Review Article

A Comprehensive Review on Preclinical Evidence-based Neuroprotective Potential of Bacopa monnieri against Parkinson's Disease

Author(s): Ahsas Goyal*, Sainu Gopika, Abhishek Kumar and Debapriya Garabadu

Volume 23, Issue 9, 2022

Published on: 26 April, 2022

Page: [889 - 901] Pages: 13

DOI: 10.2174/1389450123666220316091734

Price: $65

Open Access Journals Promotions 2
Abstract

Parkinson's disease is a chronic and gradually progressive neurodegenerative disorder triggered due to the loss of dopamine-releasing neurons in the region of substantia nigra pars compacta characterized by the motor symptoms, such as tremor, bradykinesia, akinesia, and postural instability. Proteinopathies, mitochondrial dysfunction induced dopaminergic neuronal deterioration, and gene mutations are the hallmarks of Parkinson's disease. The bioactive components of Brahmi, such as Bacoside A, Bacoside B, and Bacosaponins, belong to various chemical families. Brahmi's neuroprotective role includes reducing neuronal oxidative stress, dopaminergic neuronal degeneration, mitochondrial dysfunction, inflammation, inhibition of α-synuclein aggregation, and improvement of cognitive and learning behaviour. Researchers found that Bacopa monnieri significantly increased brain levels of glutathione, vitamin C, vitamin E, and vitamin A in rats exposed to cigarette smoke. Brahmi has a potent antioxidant property and neuroprotective effects against PD that help reduce oxidative stress and neuroinflammation and enhance dopamine levels. The review collates all the preclinical studies that prove the beneficial neuroprotective effect of Brahmi for treating PD.

Keywords: Brahmi, neuroprotection, Parkinson’s, dopamine, antioxidant, anti-inflammatory.

Graphical Abstract
[1]
Sandhya S, Vinod KR, Sravan K. Herbs used for brain disorders. Hygeia J D Med 2010; 2(1): 38-45.
[2]
Tripathi KD. Essentials of medical pharmacology Drugs Used in Mental Illness. 4th ed. New Delhi: Jaypee Brothers 2001; pp. 403-11.
[3]
Rang HP, Dale MM. Pharmacology. 5th ed. New Delhi: Churchill Living Stone 2006; pp. 494-550.
[4]
Beal MF, Oakes D, Shoulson I, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: No evidence of benefit. JAMA Neurol 2014; 71(5): 543-52.
[http://dx.doi.org/10.1001/jamaneurol.2014.131] [PMID: 24664227]
[5]
Prakash J, Yadav SK, Chouhan S, Singh SP. Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochem Res 2013; 38(5): 972-80.
[http://dx.doi.org/10.1007/s11064-013-1005-4] [PMID: 23430469]
[6]
Singla RK, Agarwal T, He X, Shen B. Herbal resources to combat a progressive & degenerative nervous system disorder- Parkinson’s disease. Curr Drug Targets 2021; 22(6): 609-30.
[http://dx.doi.org/10.2174/1389450121999201013155202] [PMID: 33050857]
[7]
Corona JC, Duchen MR. PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochem Res 2015; 40(2): 308-16.
[http://dx.doi.org/10.1007/s11064-014-1377-0] [PMID: 25007880]
[8]
Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 2015; 4: 19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[9]
Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 2013; 51: 35-42.
[http://dx.doi.org/10.1016/j.nbd.2012.10.011] [PMID: 23064436]
[10]
Jiang T, Sun Q, Chen S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol 2016; 147: 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[11]
Dadhania VP, Trivedi PP, Vikram A, Tripathi DN. Nutraceuticals against neurodegeneration: A mechanistic insight. Curr Neuropharmacol 2016; 14(6): 627-40.
[http://dx.doi.org/10.2174/1570159X14666160104142223] [PMID: 26725888]
[12]
Yin R, Xue J, Tan Y, et al. The positive role and mechanism of herbal medicine in Parkinson’s disease. Oxidative Medicine and Cellular Longevity. Article ID 2021; 9923331: 1-23.
[13]
Koppula S, Kumar H, More SV, Lim HW, Hong SM, Choi DK. Recent updates in redox regulation and free radical scavenging effects by herbal products in experimental models of Parkinson’s disease. Molecules 2012; 17(10): 11391-420.
[http://dx.doi.org/10.3390/molecules171011391] [PMID: 23014498]
[14]
Van Kampen JM, Baranowski DB, Shaw CA, Kay DG. Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease. Exp Gerontol 2014; 50: 95-105.
[http://dx.doi.org/10.1016/j.exger.2013.11.012] [PMID: 24316034]
[15]
Ríos JL, Onteniente M, Picazo D, Montesinos MC. Medicinal plants and natural products as potential sources for anti Parkinson drugs. Planta Med 2016; 82(11-12): 942-51.
[http://dx.doi.org/10.1055/s-0042-107081] [PMID: 27224274]
[16]
Shahpiri Z, Bahramsoltani R, Hosein Farzaei M, Farzaei F, Rahimi R. Phytochemicals as future drugs for Parkinson’s disease: A com-prehensive review. Rev Neurosci 2016; 27(6): 651-68.
[http://dx.doi.org/10.1515/revneuro-2016-0004] [PMID: 27124673]
[17]
Mu X, He GR, Yuan X, Li XX, Du GH. Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacol Biochem Behav 2011; 98(2): 286-91.
[http://dx.doi.org/10.1016/j.pbb.2011.01.011] [PMID: 21262257]
[18]
Bridi R, Crossetti FP, Steffen VM, Henriques AT. The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytother Res 2001; 15(5): 449-51.
[http://dx.doi.org/10.1002/ptr.814] [PMID: 11507743]
[19]
van der Merwe C, van Dyk HC, Engelbrecht L, et al. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol Neurobiol 2017; 54(4): 2752-62.
[http://dx.doi.org/10.1007/s12035-016-9843-0] [PMID: 27003823]
[20]
Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001; 78(5): 1073-82.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00490.x] [PMID: 11553681]
[21]
Kumar S, Mondal AC. Neuroprotective, neurotrophic and anti-oxidative role of Bacopamonnieri on CUS induced model of depression in rat. Neurochem Res 2016; 41(11): 3083-94.
[http://dx.doi.org/10.1007/s11064-016-2029-3] [PMID: 27506204]
[22]
Mathur A, Verma SK, Purohit R, et al. Pharmacological investigation of Bacopamonnieri on the basis of antioxidant, antimicrobial and anti-inflammatory properties. J Chem Pharm Res 2010; 2: 191-8.
[23]
Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 2010; 127(1): 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[24]
Morgan A, Stevens J. Does Bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial. J Altern Complement Med 2010; 16(7): 753-9.
[http://dx.doi.org/10.1089/acm.2009.0342] [PMID: 20590480]
[25]
Siddique YH, Mujtaba SF, Faisal M, Jyoti S, Naz F. The effect of Bacopamonnieri leaf extract on dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Eur J Integr Med 2014; 6: 571-80.
[http://dx.doi.org/10.1016/j.eujim.2014.05.007]
[26]
Jadiya P, Khan A, Sammi SR, Kaur S, Mir SS, Nazir A. Anti-Parkinsonian effects of Bacopa monnieri: insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson’s disease. Biochem Biophys Res Commun 2011; 413(4): 605-10.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.010] [PMID: 21925152]
[27]
Hazra S, Kumar S, Saha GK, Mondal AC. Reversion of BDNF, Akt and CREB in hippocampus of chronic unpredictable stress induced rats: Effects of phytochemical, Bacopamonnieri. Psychiatry Investig 2017; 14(1): 74-80.
[http://dx.doi.org/10.4306/pi.2017.14.1.74] [PMID: 28096878]
[28]
Kumar N, Abichandani LG, Thawani V, Gharpure KJ, Naidu MUR, Venkat RG. Efficacy of standardized extract of Bacopamonnieri (Bacognize1) on cognitive functions of medical students: A six-week, randomized placebo-controlled trial. Evid Based Complement Alternat Med 2016; 2016: 4103423.
[http://dx.doi.org/10.1155/2016/4103423] [PMID: 27803728]
[29]
Przedborski S, Vila M, Jackson-Lewis V. Neurodegeneration: What is it and where are we? J Clin Invest 2003; 111(1): 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[30]
Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[31]
Olanow CW. The pathogenesis of cell death in Parkinson’s disease--2007. Mov Disord 2007; 22(Suppl. 17): S335-42.
[http://dx.doi.org/10.1002/mds.21675] [PMID: 18175394]
[32]
Shastry BS. Neurodegenerative disorders of protein aggregation. Neurochem Int 2003; 43(1): 1-7.
[http://dx.doi.org/10.1016/S0197-0186(02)00196-1] [PMID: 12605877]
[33]
Andersen JK. Oxidative stress in neurodegeneration: Cause or consequence? Nat Med 2004; 10(7s)(Suppl.): S18-25.
[http://dx.doi.org/10.1038/nrn1434] [PMID: 15298006]
[34]
Khanam H, Ali A, Asif M. Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem 2016; 124: 1121-41.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.006] [PMID: 27597727]
[35]
Walker LC, Jucker M. Neurodegenerative diseases: Expanding the prion concept. Annu Rev Neurosci 2015; 38: 87-103.
[http://dx.doi.org/10.1146/annurev-neuro-071714-033828] [PMID: 25840008]
[36]
Selkoe DJ. Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 2004; 6(11): 1054-61.
[http://dx.doi.org/10.1038/ncb1104-1054] [PMID: 15516999]
[37]
de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6): 525-35.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
[38]
Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Am J Epidemiol 2003; 157(11): 1015-22.
[http://dx.doi.org/10.1093/aje/kwg068] [PMID: 12777365]
[39]
Driver JA, Logroscino G, Gaziano JM, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 2009; 72(5): 432-8.
[http://dx.doi.org/10.1212/01.wnl.0000341769.50075.bb] [PMID: 19188574]
[40]
Pringsheim T, Jette N, Frolkis A, Steeves TDL. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov Disord 2014; 29(13): 1583-90.
[http://dx.doi.org/10.1002/mds.25945] [PMID: 24976103]
[41]
Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007; 68(5): 384-6.
[http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03] [PMID: 17082464]
[42]
Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson’s disease: A review of the evidence. Eur J Epidemiol 2011; 26(Suppl. 1): S1-S58.
[http://dx.doi.org/10.1007/s10654-011-9581-6] [PMID: 21626386]
[43]
Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017; 18(2): 101-13.
[http://dx.doi.org/10.1038/nrn.2016.178] [PMID: 28104909]
[44]
Morais VA, Haddad D, Craessaerts K, et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science 2014; 344(6180): 203-7.
[http://dx.doi.org/10.1126/science.1249161] [PMID: 24652937]
[45]
Darnell RB. RNA protein interaction in neurons. Annu Rev Neurosci 2013; 36: 243-70.
[http://dx.doi.org/10.1146/annurev-neuro-062912-114322] [PMID: 23701460]
[46]
Schultz W. Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 1997; 7(2): 191-7.
[http://dx.doi.org/10.1016/S0959-4388(97)80007-4] [PMID: 9142754]
[47]
Hauber W. Blockade of subthalamic dopamine D1 receptors elicits akinesia in rats. Neuroreport 1998; 9(18): 4115-8.
[http://dx.doi.org/10.1097/00001756-199812210-00020] [PMID: 9926857]
[48]
Calabresi P, Picconi B, Tozzi A, Di Filippo M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 2007; 30(5): 211-9.
[http://dx.doi.org/10.1016/j.tins.2007.03.001] [PMID: 17367873]
[49]
Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits 2013; 7: 152. a
[http://dx.doi.org/10.3389/fncir.2013.00152] [PMID: 24130517]
[50]
Harrington KA, Augood SJ, Kingsbury AE, Foster OJ, Emson PC. Dopamine transporter (Dat) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson’s disease. Brain Res Mol Brain Res 1996; 36(1): 157-62.
[http://dx.doi.org/10.1016/0169-328X(95)00278-Z] [PMID: 9011752]
[51]
Miller GW, Gainetdinov RR, Levey AI, Caron MG. Dopamine transporters and neuronal injury. Trends Pharmacol Sci 1999; 20(10): 424-9.
[http://dx.doi.org/10.1016/S0165-6147(99)01379-6] [PMID: 10498956]
[52]
Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012; 338(6109): 949-53.
[http://dx.doi.org/10.1126/science.1227157] [PMID: 23161999]
[53]
Marsh L, Vaughan C, Schretlen D, Brandt J, Mandir A. Psychomotor aspects of mood disorders in Parkinson’s disease. Biol Psychiatry 2000; 47(8): S165.
[http://dx.doi.org/10.1016/S0006-3223(00)00812-X]
[54]
Kumar H, Lim HW, More SV, et al. The role of free radicals in the aging brain and Parkinson’s Disease: Convergence and parallelism. Int J Mol Sci 2012; 13(8): 10478-504.
[http://dx.doi.org/10.3390/ijms130810478] [PMID: 22949875]
[55]
Goldman JE, Yen SH, Chiu FC, Peress NS. Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 1983; 221(4615): 1082-4.
[http://dx.doi.org/10.1126/science.6308771] [PMID: 6308771]
[56]
Candy JM, Perry RH, Perry EK, et al. Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 1983; 59(2): 277-89.
[http://dx.doi.org/10.1016/0022-510X(83)90045-X] [PMID: 6854353]
[57]
Liu H, Mao P, Wang J, Wang T, Xie CH. Allicin protects PC12 cells against 6-OHDA-induced oxidative stress and mitochondrial dys-function via regulating mitochondrial dynamics. Cell Physiol Biochem 2015; 36(3): 966-79.
[http://dx.doi.org/10.1159/000430271] [PMID: 26087780]
[58]
Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet 2004; 363(9423): 1783-93.
[http://dx.doi.org/10.1016/S0140-6736(04)16305-8] [PMID: 15172778]
[59]
Mazzoni P, Shabbott B, Cortés JC. Motor control abnormalities in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(6): a009282.
[http://dx.doi.org/10.1101/cshperspect.a009282] [PMID: 22675667]
[60]
Teive HA, Bertucci DC, Munhoz RP. Unusual motor and non-motor symptoms and signs in the early stage of Parkinson’s disease. Arq Neuropsiquiatr 2016; 74(10): 781-4.
[http://dx.doi.org/10.1590/0004-282X20160126] [PMID: 27759801]
[61]
Fox SH, Katzenschlager R, Lim SY, et al. The movement disorder society evidence-based medicine review update: Treatments for the motor symptoms of Parkinson’s disease. Mov Disord 2011; 26(Suppl. 3): S2-S41.
[http://dx.doi.org/10.1002/mds.23829] [PMID: 22021173]
[62]
Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease: A review. JAMA 2014; 311(16): 1670-83.
[http://dx.doi.org/10.1001/jama.2014.3654] [PMID: 24756517]
[63]
Barone MC, Sykiotis GP, Bohmann D. Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease. Dis Model Mech 2011; 4(5): 701-7.
[http://dx.doi.org/10.1242/dmm.007575] [PMID: 21719443]
[64]
Solayman M, Islam MA, Alam F, Khalil MI, Kamal MA, Gan SH. Natural products combating neurodegeneration: Parkinson’s disease. Curr Drug Metab 2017; 18(1): 50-61.
[http://dx.doi.org/10.2174/1389200217666160709204826] [PMID: 27396919]
[65]
Subramanian T. 32nd annual meeting for society for neurosciences. , 2002; abstract No. 787.4
[66]
Kasture S, Pontis S, Pinna A, et al. Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinson’s disease. Neurotox Res 2009; 15(2): 111-22.
[http://dx.doi.org/10.1007/s12640-009-9011-7] [PMID: 19384573]
[67]
Brown JH, Taylor P. Goodman and Gilman’s the pharmacological basis of therapeutics. In: Hardman JG, Limbird LE, Gilman's AG, Eds. Muscarinic Receptors Agonists and Antagonists. 10th ed.. New York: McGraw-Hill 2001; p. 10.
[68]
Rezak M. Current pharmacotherapeutic treatment options in Parkinson’s disease. Dis Mon 2007; 53(4): 214-22.
[http://dx.doi.org/10.1016/j.disamonth.2007.05.002] [PMID: 17586328]
[69]
Ahmad M, Saleem S, Ahmad AS, et al. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 2005; 24(3): 137-47.
[http://dx.doi.org/10.1191/0960327105ht509oa] [PMID: 15901053]
[70]
Franco CI, Morais LC, Quintans-Júnior LJ, Almeida RN, Antoniolli AR. CNS pharmacological effects of the hydroalcoholic extract of Sida cordifolia L. leaves. J Ethnopharmacol 2005; 98(3): 275-9.
[http://dx.doi.org/10.1016/j.jep.2005.01.008] [PMID: 15814259]
[71]
Khurana N, Gajbhiye A. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson’s disease. Neurotoxicology 2013; 39: 57-64.
[http://dx.doi.org/10.1016/j.neuro.2013.08.005] [PMID: 23994302]
[72]
Ahmad M, Yousuf S, Khan MB, et al. Attenuation by Nardostachys jatamansi of 6-hydroxydopamine-induced parkinsonism in rats: Behavioral, neurochemical, and immunohistochemical studies. Pharmacol Biochem Behav 2006; 83(1): 150-60.
[http://dx.doi.org/10.1016/j.pbb.2006.01.005] [PMID: 16500697]
[73]
Haleagrahara N, Ponnusamy K. Neuroprotective effect of Centella asiatica extract (CAE) on experimentally induced parkinsonism in aged Sprague-Dawley rats. J Toxicol Sci 2010; 35(1): 41-7.
[http://dx.doi.org/10.2131/jts.35.41] [PMID: 20118623]
[74]
Kosaraju J, Chinni S, Roy PD, Kannan E, Antony AS, Kumar MN. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism. Indian J Pharmacol 2014; 46(2): 176-80.
[http://dx.doi.org/10.4103/0253-7613.129312] [PMID: 24741189]
[75]
Kulkarni R, Girish KJ, Kumar A. Nootropic herbs (MedhyaRasayana) in Ayurveda: An update. Pharmacogn Rev 2012; 6(12): 147-53.
[http://dx.doi.org/10.4103/0973-7847.99949] [PMID: 23055641]
[76]
Dutta T, Basu UP. Terpenoids: Part II-Isolation of new triterpenesaponin, monnierin, from Bacopamonniera Wettst. Indian J Chem 1963; 1: 400-8.
[77]
Sukumaran NP, Amalraj A, Gopi S. Neuropharmacological and cognitive effects of Bacopa monnieri (L.) Wettst - A review on its mechanistic aspects. Complement Ther Med 2019; 44: 68-82.
[http://dx.doi.org/10.1016/j.ctim.2019.03.016] [PMID: 31126578]
[78]
Basu N, Rastogi R, Dhar ML. Chemical examination of bacopamiennierawettst: Part iii-bacoside b. Indian J Chem 1967; 5: 84-95.
[79]
Shalini VT, Neelakanta SJ, Sriranjini JS. Neuroprotection with Bacopa monnieri-A review of experimental evidence. Mol Biol Rep 2021; 48(3): 2653-68.
[http://dx.doi.org/10.1007/s11033-021-06236-w] [PMID: 33675463]
[80]
Zhang JM, Mark LB. Pathophysiology of pain Current Therapy in Pain. Philadelphia, PA: Saunders 2009; pp. 4-8.
[http://dx.doi.org/10.1016/B978-1-4160-4836-7.00002-X]
[81]
Surajit C, Rajasri B, Dibyajyoti B. Infections: A possible risk factor for type 2 diabetes Advances in Clinical Chemistry. Oxford, UK: Elsevier 2017; pp. 227-51.
[82]
Dejan M, Snjezana ZM, Rich MB, Michael A, Thomas JM. Neuroinflammation and oxidative injury in developmental neurotoxicity Reproductive and Developmental Toxicology. 2nd ed. San Diego, CA: Academic Press 2011; pp. 1051-61.
[83]
Nakagawa Y, Chiba K. Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther 2015; 154: 21-35.
[http://dx.doi.org/10.1016/j.pharmthera.2015.06.010] [PMID: 26129625]
[84]
González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 2014; 274(1-2): 1-13.
[http://dx.doi.org/10.1016/j.jneuroim.2014.07.012] [PMID: 25091432]
[85]
Ganguly P, Brenhouse HC. Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity. Dev Cogn Neurosci 2015; 11: 18-30.
[http://dx.doi.org/10.1016/j.dcn.2014.07.001] [PMID: 25081071]
[86]
Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol 2014; 14(7): 463-77.
[http://dx.doi.org/10.1038/nri3705] [PMID: 24962261]
[87]
Lurie DI, Coffin J. The role of Bacopa monnieri in inflammatory and neu-rodegenerative diseases Occurrences, structure, bio-synthesis, and health benefits based on their evidences of medicinal phyto-chemicals in vegetables and fruits. New York, USA: Nova Science Publishers 2015; pp. 219-38.
[88]
Viji V, Helen A. Inhibition of pro-inflammatory mediators: Role of Bacopa monniera (L.) Wettst. Inflammopharmacology 2011; 19(5): 283-91.
[http://dx.doi.org/10.1007/s10787-010-0046-4] [PMID: 20607614]
[89]
Viji V, Shobha B, Kavitha SK, Ratheesh M, Kripa K, Helen A. Betulinic acid isolated from Bacopa monniera (L.) Wettst suppresses lipopolysaccharide stimulated interleukin-6 production through modulation of nuclear factor-kappaB in peripheral blood mononuclear cells. Int Immunopharmacol 2010; 10(8): 843-9.
[http://dx.doi.org/10.1016/j.intimp.2010.04.013] [PMID: 20430119]
[90]
Williams R, Münch G, Gyengesi E, Bennett L. Bacopa monnieri (L.) exerts anti-inflammatory effects on cells of the innate immune system in vitro. Food Funct 2014; 5(3): 517-20.
[http://dx.doi.org/10.1039/C3FO60467E] [PMID: 24452710]
[91]
Gohil KJ, Patel JA. A review on Bacopamonniera: Current research and future prospects. Int J Green Pharm 2010; 4: 1-9.
[http://dx.doi.org/10.4103/0973-8258.62156]
[92]
Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, Smoker J. Chronic effects of Brahmi (Bacopa monnieri) on human memory. Neuropsychopharmacology 2002; 27(2): 279-81.
[http://dx.doi.org/10.1016/S0893-133X(01)00419-5] [PMID: 12093601]
[93]
Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: An overview. Phytomedicine 2005; 12(4): 305-17.
[http://dx.doi.org/10.1016/j.phymed.2003.12.008] [PMID: 15898709]
[94]
Majumdar S, Basu A, Paul P, Halder M, Jha S. Bacosides and neuroprotection Natural products. Berlin/Heidelberg, Germany: Springer 2013; pp. 3639-60.
[http://dx.doi.org/10.1007/978-3-642-22144-6_157]
[95]
Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 2013; 16(4): 313-26.
[http://dx.doi.org/10.1089/rej.2013.1431] [PMID: 23772955]
[96]
Rajan KE, Preethi J, Singh HK. Molecular and functional characterization of Bacopamonniera: A retrospective review. Evid Based Complement Alternat Med 2015; 2015: 945217.
[http://dx.doi.org/10.1155/2015/945217] [PMID: 26413131]
[97]
Chopra RN, Nayar SL, Chopra IC. Glossary of Indian medicinal plants. Quarter Rev Biol 1958; 33(2)
[http://dx.doi.org/10.1086/402350]
[98]
Murthy PB, Raju VR, Ramakrisana T, et al. Estimation of twelve bacopa saponins in Bacopa monnieri extracts and formulations by high-performance liquid chromatography. Chem Pharm Bull (Tokyo) 2006; 54(6): 907-11.
[http://dx.doi.org/10.1248/cpb.54.907] [PMID: 16755069]
[99]
Chatterji N, Rastogi RP, Dhar ML. Chemical examination of Bacopa monniera Wettst.: Part I-Isolation of chemical constituents. Indian J Chem 1963; 1: 212-5.
[100]
Singh H, Dhawan BN. Drugs affecting learning and memory. FLJ 1992; p. 189.
[101]
Deepak M, Sangli GK, Arun PC, Amit A. Quantitative determination of the major saponin mixture bacoside A in Bacopa monnieri by HPLC. Phytochem Anal 2005; 16(1): 24-9.
[http://dx.doi.org/10.1002/pca.805] [PMID: 15688952]
[102]
Sivaramakrishna C, Rao CV, Trimurtulu G, Vanisree M, Subbaraju GV. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry 2005; 66(23): 2719-28.
[http://dx.doi.org/10.1016/j.phytochem.2005.09.016] [PMID: 16293276]
[103]
Srivastava P, Raut HN, Puntambekar HM, Desai AC. Stability studies of crude plant material of Bacopa monnieri and quantitative determination of bacopaside I and bacoside A by HPLC. Phytochem Anal 2012; 23(5): 502-7.
[http://dx.doi.org/10.1002/pca.2347] [PMID: 22259163]
[104]
Deepak M, Amit A. ‘Bacoside B’--the need remains for establishing identity. Fitoterapia 2013; 87: 7-10.
[http://dx.doi.org/10.1016/j.fitote.2013.03.011] [PMID: 23506783]
[105]
Singh R, Ramakrishna R, Bhateria M, Bhatta RS. In vitro evaluation of Bacopa monniera extract and individual constituents on human recombinant monoamine oxidase enzymes. Phytother Res 2014; 28(9): 1419-22.
[http://dx.doi.org/10.1002/ptr.5116] [PMID: 24449518]
[106]
Rauf K, Subhan F, Al-Othman AM, Khan I, Zarrelli A, Shah MR. Preclinical profile of bacopasides from Bacopa monnieri (BM) as an emerging class of therapeutics for management of chronic pains. Curr Med Chem 2013; 20(8): 1028-37.
[PMID: 23210787]
[107]
Chatterji N, Rastogi RP, Dhar ML. Chemical examination of Bacopamonniera Wettst: Part I-isolation of chemical constituents. Indian J Chem 1965; 3: 24-9.
[108]
Garai S, Mahato SB, Ohtani K, Yamasaki K. Dammarane-type triterpenoid saponins from Bacopa monniera. Phytochemistry 1996; 42(3): 815-20.
[http://dx.doi.org/10.1016/0031-9422(95)00936-1] [PMID: 8768327]
[109]
Chakravarty AK, Sarkar T, Masuda K, Shiojima K, Nakane T, Kawahara N. Bacopaside I and II: Two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry 2001; 58(4): 553-6.
[http://dx.doi.org/10.1016/S0031-9422(01)00275-8] [PMID: 11576596]
[110]
Chakravarty AK, Sarkar T, Nakane T, Kawahara N, Masuda K. New phenylethanoid glycosides from Bacopa monniera. Chem Pharm Bull (Tokyo) 2002; 50(12): 1616-8.
[http://dx.doi.org/10.1248/cpb.50.1616] [PMID: 12499603]
[111]
Chakravarty AK, Garai S, Masuda K, Nakane T, Kawahara N. Bacopasides III-V: Three new triterpenoid glycosides from Bacopa monniera. Chem Pharm Bull (Tokyo) 2003; 51(2): 215-7.
[http://dx.doi.org/10.1248/cpb.51.215] [PMID: 12576661]
[112]
Bhandari P, Kumar N, Singh B, Kaul VK. Cucurbitacins from Bacopa monnieri. Phytochemistry 2007; 68(9): 1248-54.
[http://dx.doi.org/10.1016/j.phytochem.2007.03.013] [PMID: 17442350]
[113]
Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55: 373-99.
[http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701] [PMID: 15377225]
[114]
Kawagishi H, Finkel T. Unraveling the truth about antioxidants: ROS and disease: Finding the right balance. Nat Med 2014; 20(7): 711-3.
[http://dx.doi.org/10.1038/nm.3625] [PMID: 24999942]
[115]
Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002; 23(5): 795-807.
[http://dx.doi.org/10.1016/S0197-4580(02)00019-2] [PMID: 12392783]
[116]
Parletta N, Milte CM, Meyer BJ. Nutritional modulation of cognitive function and mental health. J Nutr Biochem 2013; 24(5): 725-43.
[http://dx.doi.org/10.1016/j.jnutbio.2013.01.002] [PMID: 23517914]
[117]
Jenny NS. Inflammation in aging: Cause, effect, or both? Discov Med 2012; 13(73): 451-60.
[PMID: 22742651]
[118]
Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007; 292(1): R18-36.
[http://dx.doi.org/10.1152/ajpregu.00327.2006] [PMID: 16917020]
[119]
De Grey A. The mitochondrial free radical theory of aging. Austin, TX: R.G. Landes Company 1999.
[120]
Maxwell SRJ. Prospects for the use of antioxidant therapies. Drugs 1995; 49(3): 345-61.
[http://dx.doi.org/10.2165/00003495-199549030-00003] [PMID: 7774511]
[121]
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015; 86(4): 883-901.
[http://dx.doi.org/10.1016/j.neuron.2015.03.035] [PMID: 25996133]
[122]
Arivazhagan P, Shila S, Kumaran S, Panneerselvam C. Effect of DL-a lipoic acid in various brain regions of aged rats. Exp Gerontol 2002; 37: 803-11.
[http://dx.doi.org/10.1016/S0531-5565(02)00015-3] [PMID: 12175480]
[123]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[124]
Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997; 2: 152-9.
[http://dx.doi.org/10.1016/S1360-1385(97)01018-2]
[125]
Schad A, Fahimi HD, Völkl A, Baumgart E. Expression of catalase mRNA and protein in adult rat brain: Detection by nonradioactive in situ hybridization with signal amplification by catalyzed reporter deposition (ISH-CARD) and immunohistochemistry (IHC)/immunofluorescence (IF). J Histochem Cytochem 2003; 51(6): 751-60.
[http://dx.doi.org/10.1177/002215540305100606] [PMID: 12754286]
[126]
Nazıroğlu M. Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Sig Transd 2012; 32(3): 134-41.
[http://dx.doi.org/10.3109/10799893.2012.672994] [PMID: 22475023]
[127]
Rastogi M, Ojha RP, Devi BP, Aggarwal A, Agrawal A, Dubey GP. Amelioration of age associated neuroinflammation on long term baco-sides treatment. Neurochem Res 2012; 37(4): 869-74.
[http://dx.doi.org/10.1007/s11064-011-0681-1] [PMID: 22198697]
[128]
Kapoor R, Srivastava S, Kakkar P. Bacopa monnieri modulates antioxidant responses in brain and kidney of diabetic rats. Environ Toxicol Pharmacol 2009; 27(1): 62-9.
[http://dx.doi.org/10.1016/j.etap.2008.08.007] [PMID: 21783922]
[129]
Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R. Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem Neurosci 2017; 8(4): 884-91.
[http://dx.doi.org/10.1021/acschemneuro.6b00438] [PMID: 28094495]
[130]
Gan L, Johnson JA. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta 2014; 1842(8): 1208-18.
[http://dx.doi.org/10.1016/j.bbadis.2013.12.011] [PMID: 24382478]
[131]
Yamazaki H, Tanji K, Wakabayashi K, Matsuura S, Itoh K. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases. Pathol Int 2015; 65(5): 210-9.
[http://dx.doi.org/10.1111/pin.12261] [PMID: 25707882]
[132]
Hosamani R. Muralidhara. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology 2009; 30(6): 977-85.
[http://dx.doi.org/10.1016/j.neuro.2009.08.012] [PMID: 19744517]
[133]
Singh B, Pandey S, Verma R, Ansari JA, Mahdi AA. Comparative evaluation of extract of Bacopamonnieri and Mucunapruriens as neuroprotectant in MPTP model of Parkinson’s disease. Indian J Exp Biol 2016; 54: 758-66.
[PMID: 30179419]
[134]
Anbarasi K, Vani G, Balakrishna K, Devi CS. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci 2006; 78(12): 1378-84.
[http://dx.doi.org/10.1016/j.lfs.2005.07.030] [PMID: 16226278]
[135]
Anbarasi K, Vani G, Balakrishna K, Devi CS. Effect of bacoside A on membrane-bound ATPases in the brain of rats exposed to cigarette smoke. J Biochem Mol Toxicol 2005; 19(1): 59-65.
[http://dx.doi.org/10.1002/jbt.20050] [PMID: 15736152]
[136]
Hosamani R, Krishna G. Muralidhara. Standardized Bacopa monnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain. Nutr Neurosci 2016; 19(10): 434-46.
[http://dx.doi.org/10.1179/1476830514Y.0000000149] [PMID: 25153704]
[137]
Hosamani R. Muralidhara. Prophylactic treatment with Bacopa monnieri leaf powder mitigates paraquat-induced oxidative perturbations and lethality in Drosophila melanogaster. Indian J Biochem Biophys 2010; 47(2): 75-82.
[PMID: 20521619]
[138]
Shinomol GK, Mythri RB, Srinivas Bharath MM. Muralidhara. Bacopa monnieri extract offsets rotenone-induced cytotoxicity in dopaminergic cells and oxidative impairments in mice brain. Cell Mol Neurobiol 2012; 32(3): 455-65.
[http://dx.doi.org/10.1007/s10571-011-9776-0] [PMID: 22160863]
[139]
Herrero MT, Estrada C, Maatouk L, Vyas S. Inflammation in Parkinson’s disease: Role of glucocorticoids. Front Neuroanat 2015; 9: 32.
[http://dx.doi.org/10.3389/fnana.2015.00032] [PMID: 25883554]
[140]
Nemetchek MD, Stierle AA, Stierle DB, Lurie DI. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J Ethnopharmacol 2017; 197: 92-100.
[http://dx.doi.org/10.1016/j.jep.2016.07.073] [PMID: 27473605]
[141]
Jain P, Khanna NK, Trehan N, Pendse VK, Godhwani JL. Antiinflammatory effects of an Ayurvedic preparation, Brahmi Rasayan, in rodents. Indian J Exp Biol 1994; 32(9): 633-6.
[PMID: 7814042]
[142]
Hans O, David HB. 1–Introduction to mechanisms of allergic disease Allergy. Edinburgheds: Saunders WB 2012; pp. 1-32.
[143]
Cho S, Hwang ES. Fluorescence-based detection and quantification of features of cellular senescence. Methods Cell Biol 2011; 103: 149-88.
[http://dx.doi.org/10.1016/B978-0-12-385493-3.00007-3] [PMID: 21722803]
[144]
Sawle GV, Myers R. The role of positron emission tomography in the assessment of human neurotransplantation. Trends Neurosci 1993; 16(5): 172-6.
[http://dx.doi.org/10.1016/0166-2236(93)90143-A] [PMID: 7685938]
[145]
Obeso JA, Rodriguez-Oroz MC, Rodriguez M, et al. Pathophysiologic basis of surgery for Parkinson’s disease. Neurology 2000; 55(12)(Suppl. 6): S7-S12.
[PMID: 11188978]
[146]
Teismann P, Tieu K, Cohen O, et al. Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 2003; 18(2): 121-9.
[http://dx.doi.org/10.1002/mds.10332] [PMID: 12539204]
[147]
Sawada M, Imamura K, Nagatsu T. Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 2006; (70): 373-81.
[http://dx.doi.org/10.1007/978-3-211-45295-0_57] [PMID: 17017556]
[148]
Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 2001; 65(2): 135-72.
[http://dx.doi.org/10.1016/S0301-0082(01)00003-X] [PMID: 11403877]
[149]
Simunovic F, Yi M, Wang Y, et al. Gene expression profiling of substantia nigra dopamine neurons: Further insights into Parkinson’s disease pathology. Brain 2009; 132(Pt 7): 1795-809.
[http://dx.doi.org/10.1093/brain/awn323] [PMID: 19052140]
[150]
Pandey S, Singh B, Mahdi AA. Therapeutic potential of noo-tropic Bacopamonnieri in prevention & treatment of diseases: An overview. Int J Scientific Innov Res 2013; 1: 12-24.
[151]
Singh B, Pandey S, Yadav SK, Verma R, Singh SP, Mahdi AA. Role of ethanolic extract of Bacopa monnieri against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice model via inhibition of apoptotic pathways of dopaminergic neurons. Brain Res Bull 2017; 135: 120-8.
[http://dx.doi.org/10.1016/j.brainresbull.2017.10.007] [PMID: 29032054]
[152]
T MM. Anand T, Khanum F. Attenuation of cytotoxicity induced by tBHP in H9C2 cells by Bacopa monniera and Bacoside A. Pathophysiology 2018; 25(2): 143-9.
[http://dx.doi.org/10.1016/j.pathophys.2018.03.002] [PMID: 29678356]
[153]
Chung YC, Kim SR, Park JY, et al. Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation. Neuropharmacology 2011; 60(6): 963-74.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.043] [PMID: 21288472]
[154]
Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug Brahmi (Bacopamonnieri) in Alzheimer’s disease. Ann Neurosci 2017; 24(2): 111-22.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[155]
Khandpur S, Malhotra AK, Bhatia V, et al. Chronic arsenic toxicity from Ayurvedic medicines. Int J Dermatol 2008; 47(6): 618-21.
[http://dx.doi.org/10.1111/j.1365-4632.2008.03475.x] [PMID: 18477160]
[156]
Bolan S, Kunhikrishnan A, Seshadri B, et al. Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines. Environ Int 2017; 108: 103-18.
[http://dx.doi.org/10.1016/j.envint.2017.08.005] [PMID: 28843139]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy