Review Article

Beneficial Outcomes of Cancer Therapeutic Modalities Based on Targeting Apoptosis

Author(s): Asmaa F. Khafaga, Abd Elmonem M. Barakat, Ahmed E. Noreldin and Dina Johar*

Volume 23, Issue 10, 2022

Published on: 15 June, 2022

Page: [1002 - 1022] Pages: 21

DOI: 10.2174/1389450123666220316093147

Price: $65

conference banner
Abstract

Background: In the clinical setting, anticancer therapy is routinely administered to stimulate programmed cell death or “apoptosis.” The goal is to eliminate tumor cells. Whether selective activation of apoptosis facilitates aggressive disease relapse in the longer term is still unaddressed. Apoptosis defects have a crucial role in cancer progression and carcinogenesis. Thus, targeting apoptosis may be important in developing new cancer therapeutic modalities.

Methods: We summarize the shift in thinking that, while apoptosis is a barrier to oncogenesis, it paradoxically drives cancer formation and progression when executed incompletely, i.e., sublethal apoptosis. Also, we review apoptotic mechanisms, the role of apoptosis in carcinogenesis, and how it contributes to cancer treatment.

Result and Conclusion: Most current research focuses on the extent of cell death in vitro, but no evidence exists that protein regulation of cell death in vitro is similar to what happens in vivo. Future research requires identifying targets upstream and downstream of such proteins through identifying protein-protein interactions in different survival/apoptosis pathways. Finding nexuses where such pathways interconnect is critical, along with possible mechanisms for regulation.

Keywords: Programmed cell death, apoptosis, anticancer, protein therapy, immune therapy, gene therapy.

Next »
[1]
Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol 1999; 17(9): 2941-53.
[http://dx.doi.org/10.1200/JCO.1999.17.9.2941] [PMID: 10561374]
[2]
Bauer JH, Helfand SL. New tricks of an old molecule: Lifespan regulation by p53. Aging Cell 2006; 5(5): 437-40.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00228.x] [PMID: 16968311]
[3]
Gasco M, Shami S, Crook T. The p53 pathway in breast cancer. Breast Cancer Res 2002; 4(2): 70-6.
[http://dx.doi.org/10.1186/bcr426] [PMID: 11879567]
[4]
Morton JP, Timpson P, Karim SA, et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 2010; 107(1): 246-51.
[http://dx.doi.org/10.1073/pnas.0908428107] [PMID: 20018721]
[5]
Baritaki S, Militello L, Malaponte G, Spandidos DA, Salcedo M, Bonavida B. The anti-CD20 mAb LFB-R603 interrupts the dysregulated NF-κB/Snail/RKIP/PTEN resistance loop in B-NHL cells: Role in sensitization to TRAIL apoptosis. Int J Oncol 2011; 38(6): 1683-94.
[PMID: 21455568]
[6]
Jensen M, Engert A, Weissinger F, et al. Phase I study of a novel pro-apoptotic drug R-etodolac in patients with B-cell chronic lymphocytic leukemia. Invest New Drugs 2008; 26(2): 139-49.
[http://dx.doi.org/10.1007/s10637-007-9106-z] [PMID: 18094935]
[7]
Häcker G. The morphology of apoptosis. Cell Tissue Res 2000; 301(1): 5-17.
[http://dx.doi.org/10.1007/s004410000193] [PMID: 10928277]
[8]
Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 2000; 45(3): 528-37.
[http://dx.doi.org/10.1016/S0008-6363(99)00384-3] [PMID: 10728374]
[9]
Ziegler U, Groscurth P. Morphological features of cell death. News Physiol Sci 2004; 19: 124-8.
[PMID: 15143207]
[10]
Kroemer G, El-Deiry WS, Golstein P, et al. Classification of cell death: Recommendations of the nomenclature committee on cell death. Cell Death Differ 2005; 12(Suppl. 2): 1463-7.
[http://dx.doi.org/10.1038/sj.cdd.4401724] [PMID: 16247491]
[11]
Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146(1): 3-15.
[PMID: 7856735]
[12]
Hengartner MO. Apoptosis: Corralling the corpses. Cell 2001; 104(3): 325-8.
[http://dx.doi.org/10.1016/S0092-8674(01)00219-7] [PMID: 11239389]
[13]
Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 2003; 304(3): 499-504.
[http://dx.doi.org/10.1016/S0006-291X(03)00622-3] [PMID: 12729584]
[14]
McCarthy NJ, Evan GI. Methods for detecting and quantifying apoptosis. Curr Top Dev Biol 1998; 36: 259-78.
[http://dx.doi.org/10.1016/S0070-2153(08)60507-4] [PMID: 9342533]
[15]
Lavrik IN, Golks A, Krammer PH. Caspases: Pharmacological manipulation of cell death. J Clin Invest 2005; 115(10): 2665-72.
[http://dx.doi.org/10.1172/JCI26252] [PMID: 16200200]
[16]
Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: Classification and pathophysiological implications. Cell Death Differ 2007; 14(7): 1237-43.
[http://dx.doi.org/10.1038/sj.cdd.4402148] [PMID: 17431418]
[17]
O’Brien MA, Kirby R. Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care (San Antonio) 2008; 18(6): 572-85.
[http://dx.doi.org/10.1111/j.1476-4431.2008.00363.x]
[18]
Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999; 17: 331-67.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.331] [PMID: 10358762]
[19]
Gahan PB. Cell & molecular biology. Cell Biochem Funct 2003; 21(3): 297-302.
[20]
Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell 2001; 104(4): 487-501.
[http://dx.doi.org/10.1016/S0092-8674(01)00237-9] [PMID: 11239407]
[21]
Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv 2000; 74(2-3): 281-6.
[http://dx.doi.org/10.1016/S0031-6865(99)00038-2] [PMID: 10812970]
[22]
Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004; 116(2): 205-19.
[http://dx.doi.org/10.1016/S0092-8674(04)00046-7] [PMID: 14744432]
[23]
Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281(5381): 1309-12.
[http://dx.doi.org/10.1126/science.281.5381.1309] [PMID: 9721092]
[24]
Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226(4678): 1097-9.
[http://dx.doi.org/10.1126/science.6093263] [PMID: 6093263]
[25]
Reed JC. Bcl-2 family proteins: Regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 1997; 34(4)(Suppl. 5): 9-19.
[PMID: 9408956]
[26]
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87(1): 99-163.
[http://dx.doi.org/10.1152/physrev.00013.2006] [PMID: 17237344]
[27]
Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6(5): 513-9.
[http://dx.doi.org/10.1038/74994] [PMID: 10802706]
[28]
LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene 2008; 27(48): 6252-75.
[http://dx.doi.org/10.1038/onc.2008.302] [PMID: 18931692]
[29]
Ghobrial IM, Witzig TE, Adjei A. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005; 55(3): 178-94.
[http://dx.doi.org/10.3322/canjclin.55.3.178] [PMID: 15890640]
[30]
Motyka B, Korbutt G, Pinkoski MJ, et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 2000; 103(3): 491-500.
[http://dx.doi.org/10.1016/S0092-8674(00)00140-9] [PMID: 11081635]
[31]
Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: The story so far. Ann N Y Acad Sci 2003; 1010: 186-94.
[http://dx.doi.org/10.1196/annals.1299.032] [PMID: 15033718]
[32]
Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell 2002; 108(2): 165-70.
[http://dx.doi.org/10.1016/S0092-8674(02)00626-8] [PMID: 11832207]
[33]
Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26(4): 239-57.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[34]
Kerr JF, Searle J. A mode of cell loss in malignant neoplasms. J Pathol 1972; 106(1) : Pxi.
[35]
Green DR, Evan GI. A matter of life and death. Cancer Cell 2002; 1(1): 19-30.
[http://dx.doi.org/10.1016/S1535-6108(02)00024-7] [PMID: 12086884]
[36]
Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305(5684): 626-9.
[http://dx.doi.org/10.1126/science.1099320] [PMID: 15286356]
[37]
Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13(15): 1899-911.
[http://dx.doi.org/10.1101/gad.13.15.1899] [PMID: 10444588]
[38]
Minn AJ, Vélez P, Schendel SL, et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997; 385(6614): 353-7.
[http://dx.doi.org/10.1038/385353a0] [PMID: 9002522]
[39]
Reed JC. Proapoptotic multidomain Bcl-2/Bax-family proteins: Mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 2006; 13(8): 1378-86.
[http://dx.doi.org/10.1038/sj.cdd.4401975] [PMID: 16729025]
[40]
Kim H, Tu HC, Ren D, et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 2009; 36(3): 487-99.
[http://dx.doi.org/10.1016/j.molcel.2009.09.030] [PMID: 19917256]
[41]
Hockings C, et al. Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Cell Death Dis 2015.: 6(e1735): e1735..
[http://dx.doi.org/10.1038/cddis.2015.105]
[42]
Ye K, Meng WX, Sun H, et al. Characterization of an alternative BAK-binding site for BH3 peptides. Nat Commun 2020; 11(1): 3301.
[http://dx.doi.org/10.1038/s41467-020-17074-y] [PMID: 32620849]
[43]
Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 2001; 292(5517): 727-30.
[http://dx.doi.org/10.1126/science.1059108] [PMID: 11326099]
[44]
Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 2001; 15(12): 1481-6.
[http://dx.doi.org/10.1101/gad.897601] [PMID: 11410528]
[45]
Green DR. At the gates of death. Cancer Cell 2006; 9(5): 328-30.
[http://dx.doi.org/10.1016/j.ccr.2006.05.004] [PMID: 16697952]
[46]
Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace AJ Jr.. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 2000; 60(21): 6101-10.
[PMID: 11085534]
[47]
Fulda S, Meyer E, Debatin KM. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 2002; 21(15): 2283-94.
[http://dx.doi.org/10.1038/sj.onc.1205258] [PMID: 11948412]
[48]
Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 1995; 55(19): 4438-45.
[PMID: 7671257]
[49]
Miquel C, Borrini F, Grandjouan S, et al. Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am J Clin Pathol 2005; 123(4): 562-70.
[http://dx.doi.org/10.1309/JQ2X3RV3L8F9TGYW] [PMID: 15743744]
[50]
Goolsby C, Paniagua M, Tallman M, Gartenhaus RB. Bcl-2 regulatory pathway is functional in chronic lymphocytic leukemia. Cytometry B Clin Cytom 2005; 63(1): 36-46.
[http://dx.doi.org/10.1002/cyto.b.20034] [PMID: 15624202]
[51]
Pepper C, Hoy T, Bentley DP. Bcl-2/Bax ratios in chronic lymphocytic leukaemia and their correlation with in vitro apoptosis and clinical resistance. Br J Cancer 1997; 76(7): 935-8.
[http://dx.doi.org/10.1038/bjc.1997.487] [PMID: 9328155]
[52]
Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of bclxL can confer a multidrug resistance phenotype. Blood 1995; 86(5): 1903-10.
[http://dx.doi.org/10.1182/blood.V86.5.1903.bloodjournal8651903] [PMID: 7655019]
[53]
Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358(6381): 15-6.
[http://dx.doi.org/10.1038/358015a0] [PMID: 1614522]
[54]
Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 1991; 351(6326): 453-6.
[http://dx.doi.org/10.1038/351453a0] [PMID: 2046748]
[55]
Oren M, Rotter V. Introduction: p53--the first twenty years. Cell Mol Life Sci 1999; 55(1): 9-11.
[http://dx.doi.org/10.1007/s000180050265] [PMID: 10065147]
[56]
el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75(4): 817-25.
[http://dx.doi.org/10.1016/0092-8674(93)90500-P] [PMID: 8242752]
[57]
Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001; 7(3): 683-94.
[http://dx.doi.org/10.1016/S1097-2765(01)00214-3] [PMID: 11463392]
[58]
Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002; 9(3): 459-70.
[http://dx.doi.org/10.1016/S1097-2765(02)00482-3] [PMID: 11931755]
[59]
Bai L, Zhu W-G. p53: Structure, function and therapeutic applications. J Cancer Mol 2006; 2(4): 141-53.
[60]
Avery-Kiejda KA, Bowden NA, Croft AJ, et al. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer 2011; 11: 203.
[http://dx.doi.org/10.1186/1471-2407-11-203] [PMID: 21615965]
[61]
Slatter TL, Hung N, Campbell H, et al. Hyperproliferation, cancer, and inflammation in mice expressing a Δ133p53-like isoform. Blood 2011; 117(19): 5166-77.
[http://dx.doi.org/10.1182/blood-2010-11-321851] [PMID: 21411755]
[62]
Vikhanskaya F, Lee MK, Mazzoletti M, Broggini M, Sabapathy K. Cancer-derived p53 mutants suppress p53-target gene expression--potential mechanism for gain of function of mutant p53. Nucleic Acids Res 2007; 35(6): 2093-104.
[http://dx.doi.org/10.1093/nar/gkm099] [PMID: 17344317]
[63]
Vucic D, Fairbrother WJ. The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 2007; 13(20): 5995-6000.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0729] [PMID: 17947460]
[64]
Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR. Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer 2007; 120(11): 2344-52.
[http://dx.doi.org/10.1002/ijc.22554] [PMID: 17311258]
[65]
Ashhab Y, Alian A, Polliack A, Panet A, Ben Yehuda D. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett 2001; 495(1-2): 56-60.
[http://dx.doi.org/10.1016/S0014-5793(01)02366-3] [PMID: 11322947]
[66]
Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 2000; 10(21): 1359-66.
[http://dx.doi.org/10.1016/S0960-9822(00)00781-8] [PMID: 11084335]
[67]
Chen Z, Naito M, Hori S, Mashima T, Yamori T, Tsuruo T. A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun 1999; 264(3): 847-54.
[http://dx.doi.org/10.1006/bbrc.1999.1585] [PMID: 10544019]
[68]
Small S, Keerthivasan G, Huang Z, Gurbuxani S, Crispino JD. Overexpression of survivin initiates hematologic malignancies in vivo. Leukemia 2010; 24(11): 1920-6.
[http://dx.doi.org/10.1038/leu.2010.198] [PMID: 20882051]
[69]
Krepela E, Dankova P, Moravcikova E, et al. Increased expression of inhibitor of apoptosis proteins, survivin and XIAP, in non-small cell lung carcinoma. Int J Oncol 2009; 35(6): 1449-62.
[http://dx.doi.org/10.3892/ijo_00000464] [PMID: 19885569]
[70]
Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 1999; 93(11): 3601-9.
[http://dx.doi.org/10.1182/blood.V93.11.3601] [PMID: 10339464]
[71]
Uren AG, O’Rourke K, Aravind LA, et al. Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 2000; 6(4): 961-7.
[http://dx.doi.org/10.1016/S1097-2765(00)00094-0] [PMID: 11090634]
[72]
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73(4): 1907-16.
[http://dx.doi.org/10.1128/IAI.73.4.1907-1916.2005] [PMID: 15784530]
[73]
Shen XG, Wang C, Li Y, et al. Downregulation of caspase-9 is a frequent event in patients with stage II colorectal cancer and correlates with poor clinical outcome. Colorectal Dis 2010; 12(12): 1213-8.
[http://dx.doi.org/10.1111/j.1463-1318.2009.02009.x] [PMID: 19604285]
[74]
Devarajan E, Sahin AA, Chen JS, et al. Down-regulation of caspase 3 in breast cancer: A possible mechanism for chemoresistance. Oncogene 2002; 21(57): 8843-51.
[http://dx.doi.org/10.1038/sj.onc.1206044] [PMID: 12483536]
[75]
Fong PY, Xue WC, Ngan HY, et al. Caspase activity is downregulated in choriocarcinoma: A cDNA array differential expression study. J Clin Pathol 2006; 59(2): 179-83.
[http://dx.doi.org/10.1136/jcp.2005.028027] [PMID: 16443735]
[76]
Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci 2005; 118(Pt 2): 265-7.
[http://dx.doi.org/10.1242/jcs.01610] [PMID: 15654015]
[77]
Friesen C, Fulda S, Debatin KM. Deficient activation of the CD95 (APO-1/Fas) system in drug-resistant cells. Leukemia 1997; 11(11): 1833-41.
[http://dx.doi.org/10.1038/sj.leu.2400827] [PMID: 9369415]
[78]
Ramp U, Dejosez M, Mahotka C, et al. Deficient activation of CD95 (APO-1/Fas)-mediated apoptosis: A potential factor of multidrug resistance in human renal cell carcinoma. Br J Cancer 2000; 82(11): 1851-9.
[http://dx.doi.org/10.1054/bjoc.2000.1155] [PMID: 10839301]
[79]
Fulda S, Los M, Friesen C, Debatin KM. Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int J Cancer 1998; 76(1): 105-14.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980330)76:1<105::AID-IJC17>3.0.CO;2-B] [PMID: 9533769]
[80]
Reesink-Peters N, Hougardy BM, van den Heuvel FA, et al. Death receptors and ligands in cervical carcinogenesis: An immunohisto-chemical study. Gynecol Oncol 2005; 96(3): 705-13.
[http://dx.doi.org/10.1016/j.ygyno.2004.10.046] [PMID: 15721415]
[81]
Fulda S. Evasion of apoptosis as a cellular stress response in cancer. Int J Cell Biol 2010; 2010: 370835.
[http://dx.doi.org/10.1155/2010/370835] [PMID: 20182539]
[82]
Liu JJ, Lin M, Yu JY, Liu B, Bao JK. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett 2011; 300(2): 105-14.
[http://dx.doi.org/10.1016/j.canlet.2010.10.001] [PMID: 21036469]
[83]
Kang MH, Reynolds CP. Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 2009; 15(4): 1126-32.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0144] [PMID: 19228717]
[84]
Giorgini S, Trisciuoglio D, Gabellini C, et al. Modulation of bcl-xL in tumor cells regulates angiogenesis through CXCL8 expression. Mol Cancer Res 2007; 5(8): 761-71.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0088] [PMID: 17699103]
[85]
Del Bufalo D, Rizzo A, Trisciuoglio D, et al. Involvement of hTERT in apoptosis induced by interference with Bcl-2 expression and function. Cell Death Differ 2005; 12(11): 1429-38.
[http://dx.doi.org/10.1038/sj.cdd.4401670] [PMID: 15920535]
[86]
Bedikian AY, Garbe C, Conry R, Lebbe C, Grob JJ. Dacarbazine with or without oblimersen (a Bcl-2 antisense oligonucleotide) in chemotherapy-naive patients with advanced melanoma and low-normal serum lactate dehydrogenase: ‘The AGENDA trial’. Melanoma Res 2014; 24(3): 237-43.
[http://dx.doi.org/10.1097/CMR.0000000000000056] [PMID: 24667300]
[87]
Galatin PS, Advani RH, Fisher GA, et al. Phase I trial of oblimersen (Genasense®) and gemcitabine in refractory and advanced malignancies. Invest New Drugs 2011; 29(5): 971-7.
[http://dx.doi.org/10.1007/s10637-010-9416-4] [PMID: 20349264]
[88]
Ott PA, Chang J, Madden K, et al. Oblimersen in combination with temozolomide and albumin-bound paclitaxel in patients with advanced melanoma: A phase I trial. Cancer Chemother Pharmacol 2013; 71(1): 183-91.
[http://dx.doi.org/10.1007/s00280-012-1995-7] [PMID: 23064957]
[89]
Oltersdorf T, Elmore SW, Shoemaker AR, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435(7042): 677-81.
[http://dx.doi.org/10.1038/nature03579] [PMID: 15902208]
[90]
Simões-Wüst AP, Hopkins-Donaldson S, Sigrist B, Belyanskaya L, Stahel RA, Zangemeister-Wittke U. A functionally improved locked nucleic acid antisense oligonucleotide inhibits Bcl-2 and Bcl-xL expression and facilitates tumor cell apoptosis. Oligonucleotides 2004; 14(3): 199-209.
[http://dx.doi.org/10.1089/1545457042258297] [PMID: 15625915]
[91]
Abou-Nassar K, Brown JR. Novel agents for the treatment of chronic lymphocytic leukemia. Clin Adv Hematol Oncol 2010; 8(12): 886-95.
[PMID: 21326166]
[92]
Cheson BD. Oblimersen for the treatment of patients with chronic lymphocytic leukemia. Ther Clin Risk Manag 2007; 3(5): 855-70.
[PMID: 18473009]
[93]
Rai KR, Moore J, Wu J, Novick SC, O'Brien SM. Effect of the addition of oblimersen (Bcl-2 antisense) to fludarabine/cyclophosphamide for relapsed/refractory chronic lymphocytic leukemia (CLL) on survival in patients who achieve CR/nPR: Five-year follow-up from a randomized phase III study. J Clin Oncol 2008; 26(15)(Suppl.): 7008-8.
[http://dx.doi.org/10.1200/jco.2008.26.15_suppl.7008]
[94]
Khan S, Zhang X, Lv D, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med 2019; 25(12): 1938-47.
[http://dx.doi.org/10.1038/s41591-019-0668-z] [PMID: 31792461]
[95]
Peiyi Z, Xuan Z, Xingui L, Sajid K, Daohong Z, Guangrong Z. PROTACs are effective in addressing the platelet toxicity associated with BCL-XL inhibitors. Explor Target Antitumor Ther 2020; 1: 259-72.
[96]
He Y, Koch R, Budamagunta V, et al. DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J Hematol Oncol 2020; 13(1): 95.
[http://dx.doi.org/10.1186/s13045-020-00928-9] [PMID: 32677976]
[97]
Roberts A. The American Society of Hematology Education Program Book. Washington, DC: ASH Publications 2002; pp. 1-680.
[98]
Anderson MA, Deng J, Seymour JF, et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood 2016; 127(25): 3215-24.
[http://dx.doi.org/10.1182/blood-2016-01-688796] [PMID: 27069256]
[99]
Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 2016; 374(4): 311-22.
[http://dx.doi.org/10.1056/NEJMoa1513257] [PMID: 26639348]
[100]
Lachowiez C, DiNardo CD, Konopleva M. Venetoclax in acute myeloid leukemia - current and future directions. Leuk Lymphoma 2020; 61(6): 1313-22.
[http://dx.doi.org/10.1080/10428194.2020.1719098] [PMID: 32031033]
[101]
Fletcher L, Nabrinsky E, Liu T, Danilov A. Cell death pathways in lymphoid malignancies. Curr Oncol Rep 2020; 22(1): 10.
[http://dx.doi.org/10.1007/s11912-020-0874-3] [PMID: 31989308]
[102]
Seymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 2018; 378(12): 1107-20.
[http://dx.doi.org/10.1056/NEJMoa1713976] [PMID: 29562156]
[103]
Juárez-Salcedo LM, Desai V, Dalia S. Venetoclax: Evidence to date and clinical potential. Drugs Context 2019; 8: 212574.
[http://dx.doi.org/10.7573/dic.212574] [PMID: 31645879]
[104]
Deeks ED. Venetoclax: First global approval. Drugs Context 2016; 76(9): 979-87.
[http://dx.doi.org/10.1007/s40265-016-0596-x] [PMID: 27260335]
[105]
Flinn IW, Gribben JG, Dyer MJS, et al. Phase 1b study of venetoclax-obinutuzumab in previously untreated and relapsed/refractory chronic lymphocytic leukemia. Blood 2019; 133(26): 2765-75.
[http://dx.doi.org/10.1182/blood-2019-01-896290] [PMID: 30862645]
[106]
Jain N, Keating M, Thompson P, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med 2019; 380(22): 2095-103.
[http://dx.doi.org/10.1056/NEJMoa1900574] [PMID: 31141631]
[107]
Kumar S, Kaufman JL, Gasparetto C, et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood 2017; 130(22): 2401-9.
[http://dx.doi.org/10.1182/blood-2017-06-788786] [PMID: 29018077]
[108]
Moreau P, Chanan-Khan A, Roberts AW, et al. Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/refractory MM. Blood 2017; 130(22): 2392-400.
[http://dx.doi.org/10.1182/blood-2017-06-788323] [PMID: 28847998]
[109]
Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov 2016; 6(10): 1106-17.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0313] [PMID: 27520294]
[110]
Birkinshaw RW, Gong JN, Luo CS, et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat Commun 2019; 10(1): 2385.
[http://dx.doi.org/10.1038/s41467-019-10363-1] [PMID: 31160589]
[111]
Lok SW, Whittle JR, Vaillant F, et al. A phase Ib dose-escalation and expansion study of the BCL2 inhibitor venetoclax combined with tamoxifen in ER and BCL2-positive metastatic breast cancer. Cancer Discov 2019; 9(3): 354-69.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1151] [PMID: 30518523]
[112]
Albershardt TC, Salerni BL, Soderquist RS, et al. Multiple BH3 mimetics antagonize antiapoptotic MCL1 protein by inducing the endoplasmic reticulum stress response and up-regulating BH3-only protein NOXA. J Biol Chem 2011; 286(28): 24882-95.
[http://dx.doi.org/10.1074/jbc.M111.255828] [PMID: 21628457]
[113]
Scheffold A, Jebaraj BMC, Stilgenbauer S. Venetoclax: Targeting BCL2 in hematological cancers. Recent Results Cancer Res 2018; 212: 215-42.
[114]
Ocker M, Neureiter D, Lueders M, et al. Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gut 2005; 54(9): 1298-308.
[http://dx.doi.org/10.1136/gut.2004.056192] [PMID: 16099798]
[115]
Wu X, Liu X, Sengupta J, et al. Silencing of Bmi-1 gene by RNA interference enhances sensitivity to doxorubicin in breast cancer cells. Indian J Exp Biol 2011; 49(2): 105-12.
[PMID: 21428211]
[116]
Grossman D, McNiff JM, Li F, Altieri DC. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol 1999; 113(6): 1076-81.
[http://dx.doi.org/10.1046/j.1523-1747.1999.00776.x] [PMID: 10594755]
[117]
Du ZX, Zhang HY, Gao DX, Wang HQ, Li YJ, Liu GL. Antisurvivin oligonucleotides inhibit growth and induce apoptosis in human medullary thyroid carcinoma cells. Exp Mol Med 2006; 38(3): 230-40.
[http://dx.doi.org/10.1038/emm.2006.28] [PMID: 16819281]
[118]
Sharma H, Sen S, Lo Muzio L, Mariggiò A, Singh N. Antisense-mediated downregulation of anti-apoptotic proteins induces apoptosis and sensitizes head and neck squamous cell carcinoma cells to chemotherapy. Cancer Biol Ther 2005; 4(7): 720-7.
[http://dx.doi.org/10.4161/cbt.4.7.1783] [PMID: 15917659]
[119]
Liu Q, Dong C, Li L, Sun J, Li C, Li L. [Inhibitory effects of the survivin siRNA transfection on human lung adenocarcinoma cells SPCA1 and SH77]. Zhongguo Fei Ai Za Zhi 2011; 14(1): 18-22. [Inhibitory effects of the survivin siRNA transfection on human lung adenocarcinoma cells SPCA1 and SH77].
[PMID: 21219826]
[120]
Kami K, Doi R, Koizumi M, et al. Downregulation of survivin by siRNA diminishes radioresistance of pancreatic cancer cells. Surgery 2005; 138(2): 299-305.
[http://dx.doi.org/10.1016/j.surg.2005.05.009] [PMID: 16153440]
[121]
Yang CT, Li JM, Weng HH, Li YC, Chen HC, Chen MF. Adenovirus-mediated transfer of siRNA against survivin enhances the radiosensitivity of human non-small cell lung cancer cells. Cancer Gene Ther 2010; 17(2): 120-30.
[http://dx.doi.org/10.1038/cgt.2009.55] [PMID: 19730451]
[122]
Zhang X, Li N, Wang YH, Huang Y, Xu NZ, Wu LY. Effects of survivin siRNA on growth, apoptosis and chemosensitivity of ovarian cancer cells SKOV3/DDP. Zhonghua Zhong Liu Za Zhi 2009; 31(3): 174-7. [Effects of survivin siRNA on growth, apoptosis and chemosensitivity of ovarian cancer cells SKOV3/DDP].
[PMID: 19615253]
[123]
Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy: Fulfilled promises and open questions. Carcinogenesis 2007; 28(6): 1133-9.
[http://dx.doi.org/10.1093/carcin/bgm047] [PMID: 17341657]
[124]
Dai Y, Lawrence TS, Xu L. Overcoming cancer therapy resistance by targeting inhibitors of apoptosis proteins and nuclear factor-kappa B. Am J Transl Res 2009; 1(1): 1-15.
[PMID: 19966933]
[125]
Cao C, Mu Y, Hallahan DE, Lu B. XIAP and survivin as therapeutic targets for radiation sensitization in preclinical models of lung cancer. Oncogene 2004; 23(42): 7047-52.
[http://dx.doi.org/10.1038/sj.onc.1207929] [PMID: 15258565]
[126]
Hu Y, Cherton-Horvat G, Dragowska V, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res 2003; 9(7): 2826-36.
[PMID: 12855663]
[127]
Ohnishi K, Scuric Z, Schiestl RH, Okamoto N, Takahashi A, Ohnishi T. siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat Res 2006; 166(3): 454-62.
[http://dx.doi.org/10.1667/RR3606.1] [PMID: 16972754]
[128]
Yamaguchi Y, Shiraki K, Fuke H, et al. Targeting of X-linked inhibitor of apoptosis protein or survivin by short interfering RNAs sensitize hepatoma cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic agent-induced cell death. Oncol Rep 2005; 14(5): 1311-6.
[http://dx.doi.org/10.3892/or.14.5.1311] [PMID: 16211302]
[129]
Sun H, Liu L, Lu J, et al. Cyclopeptide Smac mimetics as antagonists of IAP proteins. Bioorg Med Chem Lett 2010; 20(10): 3043-6.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.114] [PMID: 20443226]
[130]
Lu J, McEachern D, Sun H, et al. Therapeutic potential and molecular mechanism of a novel, potent, nonpeptide, Smac mimetic SM-164 in combination with TRAIL for cancer treatment. Mol Cancer Ther 2011; 10(5): 902-14.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0864] [PMID: 21372226]
[131]
Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA 2008; 105(30): 10360-5.
[http://dx.doi.org/10.1073/pnas.0805326105] [PMID: 18650397]
[132]
Rippin TM, Bykov VJ, Freund SM, Selivanova G, Wiman KG, Fersht AR. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 2002; 21(14): 2119-29.
[http://dx.doi.org/10.1038/sj.onc.1205362] [PMID: 11948395]
[133]
Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: A novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009; 49: 223-41.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094723] [PMID: 18834305]
[134]
Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 2008; 13(5): 454-63.
[http://dx.doi.org/10.1016/j.ccr.2008.03.004] [PMID: 18455128]
[135]
Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 2008; 105(10): 3933-8.
[http://dx.doi.org/10.1073/pnas.0708917105] [PMID: 18316739]
[136]
Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996; 2(9): 985-91.
[http://dx.doi.org/10.1038/nm0996-985] [PMID: 8782455]
[137]
Chène P. p53 as a drug target in cancer therapy. Expert Opin Ther Pat 2001; 11(6): 923-35.
[http://dx.doi.org/10.1517/13543776.11.6.923]
[138]
Nemunaitis J, Ganly I, Khuri F, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: A phase II trial. Cancer Res 2000; 60(22): 6359-66.
[PMID: 11103798]
[139]
Suzuki K, Matsubara H. Recent advances in p53 research and cancer treatment. J Biomed Biotechnol 2011; 2011: 978312.
[http://dx.doi.org/10.1155/2011/978312] [PMID: 21765642]
[140]
Kuball J, Schuler M, Antunes Ferreira E, et al. Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Gene Ther 2002; 9(13): 833-43.
[http://dx.doi.org/10.1038/sj.gt.3301709] [PMID: 12080377]
[141]
Svane IM, Pedersen AE, Johnsen HE, et al. Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: Report from a phase I study. Cancer Immunol Immunother 2004; 53(7): 633-41.
[http://dx.doi.org/10.1007/s00262-003-0493-5] [PMID: 14985857]
[142]
Vermeij R, Leffers N, van der Burg SH, Melief CJ, Daemen T, Nijman HW. Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. J Biomed Biotechnol 2011; 2011: 702146.
[http://dx.doi.org/10.1155/2011/702146] [PMID: 21541192]
[143]
Rohn JL, Noteborn MH. The viral death effector Apoptin reveals tumor-specific processes. Apoptosis 2004; 9(3): 315-22.
[http://dx.doi.org/10.1023/B:APPT.0000025808.48885.9c] [PMID: 15258463]
[144]
Subbareddy M, et al. Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell death mediators. J Cell Sci 2005; 118(Pt:19): 4485-93.
[145]
Philchenkov A, Zavelevich M, Kroczak TJ, Los M. Caspases and cancer: Mechanisms of inactivation and new treatment modalities. Exp Oncol 2004; 26(2): 82-97.
[PMID: 15273659]
[146]
Yamabe K, Shimizu S, Ito T, et al. Cancer gene therapy using a pro-apoptotic gene, caspase-3. Gene Ther 1999; 6(12): 1952-9.
[http://dx.doi.org/10.1038/sj.gt.3301041] [PMID: 10637446]
[147]
Cam L, Boucquey A, Coulomb-L’hermine A, Weber A, Horellou P. Gene transfer of constitutively active caspase-3 induces apoptosis in a human hepatoma cell line. J Gene Med 2005; 7(1): 30-8.
[http://dx.doi.org/10.1002/jgm.636] [PMID: 15521050]
[148]
Li X, Fan R, Zou X, et al. Inhibitory effect of recombinant adenovirus carrying immunocaspase-3 on hepatocellular carcinoma. Biochem Biophys Res Commun 2007; 358(2): 489-94.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.134] [PMID: 17502111]
[149]
Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55(2): 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[150]
Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189(1): 12-9.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F] [PMID: 10451482]
[151]
Münger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989; 63(10): 4417-21.
[http://dx.doi.org/10.1128/jvi.63.10.4417-4421.1989] [PMID: 2476573]
[152]
Spardy N, Covella K, Cha E, et al. Human papillomavirus 16 E7 oncoprotein attenuates DNA damage checkpoint control by increasing the proteolytic turnover of claspin. Cancer Res 2009; 69(17): 7022-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0925] [PMID: 19706760]
[153]
Fischer M, Uxa S, Stanko C, Magin TM, Engeland K. Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci Rep 2017; 7(1): 2603.
[http://dx.doi.org/10.1038/s41598-017-02831-9] [PMID: 28572607]
[154]
Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6(12): 2853-68.
[http://dx.doi.org/10.1371/journal.pbio.0060301] [PMID: 19053174]
[155]
Keys HM, Bundy BN, Stehman FB, et al. Radiation therapy with and without extrafascial hysterectomy for bulky stage IB cervical carci-noma: A randomized trial of the Gynecologic Oncology Group. Gynecol Oncol 2003; 89(3): 343-53.
[http://dx.doi.org/10.1016/S0090-8258(03)00173-2] [PMID: 12798694]
[156]
Loiselle JJ, Sutherland LC. Differential downregulation of Rbm5 and Rbm10 during skeletal and cardiac differentiation. In Vitro Cell Dev Biol Anim 2014; 50(4): 331-9.
[http://dx.doi.org/10.1007/s11626-013-9708-z] [PMID: 24178303]
[157]
Cao Y, Di X, Zhang Q, Li R, Wang K. RBM10 regulates tumor apoptosis, proliferation, and metastasis. Front Oncol 2021; 11: 603932.
[http://dx.doi.org/10.3389/fonc.2021.603932] [PMID: 33718153]
[158]
Oh JJ, Razfar A, Delgado I, et al. 3p21.3 tumor suppressor gene H37/Luca15/RBM5 inhibits growth of human lung cancer cells through cell cycle arrest and apoptosis. Cancer Res 2006; 66(7): 3419-27.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1667] [PMID: 16585163]
[159]
Mourtada-Maarabouni M, Sutherland LC, Meredith JM, Williams GT. Simultaneous acceleration of the cell cycle and suppression of apoptosis by splice variant delta-6 of the candidate tumour suppressor LUCA-15/RBM5. Genes Cells 2003; 8(2): 109-19.
[http://dx.doi.org/10.1046/j.1365-2443.2003.00619.x] [PMID: 12581154]
[160]
Edamatsu H, Kaziro Y, Itoh H. LUCA15, a putative tumour suppressor gene encoding an RNA-binding nuclear protein, is down-regulated in ras-transformed Rat-1 cells. Genes Cells 2000; 5(10): 849-58.
[http://dx.doi.org/10.1046/j.1365-2443.2000.00370.x] [PMID: 11029660]
[161]
Tolkatchev D, et al. Structure dissection of human progranulin identifies well-folded granulin/epithelin modules with unique functional activities. Protein Sci 2008; 17(4): 711-24.
[162]
Ong CH, Bateman A. Progranulin (granulin-epithelin precursor, PC-cell derived growth factor, acrogranin) in proliferation and tumorigenesis. Histol Histopathol 2003; 18(4): 1275-88.
[PMID: 12973694]
[163]
O’Brien S, Moore JO, Boyd TE, et al. 5-year survival in patients with relapsed or refractory chronic lymphocytic leukemia in a randomized, phase III trial of fludarabine plus cyclophosphamide with or without oblimersen. J Clin Oncol 2009; 27(31): 5208-12.
[http://dx.doi.org/10.1200/JCO.2009.22.5748] [PMID: 19738118]
[164]
O’Brien S, Moore JO, Boyd TE, et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 2007; 25(9): 1114-20.
[http://dx.doi.org/10.1200/JCO.2006.07.1191] [PMID: 17296974]
[165]
Brinkmann K, Kashkar H. Targeting the mitochondrial apoptotic pathway: A preferred approach in hematologic malignancies? Cell Death Dis 2014; 5: e1098.
[http://dx.doi.org/10.1038/cddis.2014.61] [PMID: 24603326]
[166]
Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics: Targeting the apoptotic pathway. Crit Rev Oncol Hematol 2014; 90(3): 200-19.
[http://dx.doi.org/10.1016/j.critrevonc.2013.12.012] [PMID: 24507955]
[167]
Pro B, Leber B, Smith M, et al. Phase II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in combination with rituximab in patients with recurrent B-cell non-Hodgkin lymphoma. Br J Haematol 2008; 143(3): 355-60.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07353.x] [PMID: 18764869]
[168]
Marshall J, Chen H, Yang D, et al. A phase I trial of a Bcl-2 antisense (G3139) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann Oncol 2004; 15(8): 1274-83.
[http://dx.doi.org/10.1093/annonc/mdh317] [PMID: 15277270]
[169]
Tolcher AW, Chi K, Kuhn J, et al. A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 2005; 11(10): 3854-61.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2145] [PMID: 15897586]
[170]
Marcucci G, Stock W, Dai G, et al. Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: Pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 2005; 23(15): 3404-11.
[http://dx.doi.org/10.1200/JCO.2005.09.118] [PMID: 15824414]
[171]
Chi KN, Gleave ME, Klasa R, et al. A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Gen-asense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 2001; 7(12): 3920-7.
[PMID: 11751483]
[172]
Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: The Oblimersen Melanoma Study Group. J Clin Oncol 2006; 24(29): 4738-45.
[http://dx.doi.org/10.1200/JCO.2006.06.0483] [PMID: 16966688]
[173]
Rudin CM, Kozloff M, Hoffman PC, et al. Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 2004; 22(6): 1110-7.
[http://dx.doi.org/10.1200/JCO.2004.10.148] [PMID: 15020613]
[174]
Rudin CM, Salgia R, Wang X, et al. Randomized phase II Study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: CALGB 30103. J Clin Oncol 2008; 26(6): 870-6.
[http://dx.doi.org/10.1200/JCO.2007.14.3461] [PMID: 18281659]
[175]
O’Brien SM, Claxton DF, Crump M, et al. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 2009; 113(2): 299-305.
[http://dx.doi.org/10.1182/blood-2008-02-137943] [PMID: 18931344]
[176]
Chanan-Khan AA, Niesvizky R, Hohl RJ, et al. Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma. Leuk Lymphoma 2009; 50(4): 559-65.
[http://dx.doi.org/10.1080/10428190902748971] [PMID: 19373653]
[177]
Moore J, Seiter K, Kolitz J, et al. A Phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk Res 2006; 30(7): 777-83.
[http://dx.doi.org/10.1016/j.leukres.2005.10.025] [PMID: 16730060]
[178]
Banerji U, van Doorn L, Papadatos-Pastos D, et al. A phase I pharmacokinetic and pharmacodynamic study of CHR-3996, an oral class I selective histone deacetylase inhibitor in refractory solid tumors. Clin Cancer Res 2012; 18(9): 2687-94.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3165] [PMID: 22553374]
[179]
Kirschbaum MH, Foon KA, Frankel P, et al. A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: A California Cancer Consortium Study. Leuk Lymphoma 2014; 55(10): 2301-4.
[http://dx.doi.org/10.3109/10428194.2013.877134] [PMID: 24369094]
[180]
Zorzi AP, Bernstein M, Samson Y, et al. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. Pediatr Blood Cancer 2013; 60(11): 1868-74.
[http://dx.doi.org/10.1002/pbc.24694] [PMID: 23893953]
[181]
Gray JE, Haura E, Chiappori A, et al. A phase I, pharmacokinetic, and pharmacodynamic study of panobinostat, an HDAC inhibitor, combined with erlotinib in patients with advanced aerodigestive tract tumors. Clin Cancer Res 2014; 20(6): 1644-55.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2235] [PMID: 24429877]
[182]
Pili R, Salumbides B, Zhao M, et al. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer 2012; 106(1): 77-84.
[http://dx.doi.org/10.1038/bjc.2011.527] [PMID: 22134508]
[183]
Dong M, Ning ZQ, Xing PY, et al. Phase I study of chidamide (CS055/HBI-8000), a new histone deacetylase inhibitor, in patients with advanced solid tumors and lymphomas. Cancer Chemother Pharmacol 2012; 69(6): 1413-22.
[http://dx.doi.org/10.1007/s00280-012-1847-5] [PMID: 22362161]
[184]
Galli M, Salmoiraghi S, Golay J, et al. A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann Hematol 2010; 89(2): 185-90.
[http://dx.doi.org/10.1007/s00277-009-0793-8] [PMID: 19633847]
[185]
Venugopal B, Baird R, Kristeleit RS, et al. A phase I study of quisinostat (JNJ-26481585), an oral hydroxamate histone deacetylase inhibitor with evidence of target modulation and antitumor activity, in patients with advanced solid tumors. Clin Cancer Res 2013; 19(15): 4262-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0312] [PMID: 23741066]
[186]
Fukutomi A, Hatake K, Matsui K, et al. A phase I study of oral panobinostat (LBH589) in Japanese patients with advanced solid tumors. Invest New Drugs 2012; 30(3): 1096-106.
[http://dx.doi.org/10.1007/s10637-011-9666-9] [PMID: 21484248]
[187]
Younes A, Sureda A, Ben-Yehuda D, et al. Panobinostat in patients with relapsed/refractory Hodgkin’s lymphoma after autologous stem-cell transplantation: Results of a phase II study. J Clin Oncol 2012; 30(18): 2197-203.
[http://dx.doi.org/10.1200/JCO.2011.38.1350] [PMID: 22547596]
[188]
Berenson JR, Hilger JD, Yellin O, et al. A phase 1/2 study of oral panobinostat combined with melphalan for patients with relapsed or refractory multiple myeloma. Ann Hematol 2014; 93(1): 89-98.
[http://dx.doi.org/10.1007/s00277-013-1910-2] [PMID: 24135804]
[189]
Bauer S, Hilger RA, Mühlenberg T, et al. Phase I study of panobinostat and imatinib in patients with treatment-refractory metastatic gas-trointestinal stromal tumors. Br J Cancer 2014; 110(5): 1155-62.
[http://dx.doi.org/10.1038/bjc.2013.826] [PMID: 24434430]
[190]
Paik PK, Rudin CM, Pietanza MC, et al. A phase II study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in relapsed small cell lung cancer. Lung Cancer 2011; 74(3): 481-5.
[http://dx.doi.org/10.1016/j.lungcan.2011.05.005] [PMID: 21620511]
[191]
Parikh SA, Kantarjian H, Schimmer A, et al. Phase II study of obatoclax mesylate (GX15-070), a small-molecule BCL-2 family antagonist, for patients with myelofibrosis. Clin Lymphoma Myeloma Leuk 2010; 10(4): 285-9.
[http://dx.doi.org/10.3816/CLML.2010.n.059] [PMID: 20709666]
[192]
Liu G, Kelly WK, Wilding G, Leopold L, Brill K, Somer B. An open-label, multicenter, phase I/II study of single-agent AT-101 in men with castrate-resistant prostate cancer. Clin Cancer Res 2009; 15(9): 3172-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2985] [PMID: 19366825]
[193]
Van Poznak C, Seidman AD, Reidenberg MM, et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: A phase I/II clinical trial. Breast Cancer Res Treat 2001; 66(3): 239-48.
[http://dx.doi.org/10.1023/A:1010686204736] [PMID: 11510695]
[194]
Wilson WH, O’Connor OA, Czuczman MS, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: A phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 2010; 11(12): 1149-59.
[http://dx.doi.org/10.1016/S1470-2045(10)70261-8] [PMID: 21094089]
[195]
Roberts AW, Seymour JF, Brown JR, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 2012; 30(5): 488-96.
[http://dx.doi.org/10.1200/JCO.2011.34.7898] [PMID: 22184378]
[196]
Dai Y, Liu M, Tang W, et al. Molecularly targeted radiosensitization of human prostate cancer by modulating inhibitor of apoptosis. Clin Cancer Res 2008; 14(23): 7701-10.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0188] [PMID: 19047096]
[197]
Dineen SP, Roland CL, Greer R, et al. Smac mimetic increases chemotherapy response and improves survival in mice with pancreatic cancer. Cancer Res 2010; 70(7): 2852-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3892] [PMID: 20332237]
[198]
Dai Y, Liu M, Tang W, et al. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB. BMC Cancer 2009; 9: 392.
[http://dx.doi.org/10.1186/1471-2407-9-392] [PMID: 19895686]
[199]
Dean E, Jodrell D, Connolly K, et al. Phase I trial of AEG35156 administered as a 7-day and 3-day continuous intravenous infusion in patients with advanced refractory cancer. J Clin Oncol 2009; 27(10): 1660-6.
[http://dx.doi.org/10.1200/JCO.2008.19.5677] [PMID: 19237630]
[200]
Tolcher AW, Mita A, Lewis LD, et al. Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol 2008; 26(32): 5198-203.
[http://dx.doi.org/10.1200/JCO.2008.17.2064] [PMID: 18824702]
[201]
Satoh T, Okamoto I, Miyazaki M, et al. Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors. Clin Cancer Res 2009; 15(11): 3872-80.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1946] [PMID: 19470738]
[202]
Rödel F, Frey B, Leitmann W, Capalbo G, Weiss C, Rödel C. Survivin antisense oligonucleotides effectively radiosensitize colorectal cancer cells in both tissue culture and murine xenograft models. Int J Radiat Oncol Biol Phys 2008; 71(1): 247-55.
[http://dx.doi.org/10.1016/j.ijrobp.2008.02.011] [PMID: 18406888]
[203]
Soria JC, Márk Z, Zatloukal P, et al. Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol 2011; 29(33): 4442-51.
[http://dx.doi.org/10.1200/JCO.2011.37.2623] [PMID: 22010015]
[204]
Yee L, et al. Phase Ib study of recombinant human Apo2L/TRAIL plus irinotecan and cetuximab or FOLFIRI in metastatic colorectal cancer (mCRC) patients (pts): Preliminary results. J Clin Oncol 2009; 27(15)(Suppl.): 4129-9.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.4129]
[205]
Greco FA, Bonomi P, Crawford J, et al. Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer 2008; 61(1): 82-90.
[http://dx.doi.org/10.1016/j.lungcan.2007.12.011] [PMID: 18255187]
[206]
Hotte SJ, Hirte HW, Chen EX, et al. A phase 1 study of mapatumumab (fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res 2008; 14(11): 3450-5.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1416] [PMID: 18519776]
[207]
Trarbach T, Moehler M, Heinemann V, et al. Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 2010; 102(3): 506-12.
[http://dx.doi.org/10.1038/sj.bjc.6605507] [PMID: 20068564]
[208]
Saleh M, et al. A phase I study of CS-1008 (humanized monoclonal antibody targeting death receptor 5 or DR5), administered weekly to patients with advanced solid tumors or lymphomas. J Clin Oncol 2008; 26(15)(Suppl.): 3537-7.
[http://dx.doi.org/10.1200/jco.2008.26.15_suppl.3537]
[209]
Camidge DR. Apomab: An agonist monoclonal antibody directed against Death Receptor 5/TRAIL-Receptor 2 for use in the treatment of solid tumors. Expert Opin Biol Ther 2008; 8(8): 1167-76.
[http://dx.doi.org/10.1517/14712598.8.8.1167] [PMID: 18613768]
[210]
Pacey S, et al. Phase I and pharmacokinetic study of HGS-ETR2, a human monoclonal antibody to TRAIL R2, in patients with advanced solid malignancies. J Clin Oncol 2005; 23(16)(Suppl.): 3055-5.
[http://dx.doi.org/10.1200/jco.2005.23.16_suppl.3055]
[211]
Wakelee HA, Patnaik A, Sikic BI, et al. Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann Oncol 2010; 21(2): 376-81.
[http://dx.doi.org/10.1093/annonc/mdp292] [PMID: 19633048]
[212]
Herbst RS, Kurzrock R, Hong DS, et al. A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clin Cancer Res 2010; 16(23): 5883-91.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0631] [PMID: 20947515]
[213]
LoRusso P, et al. First-in-human study of AMG 655, a proapoptotic TRAIL receptor-2 agonist, in adult patients with advanced solid tumors. J Clin Oncol 2007; 25(18)(Suppl.): 3534-4.
[http://dx.doi.org/10.1200/jco.2007.25.18_suppl.3534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy