates CCl4-induced liver fibrosis in rats by RNA-sequencing. Chem Biol Interact 2019; 309: 108675.
[http://dx.doi.org/10.1016/j.cbi.2019.05.041] [PMID: 31150632]
[85]
Leong PK, Ko KM, Schisandrin B. A double-edged sword in nonalcoholic fatty liver disease. Oxid Med Cell Longev 2016; 2016: 6171658.
[http://dx.doi.org/10.1155/2016/6171658] [PMID: 27847552]
[86]
Homma M. Education program of Kampo-medicine for undergraduates in preparation for clinical setting. Yakugaku Zasshi 2016; 136(3): 417-22.
[http://dx.doi.org/10.1248/yakushi.15-00232-4] [PMID: 26935080]
[87]
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): E559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[88]
Takayama S, Arita R, Kikuchi A, Ohsawa M, Kaneko S, Ishii T. Clinical practice guidelines and evidence for the efficacy of traditional Japanese herbal medicine (Kampo) in treating geriatric patients. Front Nutr 2018; 5: 66.
[http://dx.doi.org/10.3389/fnut.2018.00066] [PMID: 30083536]
[89]
Stickel F, Schuppan D. Herbal medicine in the treatment of liver diseases. Dig Liver Dis 2007; 39(4): 293-304.
[http://dx.doi.org/10.1016/j.dld.2006.11.004] [PMID: 17331820]
[90]
Motoo Y, Seki T, Tsutani K. Traditional Japanese medicine, Kampo: Its history and current status. Chin J Integr Med 2011; 17(2): 85-7.
[http://dx.doi.org/10.1007/s11655-011-0653-y] [PMID: 21390572]
[91]
Enomoto Y, Nakamura Y, Enomoto N, Fujisawa T, Inui N, Suda T. Japanese herbal medicine-induced pneumonitis: A review of 73 patients. Respir Investig 2017; 55(2): 138-44.
[http://dx.doi.org/10.1016/j.resinv.2016.11.007] [PMID: 28274529]
[92]
Takahashi Y, Soejima Y, Kumagai A, Watanabe M, Uozaki H, Fukusato T. Japanese herbal medicines Sho-saiko-to, Inchinkoto, and Iuzen-taiho-to inhibit high-fat diet-induced nonalcoholic steatohepatitis in db/db mice. Pathol Int 2014; 64(10): 490-8.
[http://dx.doi.org/10.1111/pin.12199] [PMID: 25229199]
[93]
Takahashi Y, Soejima Y, Kumagai A, Watanabe M, Uozaki H, Fukusato T. Inhibitory effects of Japanese herbal medicines Sho-saiko-to and Juzen-taiho-to on nonalcoholic steatohepatitis in mice. PLoS One 2014; 9(1): e87279.
[http://dx.doi.org/10.1371/journal.pone.0087279] [PMID: 24466347]
[94]
Sakaida I, Matsumura Y, Akiyama S, Hayashi K, Ishige A, Okita K. Herbal medicine Sho-saiko-to (TJ-9) prevents liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. J Hepatol 1998; 28(2): 298-306.
[http://dx.doi.org/10.1016/0168-8278(88)80017-5] [PMID: 9514543]
[95]
Kusunose M, Qiu B, Cui T, et al. Effect of Sho-saiko-to extract on hepatic inflammation and fibrosis in dimethylnitrosamine induced liver injury rats. Biol Pharm Bull 2002; 25(11): 1417-21.
[http://dx.doi.org/10.1248/bpb.25.1417] [PMID: 12419951]
[96]
Hirayama C, Okumura M, Tanikawa K, Yano M, Mizuta M, Ogawa N. A multicenter randomized controlled clinical trial of Sho-saiko-to in chronic active hepatitis. Gastroenterol Jpn 1989; 24(6): 715-9.
[http://dx.doi.org/10.1007/BF02774173] [PMID: 2691317]
[97]
Deng G, Kurtz RC, Vickers A, et al. A single arm phase II study of a Far-Eastern traditional herbal formulation (Sho-sai-ko-to or Xiao-chai-hu-tang) in chronic hepatitis C patients. J Ethnopharmacol 2011; 136(1): 83-7.
[http://dx.doi.org/10.1016/j.jep.2011.04.008] [PMID: 21527335]
[98]
Shiota G, Maeta Y, Mukoyama T, et al. Effects of Sho-saiko-to on hepatocarcinogenesis and 8-hydroxy-2′-deoxyguanosine formation. Hepatology 2002; 35(5): 1125-33.
[http://dx.doi.org/10.1053/jhep.2002.33066] [PMID: 11981762]
[99]
Watanabe S, Kitade Y, Masaki T, Nishioka M, Satoh K, Nishino H. Effects of lycopene and Sho-saiko-to on hepatocarcinogenesis in a rat model of spontaneous liver cancer. Nutr Cancer 2001; 39(1): 96-101.
[http://dx.doi.org/10.1207/S15327914nc391_13] [PMID: 11588908]
[100]
Oka H, Yamamoto S, Kuroki T, et al. Prospective study of chemoprevention of hepatocellular carcinoma with Sho-saiko-to (TJ-9). Cancer 1995; 76(5): 743-9.
[http://dx.doi.org/10.1002/1097-0142(19950901)76:5<743::AID-CNCR2820760506>3.0.CO;2-V] [PMID: 8625175]
[101]
Tojima H, Yamazaki T, Tokudome T. [Two cases of pneumonia caused by Sho-saiko-to]. Nihon Kyobu Shikkan Gakkai Zasshi 1996; 34(8): 904-10. [in Japanese].
[PMID: 8965402]
[102]
Tomioka H, Hashimoto K, Ohnishi H, et al. [An autopsy case of interstitial pneumonia probably induced by Sho-saiko-to]. Nihon Kokyuki Gakkai Zasshi 1999; 37(12): 1013-8. [in Japanese].
[PMID: 10707545]
[103]
Miyanishi K, Hoki T, Tanaka S, Kato J. Prevention of hepatocellular carcinoma: Focusing on antioxidant therapy. World J Hepatol 2015; 7(3): 593-9.
[http://dx.doi.org/10.4254/wjh.v7.i3.593] [PMID: 25848483]
[104]
Rino Y, Yukawa N, Yamamoto N. Does herbal medicine reduce the risk of hepatocellular carcinoma? World J Gastroenterol 2015; 21(37): 10598-603.
[http://dx.doi.org/10.3748/wjg.v21.i37.10598] [PMID: 26457019]
[105]
Korenaga M, Hidaka I, Nishina S, et al. A glycyrrhizin-containing preparation reduces hepatic steatosis induced by hepatitis C virus protein and iron in mice. Liver Int 2011; 31(4): 552-60.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02469.x] [PMID: 21382166]
[106]
Hidaka I, Hino K, Korenaga M, et al. Stronger Neo-Minophagen C, a glycyrrhizin-containing preparation, protects liver against carbon tetrachloride-induced oxidative stress in transgenic mice expressing the hepatitis C virus polyprotein. Liver Int 2007; 27(6): 845-53.
[http://dx.doi.org/10.1111/j.1478-3231.2007.01492.x] [PMID: 17617128]
[107]
Suzuki H, Ohta Y, Takino T. Effects of glycyrrhizin on biochemical tests in patients with chronic hepatitis. Double blind trial. Asian Med J 1983; 26: 423-38.
[108]
Kumada H. Long-term treatment of chronic hepatitis C with glycyrrhizin [stronger neo-minophagen C (SNMC)] for preventing liver cirrhosis and hepatocellular carcinoma. Oncology 2002; 62(62) (Suppl. 1): 94-100.
[http://dx.doi.org/10.1159/000048283] [PMID: 11868794]
[109]
Rino Y, Tarao K. Anti-inflammatory drugs reduce the risk of hepatocellular carcinoma development. ISRN Oncol 2011; 2011: 390676.
[http://dx.doi.org/10.5402/2011/390676] [PMID: 22084728]
[110]
Tarao K, Rino Y, Takemiya S, et al. Serum alanine aminotransferase levels and survival after hepatectomy in patients with hepatocellular carcinoma and hepatitis C virus-associated liver cirrhosis. Cancer Sci 2003; 94(12): 1083-90.
[http://dx.doi.org/10.1111/j.1349-7006.2003.tb01404.x] [PMID: 14662024]
[111]
Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137(6): 1005-17.
[http://dx.doi.org/10.1016/j.cell.2009.04.021] [PMID: 19524505]
[112]
Li Y, Xiang GM, Liu LL, et al. Assessment of endogenous reference gene suitability for serum exosomal microRNA expression analysis in liver carcinoma resection studies. Mol Med Rep 2015; 12(3): 4683-91.
[http://dx.doi.org/10.3892/mmr.2015.3919] [PMID: 26082194]
[113]
Helal MG, Ayoub SE, Elkashefand WF, Ibrahim TM. Caffeine affects HFD-induced hepatic steatosis by multifactorial intervention. Hum Exp Toxicol 2018; 37(9): 983-90.
[http://dx.doi.org/10.1177/0960327117747026] [PMID: 29249184]
[114]
Li CH, Tang SC, Wong CH, Wang Y, Jiang JD, Chen Y. Berberine induces miR-373 expression in hepatocytes to inactivate hepatic steatosis associated AKT-S6 kinase pathway. J Pharmacol 2018; 825: 107-18.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.035] [PMID: 29477657]
[115]
Bataller R, Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis 2001; 21(3): 437-51.
[116]
Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002; 7: d793-807.
[http://dx.doi.org/10.2741/gressner] [PMID: 11897555]
[117]
Singh M, Hussain T, Firdous H, et al. Preclinical hepatoprotective effect of herbalism against ethanol induced hepatotoxicity: A review. Curr Drug Metab 2018; 19(12): 1002-11.
[http://dx.doi.org/10.2174/1389200219666180330125003] [PMID: 29600757]
[118]
Yen CH, Lai CC, Shia TH, et al. Gynura divaricata attenuates tumor growth and tumor relapse after cisplatin therapy in HCC xenograft model through suppression of cancer stem cell growth and Wnt/β-catenin signalling. J Ethnopharmacol 2018; 213: 366-75.
[http://dx.doi.org/10.1016/j.jep.2017.07.019] [PMID: 28729225]
[119]
Huang Q, Wang T, Yang L, Wang HY. Ginsenoside Rb2 alleviates hepatic lipid accumulation by restoring autophagy via induction of Sirt1 and activation of AMPK. Int J Mol Sci 2017; 18(5): E1063.
[http://dx.doi.org/10.3390/ijms18051063] [PMID: 28534819]
[120]
Reglero MM, Taggart MA, Monsalve-González L, Mateo R. Heavy metal exposure in large game from a lead mining area: Effects on oxidative stress and fatty acid composition in liver. Environ Pollut 2009; 157(4): 1388-95.
[http://dx.doi.org/10.1016/j.envpol.2008.11.036] [PMID: 19117650]
[121]
Pavelic K, Hadzija M. Medical applications of zeolites Zeolite in human health 2015. Available from: https://www.researchgate.net/publication/285142021_Medical_applications_of_zeolites
[122]
Makida Y, He F, Mohania D, et al. Chelator in environmentally-exposed poor detoxifiers: An adjuvant hepatoprotective treatment for poly-drug users? Metabolomics (Los Angel) 2016; 6: 3.
[123]
Marotta F, Lecroix P, Harada M, et al. Liver exposure to xenobiotics: The aging factor and potentials for functional foods. Rejuvenation Res 2006; 9(2): 338-41.
[http://dx.doi.org/10.1089/rej.2006.9.338] [PMID: 16706665]
[124]
Marotta F, Harada M, Goh KL, Lorenzetti A, Marandola P, Minelli E. In vitro study on the mechanisms of action of a novel phytotherapeutic compound against human hepatoma cells. Ann Hepatol 2007; 6(2): 111-6.
[http://dx.doi.org/10.1016/S1665-2681(19)31942-8] [PMID: 17519835]
[125]
Marotta F, Harada M, Goh K, Lorenzetti A, Gelosa F, Minelli E. Phytotherapeutic compound YHK exerts an inhibitory effect on early stage of experimentally-induced neoplastic liver lesions. Ann Hepatol 2006; 5(4): 268-72.
[http://dx.doi.org/10.1016/S1665-2681(19)31986-6] [PMID: 17151579]
[126]
Chughlay MF, Kramer N, Werfalli M, Spearman W, Engel ME, Cohen K. N-acetylcysteine for non-paracetamol drug-induced liver injury: A systematic review protocol. Syst Rev 2015; 4: 84.
[http://dx.doi.org/10.1186/s13643-015-0075-6] [PMID: 26066646]
[127]
Omar HA, Sargeant AM, Weng JR, et al. Targeting of the Akt-nuclear factor-kappa B signaling network by [1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol (OSU-A9), a novel indole-3-carbinol derivative, in a mouse model of hepatocellular carcinoma. Mol Pharmacol 2009; 76(5): 957-68.
[http://dx.doi.org/10.1124/mol.109.058180] [PMID: 19706731]
[128]
Burk RF, Hill KE, Motley AK, Byrne DW, Norsworthy BK. Selenium deficiency occurs in some patients with moderate-to-severe cirrhosis and can be corrected by administration of selenate but not selenomethionine: A randomized controlled trial. Am J Clin Nutr 2015; 102(5): 1126-33.
[http://dx.doi.org/10.3945/ajcn.115.110932] [PMID: 26468123]
[129]
Ruiyun X, Yunbiao L, Hongzhi Y, Zhuangliu W, Qiu W. The curative effects of gan-xian-fang for the treatment of hepatic fibrosis resulted from hepatitis b: A prospective and randomized double blind controlled trial. Chin Med J (Engl) 2001; 114: 174-86.
[130]
Xu Y, Zhao Y, Xu Y, et al. Blocking inhibition to YAP by ActinomycinD enhances anti-tumor efficacy of Corosolic acid in treating liver cancer. Cell Signal 2017; 29: 209-17.
[http://dx.doi.org/10.1016/j.cellsig.2016.11.001] [PMID: 27836738]
[131]
Pathak S, Hari SK, Thandavan SP, et al. Environmental and dietary metabolic stress in workers: Novel avenues in oral heavy metal chelation and fatty liver aids. New York: Nova Publisher 2019; pp. 135-58.
[132]
Ku CY, Wang YR, Lin HY, Lu SC, Lin JY. Corosolic acid inhibits hepatocellular carcinoma cell migration by targeting the VEGFR2/Src/FAK pathway. PLoS One 2015; 10(5): e0126725.
[http://dx.doi.org/10.1371/journal.pone.0126725] [PMID: 25978354]
[133]
Catanzaro R, Zerbinati N, Solimene U, et al. Effect of Celergen, a marine derivative, on in vitro hepatocarcinogenesis. Drug Discov Ther 2013; 7(5): 196-200.
[http://dx.doi.org/10.5582/ddt.2013.v7.5.196] [PMID: 24270384]
[134]
Catanzaro R, Celep G, Zerbinati N, et al. In vitro protective effect of Celergen, a bioactive marine compound, on interleukin-6-related invasiveness of pancreatic cancer. Acta Biomed 2014; 85(1): 44-51.
[135]
Eghianruwa Q, Osoniyi O, Wachira S, Maina N, Mbugua R, Imbuga M. In vitro antiproliferative studies of extracts of the marine molluscs: Tympanatonus fuscatus Var radula (Linnaeus) and Pachymelania aurita (Muller). Int J Biochem Mol Biol 2019; 10(1): 1-8.
[PMID: 31149366]
[136]
Fujimoto M, Tsuneyama K, Kinoshita H, et al. The traditional Japanese formula keishibukuryogan reduces liver injury and inflammation in patients with nonalcoholic fatty liver disease. Ann N Y Acad Sci 2010; 1190: 151-8.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05265.x] [PMID: 20388146]
[137]
Rawat D, Shrivastava S, Naik RA, Chhonker SK, Mehrotra A, Koiri RK. An overview of natural plant products in the treatment of hepatocellular carcinoma. Anticancer Agents Med Chem 2018; 18(13): 1838-59.
[http://dx.doi.org/10.2174/1871520618666180604085612] [PMID: 29866017]
[138]
Wang J, Sun M, Liu W, Li Y, Li M. Stem cell-based therapies for liver diseases: An overview and update. Tissue Eng Regen Med 2019; 16(2): 107-18.
[http://dx.doi.org/10.1007/s13770-019-00178-y] [PMID: 30989038]
[139]
Higuchi H, Gores GJ. Mechanisms of liver injury: An overview. Curr Mol Med 2003; 3(6): 483-90.
[http://dx.doi.org/10.2174/1566524033479528] [PMID: 14527080]
[140]
Li Q, Yang Y, Zhou T, et al. A compositive strategy to study the pharmacokinetics of tcms: Taking coptidis rhizoma, and coptidis rhizoma-glycyrrhizae radix et rhizoma as examples. Molecules 2018; 23(8): E2042.
[http://dx.doi.org/10.3390/molecules23082042] [PMID: 30111723]
[141]
Mishra NP, Mohapatra L, Hussain Z. Herbal drugs against hepatic cancer: New possibilities as alternative therapy. Ann Rom Soc Cell Biol 2021; 25(6): 7708-22.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy