Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Systematic Review Article

Clinical and Molecular Heterogeneity of Silver-Russell Syndrome and Therapeutic Challenges: A Systematic Review

Author(s): Amit Singh, Ketan Pajni, Inusha Panigrahi and Preeti Khetarpal*

Volume 19, Issue 2, 2023

Published on: 08 June, 2022

Page: [157 - 168] Pages: 12

DOI: 10.2174/1573396318666220315142542

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Silver-Russell syndrome (SRS) is a developmental disorder involving extreme growth failure, characteristic facial features and underlying genetic heterogeneity. As the clinical heterogeneity of SRS makes diagnosis a challenging task, the worldwide incidence of SRS could vary from 1:30,000 to 1:100,000. Although various chromosomal, genetic, and epigenetic mutations have been linked with SRS, the cause had only been identified in half of the cases.

Material and Methods: To have a better understanding of the SRS clinical presentation and mutation/ epimutation responsible for SRS, a systematic review of the literature was carried out using appropriate keywords in various scientific databases (PROSPERO protocol registration CRD42021273211). Clinical features of SRS have been compiled and presented corresponding to the specific genetic subtype. An attempt has been made to understand the recurrence risk and the role of model organisms in understanding the molecular mechanisms of SRS pathology, treatment, and management strategies of the affected patients through the analysis of selected literature.

Results: 156 articles were selected to understand the clinical and molecular heterogeneity of SRS. Information about detailed clinical features was available for 228 patients only, and it was observed that body asymmetry and relative macrocephaly were most prevalent in cases with methylation defects of the 11p15 region. In about 38% of cases, methylation defects in ICRs or genomic mutations at the 11p15 region have been implicated. Maternal uniparental disomy of chromosome 7 (mUPD7) accounts for about 7% of SRS cases, and rarely, uniparental disomy of other autosomes (11, 14, 16, and 20 chromosomes) has been documented. Mutation in half of the cases is yet to be identified. Studies involving mice as experimental animals have been helpful in understanding the underlying molecular mechanism. As the clinical presentation of the syndrome varies a lot, treatment needs to be individualized with multidisciplinary effort.

Conclusion: SRS is a clinically and genetically heterogeneous disorder, with most of the cases being implicated with a mutation in the 11p15 region and maternal disomy of chromosome 7. Recurrence risk varies according to the molecular subtype. Studies with mice as a model organism have been useful in understanding the underlying molecular mechanism leading to the characteristic clinical presentation of the syndrome. Management strategies often need to be individualized due to varied clinical presentations.

Keywords: Genetic heterogeneity, methylation defects, Silver-Russell syndrome, uniparental disomy, macrocephaly, craniofacial dysostosis.

Graphical Abstract
[1]
Spiteri BS, Stafrace Y, Calleja-Agius J. Silver-Russell Syndrome: A review. Neonatal Netw NN 2017; 36(4): 206-12.
[http://dx.doi.org/10.1891/0730-0832.36.4.206] [PMID: 28764823]
[2]
Silver HK, Kiyasu W, George J, Deamer WC. Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics 1953; 12(4): 368-76.
[http://dx.doi.org/10.1542/peds.12.4.368] [PMID: 13099907]
[3]
Russell A. A syndrome of intra-uterine dwarfism recognizable at birth with cranio-facial dysostosis, disproportionately short arms, and other anomalies (5 examples). Proc R Soc Med 1954; 47(12): 1040-4.
[PMID: 13237189]
[4]
Price SM, Stanhope R, Garrett C, Preece MA, Trembath RC. The spectrum of Silver-Russell syndrome: A clinical and molecular genetic study and new diagnostic criteria. J Med Genet 1999; 36(11): 837-42.
[PMID: 10544228]
[5]
Netchine I, Rossignol S, Dufourg M-N, et al. 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: Clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab 2007; 92(8): 3148-54.
[http://dx.doi.org/10.1210/jc.2007-0354] [PMID: 17504900]
[6]
Dias RP, Nightingale P, Hardy C, et al. Comparison of the clinical scoring systems in Silver-Russell syndrome and development of modified diagnostic criteria to guide molecular genetic testing. J Med Genet 2013; 50(9): 635-9.
[http://dx.doi.org/10.1136/jmedgenet-2013-101693] [PMID: 23812911]
[7]
Azzi S, Salem J, Thibaud N, et al. A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. J Med Genet 2015; 52(7): 446-53.
[http://dx.doi.org/10.1136/jmedgenet-2014-102979] [PMID: 25951829]
[8]
Eggermann T, Perez de Nanclares G, Maher ER, et al. Imprinting disorders: A group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin Epigenetics 2015; 7(1): 123.
[http://dx.doi.org/10.1186/s13148-015-0143-8] [PMID: 26583054]
[9]
Wilkins JF, Úbeda F, Van Cleve J. The evolving landscape of imprinted genes in humans and mice: Conflict among alleles, genes, tissues, and kin. BioEssays 2016; 38(5): 482-9.
[http://dx.doi.org/10.1002/bies.201500198] [PMID: 26990753]
[10]
Temple syndrome: Comprehensive molecular and clinical findings in 32 Japanese patients Genetics in Medicine Available from: https://www.nature.com/articles/gim201753 Accessed on 2021 Dec 22
[11]
Abi Habib W, Brioude F, Azzi S, et al. Transcriptional profiling at the DLK1/MEG3 domain explains clinical overlap between imprinting disorders. Sci Adv 2019; 5(2): eaau9425.
[http://dx.doi.org/10.1126/sciadv.aau9425] [PMID: 30801013]
[12]
Mulchandani S, Bhoj EJ, Luo M, et al. Maternal uniparental disomy of chromosome 20: A novel imprinting disorder of growth failure. Genet Med Off J Am Coll Med Genet 2016; 18(4): 309-15.
[http://dx.doi.org/10.1038/gim.2015.103] [PMID: 26248010]
[13]
Kawashima S, Nakamura A, Inoue T, et al. Maternal uniparental disomy for chromosome 20: physical and endocrinological characteristics of five patients. J Clin Endocrinol Metab 2018; 103(6): 2083-8.
[http://dx.doi.org/10.1210/jc.2017-02780] [PMID: 29878129]
[14]
Smith-Lemli-Opitz Syndrome-GeneReviews®-NCBI Bookshelf. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1143/ Accessed on 2021 Dec 22
[15]
García-Castillo H, Vásquez-Velásquez AI, Rivera H, Barros-Núñez P. Clinical and genetic heterogeneity in patients with mosaic variegated aneuploidy: Delineation of clinical subtypes. Am J Med Genet A 2008; 146A(13): 1687-95.
[http://dx.doi.org/10.1002/ajmg.a.32315] [PMID: 18548531]
[16]
Lowry RB, Innes AM, Bernier FP, et al. Bowen-Conradi syndrome: A clinical and genetic study. Am J Med Genet A 2003; 120A(3): 423-8.
[http://dx.doi.org/10.1002/ajmg.a.20059] [PMID: 12838567]
[17]
de Munnik SA, Hoefsloot EH, Roukema J, et al. Meier-Gorlin syndrome. Orphanet J Rare Dis 2015; 10(1): 114.
[http://dx.doi.org/10.1186/s13023-015-0322-x] [PMID: 26381604]
[18]
Flori E, Girodon E, Samama B, et al. Trisomy 7 mosaicism, maternal uniparental heterodisomy 7 and Hirschsprung’s disease in a child with Silver-Russell syndrome. Eur J Hum Genet 2005; 13(9): 1013-8.
[http://dx.doi.org/10.1038/sj.ejhg.5201442] [PMID: 15915162]
[19]
Taussig LM, Braunstein GD, White BJ, Christiansen RL. Silver-Russell dwarfism and cystic fibrosis in a twin. Endocrine, chromosomal, dermatoglyphic, and craniofacial studies. Am J Dis Child 1973; 125(4): 495-503.
[http://dx.doi.org/10.1001/archpedi.1973.04160040015004] [PMID: 4699888]
[20]
Hehr U, Dörr S, Hagemann M, Hansmann I, Preiss U, Brömme S. Silver-Russell syndrome and cystic fibrosis associated with maternal uniparental disomy 7. Am J Med Genet 2000; 91(3): 237-9.
[http://dx.doi.org/10.1002/(SICI)1096-8628(20000320)91:3<237::AID-AJMG17>3.0.CO;2-8] [PMID: 10756351]
[21]
Sonnappa S, Prescott K, Adler B, Dinwiddie R, Wallis C. Cystic fibrosis and Russell-Silver syndrome in a child with maternal isodisomy of chromosome 7. Pediatr Pulmonol 2005; 40(2): 166-8.
[http://dx.doi.org/10.1002/ppul.20254] [PMID: 15965898]
[22]
Le Caignec C, Isidor B, de Pontbriand U, et al. Third case of paternal isodisomy for chromosome 7 with cystic fibrosis: A new patient presenting with normal growth. Am J Med Genet Part A 2007; 143(22): 2696-9.
[http://dx.doi.org/10.1002/ajmg.a.31999] [PMID: 17935233]
[23]
Fenton E, Refai D, See W, Rawluk DJ. Supratentorial juvenile pilocytic astrocytoma in a young adult with Silver-Russell syndrome. Br J Neurosurg 2008; 22(6): 776-7.
[http://dx.doi.org/10.1080/02688690802044076] [PMID: 18661310]
[24]
Cassidy SB, Blonder O, Courtney VW, Ratzan SK, Carey DE. Russell-Silver syndrome and hypopituitarism. Patient report and literature review. Am J Dis Child 1960 1986; 140(2): 155-9.
[25]
A case of Silver-Russell Syndrome (SRS): Multiple pituitary hormone deficiency, lack of H19 hypomethylation and favourable Growth Hormone (GH) treatment response
[26]
Geoffron S, Abi Habib W, Chantot-Bastaraud S, et al. Chromosome 14q32.2 imprinted region disruption as an alternative molecular diagnosis of silver-russell syndrome. J Clin Endocrinol Metab 2018; 103(7): 2436-46.
[http://dx.doi.org/10.1210/jc.2017-02152] [PMID: 29659920]
[27]
Vahlas CE, Chatzis AC, Giannopoulos NM, Contrafouris CA, Milonakis MC, Sarris GE. Surgical closure of an atrial septal defect in an 11-year-old girl with Silver-Russell syndrome. J Cardiovasc Med (Hagerstown) 2007; 8(10): 850-1.
[http://dx.doi.org/10.2459/JCM.0b013e328011065c] [PMID: 17885526]
[28]
Ghanim M, Rossignol S, Delobel B, et al. Possible association between complex congenital heart defects and 11p15 hypomethylation in three patients with severe Silver-Russell syndrome. Am J Med Genet Part A 2013; 161(3): 572-7.
[http://dx.doi.org/10.1002/ajmg.a.35691] [PMID: 23401077]
[29]
Inoue T, Nakamura A, Fuke T, et al. Genetic heterogeneity of patients with suspected Silver-Russell syndrome: genome-wide copy number analysis in 82 patients without imprinting defects. Clin Epigenetics 2017; 9(1): 52.
[http://dx.doi.org/10.1186/s13148-017-0350-6] [PMID: 28515796]
[30]
Abdelhedi F, El Khattabi L, Cuisset L, et al. Neonatal Silver-Russell syndrome with maternal uniparental heterodisomy, trisomy 7 mosaicism, and dysplasia of the cerebellum. Am J Clin Pathol 2014; 142(2): 248-53.
[http://dx.doi.org/10.1309/AJCPBLMPRXKU1JUE] [PMID: 25015868]
[31]
Liu Q, Yang B, Xie X, et al. Vigilin interacts with CCCTC-binding factor (CTCF) and is involved in CTCF-dependent regulation of the imprinted genes Igf2 and H19. FEBS J 2014; 281(12): 2713-25.
[http://dx.doi.org/10.1111/febs.12816] [PMID: 24725430]
[32]
Pidsley R, Dempster E, Troakes C, Al-Sarraj S, Mill J. Epigenetic and genetic variation at the IGF2/H19 imprinting control region on 11p15.5 is associated with cerebellum weight. Epigenetics 2012; 7(2): 155-63.
[http://dx.doi.org/10.4161/epi.7.2.18910] [PMID: 22395465]
[33]
Gicquel C, Rossignol S, Cabrol S, et al. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet 2005; 37(9): 1003-7.
[http://dx.doi.org/10.1038/ng1629] [PMID: 16086014]
[34]
Gaston V, Le Bouc Y, Soupre V, et al. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Eur J Hum Genet 2001; 9(6): 409-18.
[http://dx.doi.org/10.1038/sj.ejhg.5200649] [PMID: 11436121]
[35]
Demars J, Shmela ME, Rossignol S, et al. Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum Mol Genet 2010; 19(5): 803-14.
[http://dx.doi.org/10.1093/hmg/ddp549] [PMID: 20007505]
[36]
Binder G, Eggermann T, Weber K, Ferrand N, Schweizer R. The diagnostic value of IGF-2 and the IGF/IGFBP-3 system in Silver-Russell syndrome. Horm Res Paediatr 2017; 88(3-4): 201-7.
[http://dx.doi.org/10.1159/000477666] [PMID: 28675902]
[37]
Yamoto K, Saitsu H, Nakagawa N, et al. De novo IGF2 mutation on the paternal allele in a patient with Silver-Russell syndrome and ectrodactyly. Hum Mutat 2017; 38(8): 953-8.
[http://dx.doi.org/10.1002/humu.23253] [PMID: 28489339]
[38]
Eggermann T, Binder G, Brioude F, et al. CDKN1C mutations: Two sides of the same coin. Trends Mol Med 2014; 20(11): 614-22.
[http://dx.doi.org/10.1016/j.molmed.2014.09.001] [PMID: 25262539]
[39]
Ishida M, Monk D, Duncan AJ, et al. Maternal inheritance of a promoter variant in the imprinted PHLDA2 gene significantly increases birth weight. Am J Hum Genet 2012; 90(4): 715-9.
[http://dx.doi.org/10.1016/j.ajhg.2012.02.021] [PMID: 22444668]
[40]
Schönherr N, Meyer E, Roos A, Schmidt A, Wollmann HA, Eggermann T. The centromeric 11p15 imprinting centre is also involved in Silver-Russell syndrome. J Med Genet 2007; 44(1): 59-63.
[http://dx.doi.org/10.1136/jmg.2006.044370] [PMID: 16963484]
[41]
Bliek J, Snijder S, Maas SM, et al. Phenotypic discordance upon paternal or maternal transmission of duplications of the 11p15 imprinted regions. Eur J Med Genet 2009; 52(6): 404-8.
[http://dx.doi.org/10.1016/j.ejmg.2009.08.006] [PMID: 19735747]
[42]
Bonaldi A, Mazzeu JF, Costa SS, et al. Microduplication of the ICR2 domain at chromosome 11p15 and familial Silver-Russell syndrome. Am J Med Genet A 2011; 155(10): 2479-83.
[http://dx.doi.org/10.1002/ajmg.a.34023] [PMID: 21910219]
[43]
Chiesa N, De Crescenzo A, Mishra K, et al. The KCNQ1OT1 imprinting control region and non-coding RNA: New properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Hum Mol Genet 2012; 21(1): 10-25.
[http://dx.doi.org/10.1093/hmg/ddr419] [PMID: 21920939]
[44]
Nakashima S, Kato F, Kosho T, et al. Silver-Russell syndrome without body asymmetry in three patients with duplications of maternally derived chromosome 11p15 involving CDKN1C. J Hum Genet 2015; 60(2): 91-5. Available from: https://www.nature.com/articles/jhg2014100 Accessed on 2021 Dec 23
[45]
South ST, Whitby H, Maxwell T, Aston E, Brothman AR, Carey JC. Co-occurrence of 4p16.3 deletions with both paternal and maternal duplications of 11p15: Modification of the Wolf-Hirschhorn syndrome phenotype by genetic alterations predicted to result in either a Beckwith-Wiedemann or Russell-Silver phenotype. Am J Med Genet A 2008; 146(20): 2691-7.
[http://dx.doi.org/10.1002/ajmg.a.32516] [PMID: 18798325]
[46]
Eggermann T, Meyer E, Obermann C, et al. Is maternal duplication of 11p15 associated with Silver-Russell syndrome? J Med Genet 2005; 42(5): e26.
[http://dx.doi.org/10.1136/jmg.2004.028936] [PMID: 15863658]
[47]
Rao VB, Lily K, Seema K, Ghosh K, Dipika M. Paternal reciprocal translocation t(11;16)(p13;q24.3) in a Silver-Russel syndrome patient. Ann Genet 2003; 46(4): 475-8.
[http://dx.doi.org/10.1016/S0003-3995(03)00028-5] [PMID: 14659785]
[48]
Hu J, Sathanoori M, Kochmar S, Madan-Khetarpal S, McGuire M, Surti U. Co-existence of 9p deletion and Silver-Russell syndromes in a patient with maternally inherited cryptic complex chromosome rearrangement involving chromosomes 4, 9, and 11. Am J Med Genet Part A 2013; 161(1): 179-84.
[http://dx.doi.org/10.1002/ajmg.a.35658] [PMID: 23225375]
[49]
Cytrynbaum C, Chong K, Hannig V, et al. Genomic imbalance in the centromeric 11p15 imprinting center in three families: Further evidence of a role for IC2 as a cause of Russell-Silver syndrome. Am J Med Genet Part A 2016; 170(10): 2731-9.
[http://dx.doi.org/10.1002/ajmg.a.37819] [PMID: 27374371]
[50]
Joyce CA, Sharp A, Walker JM, Bullman H, Temple IK. Duplication of 7p12.1-p13, including GRB10 and IGFBP1, in a mother and daughter with features of Silver-Russell syndrome. Hum Genet 1999; 105(3): 273-80.
[PMID: 10987657]
[51]
Carrera IA, de Zaldívar MS, Martín R, Begemann M, Soellner L, Eggermann T. Microdeletions of the 7q32.2 imprinted region are associated with Silver-Russell syndrome features. Am J Med Genet Part A 2016; 170(3): 743-9.
[http://dx.doi.org/10.1002/ajmg.a.37492] [PMID: 26663145]
[52]
Dupont JM, Cuisset L, Cartigny M, et al. Familial reciprocal translocation t(7;16) associated with maternal uniparental disomy 7 in a Silver-Russell patient. Am J Med Genet 2002; 111(4): 405-8.
[http://dx.doi.org/10.1002/ajmg.10570] [PMID: 12210300]
[53]
Muurinen M, Hannula-Jouppi K, Reinius LE, Söderhäll C, Merid SK, Bergström A. Hypomethylation of HOXA4 promoter is common in Silver-Russell syndrome and growth restriction and associates with stature in healthy children. Sci Rep 2017; 7(1): 15693. Available from: https://www.nature.com/articles/s41598-017-16070-5 Accessed on 2021 Dec 23
[54]
Yoshihashi H, Maeyama K, Kosaki R, et al. Imprinting of human GRB10 and its mutations in two patients with Russell-Silver syndrome. Am J Hum Genet 2000; 67(2): 476-82.
[http://dx.doi.org/10.1086/302997] [PMID: 10856193]
[55]
Monk D, Wakeling EL, Proud V, et al. Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome. Am J Hum Genet 2000; 66(1): 36-46.
[http://dx.doi.org/10.1086/302717] [PMID: 10631135]
[56]
Yuan H, Huang L, Hu X, et al. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset. Orphanet J Rare Dis 2016; 11(1): 89.
[http://dx.doi.org/10.1186/s13023-016-0465-4] [PMID: 27370225]
[57]
Hannula K, Lipsanen-Nyman M, Kontiokari T, Kere J. A narrow segment of maternal uniparental disomy of chromosome 7q31-qter in Silver-Russell syndrome delimits a candidate gene region. Am J Hum Genet 2001; 68(1): 247-53.
[http://dx.doi.org/10.1086/316937] [PMID: 11112662]
[58]
Eggermann T, Krause-Plonka I, Wollmann HA, et al. Supernumerary marker chromosome 7 and maternal uniparental disomy 7 in a boy with growth retardation and triangular face. Clin Dysmorphol 2006; 15(1): 9-12.
[http://dx.doi.org/10.1097/01.mcd.0000181605.55382.9a] [PMID: 16317300]
[59]
Combi R, Sala E, Villa N, et al. Maternal heterodisomy/isodisomy and paternal supernumerary ring of chromosome 7 in a child with Silver-Russell syndrome. Clin Dysmorphol 2008; 17(1): 35-9.
[http://dx.doi.org/10.1097/MCD.0b013e328235a587] [PMID: 18049079]
[60]
Bullman H, Lever M, Robinson DO, Mackay DJG, Holder SE, Wakeling EL. Mosaic maternal uniparental disomy of chromosome 11 in a patient with Silver-Russell syndrome. J Med Genet 2008; 45(6): 396-9.
[http://dx.doi.org/10.1136/jmg.2007.057059] [PMID: 18474587]
[61]
Luk HM, Ivan Lo FM, Sano S, et al. Silver-Russell syndrome in a patient with somatic mosaicism for upd(11)mat identified by buccal cell analysis. Am J Med Genet A 2016; 170(7): 1938-41.
[http://dx.doi.org/10.1002/ajmg.a.37679] [PMID: 27150791]
[62]
Inoue T, Yagasaki H, Nishioka J, et al. Molecular and clinical analyses of two patients with UPD(16) mat detected by screening 94 patients with Silver-Russell syndrome phenotype of unknown aetiology. J Med Genet 2019; 56(6): 413-8.
[http://dx.doi.org/10.1136/jmedgenet-2018-105463] [PMID: 30242100]
[63]
Colson C, Decamp M, Gruchy N, et al. High frequency of paternal iso or heterodisomy at chromosome 20 associated with sporadic pseudohypoparathyroidism 1B. Bone 2019; 123: 145-52.
[http://dx.doi.org/10.1016/j.bone.2019.03.023] [PMID: 30905746]
[64]
Eggermann T, Mergenthaler S, Eggermann K, et al. Identification of interstitial maternal uniparental disomy (UPD) (14) and complete maternal UPD(20) in a cohort of growth retarded patients. J Med Genet 2001; 38(2): 86-9.
[http://dx.doi.org/10.1136/jmg.38.2.86] [PMID: 11158171]
[65]
Hjortshøj TD, Sørensen AR, Yusibova M, et al. upd(20)mat is a rare cause of the Silver-Russell-syndrome-like phenotype: Two unrelated cases and screening of large cohorts. Clin Genet 2020; 97(6): 902-7.
[http://dx.doi.org/10.1111/cge.13727] [PMID: 32087029]
[66]
Bruce S, Hannula-Jouppi K, Puoskari M, et al. Submicroscopic genomic alterations in Silver-Russell syndrome and Silver-Russell-like patients. J Med Genet 2010; 47(12): 816-22.
[http://dx.doi.org/10.1136/jmg.2009.069427] [PMID: 19752157]
[67]
Dateki S, Kagami M, Matsubara K, et al. Maternally derived 15q11.2-q13.1 duplication and H19-DMR hypomethylation in a patient with Silver-Russell syndrome. J Hum Genet 2017; 62(10): 919-22.
[http://dx.doi.org/10.1038/jhg.2017.62] [PMID: 28592837]
[68]
Sachwitz J, Meyer R, Fekete G, et al. NSD1 duplication in Silver-Russell Syndrome (SRS): Molecular karyotyping in patients with SRS features. Clin Genet 2017; 91(1): 73-8.
[http://dx.doi.org/10.1111/cge.12803] [PMID: 27172843]
[69]
Novara F, Stanzial F, Rossi E, et al. Defining the phenotype associated with microduplication reciprocal to Sotos syndrome microdeletion. Am J Med Genet Part A 2014; 164(8): 2084-90.
[http://dx.doi.org/10.1002/ajmg.a.36591] [PMID: 24819041]
[70]
De Crescenzo A, Citro V, Freschi A, et al. A splicing mutation of the HMGA2 gene is associated with Silver-Russell syndrome phenotype. J Hum Genet 2015; 60(6): 287-93.
[http://dx.doi.org/10.1038/jhg.2015.29] [PMID: 25809938]
[71]
Baujat G, Rio M, Rossignol S, et al. Paradoxical NSD1 mutations in Beckwith-Wiedemann syndrome and 11p15 anomalies in Sotos syndrome. Am J Hum Genet 2004; 74(4): 715-20.
[http://dx.doi.org/10.1086/383093] [PMID: 14997421]
[72]
Kagami M, Mizuno S, Matsubara K, et al. Epimutations of the IG-DMR and the MEG3-DMR at the 14q32.2 imprinted region in two patients with Silver-Russell Syndrome-compatible phenotype. Eur J Hum Genet EJHG 2015; 23(8): 1062-7.
[http://dx.doi.org/10.1038/ejhg.2014.234] [PMID: 25351781]
[73]
Prager S, Wollmann HA, Mergenthaler S, et al. Characterization of genomic variants in CSH1 and GH2, two candidate genes for Silver-Russell syndrome in 17q24-q25. Genet Test 2003; 7(3): 259-63.
[http://dx.doi.org/10.1089/109065703322537304] [PMID: 14642004]
[74]
Coutton C, Devillard F, Vieville G, et al. 17p13.1 microduplication in a boy with Silver-Russell syndrome features and intellectual disability. Am J Med Genet Part A 2012; 158(10): 2564-70.
[http://dx.doi.org/10.1002/ajmg.a.35553] [PMID: 22903743]
[75]
Yamazawa K, Nakabayashi K, Kagami M, et al. Parthenogenetic chimaerism/mosaicism with a Silver-Russell syndrome-like phenotype. J Med Genet 2010; 47(11): 782-5.
[http://dx.doi.org/10.1136/jmg.2010.079343] [PMID: 20685670]
[76]
Lau AW, Brown CJ, Peñaherrera M, Langlois S, Kalousek DK, Robinson WP. Skewed X-chromosome inactivation is common in fetuses or newborns associated with confined placental mosaicism. Am J Hum Genet 1997; 61(6): 1353-61.
[http://dx.doi.org/10.1086/301651] [PMID: 9399909]
[77]
Peñaherrera MS, Barrett IJ, Brown CJ, et al. An association between skewed X-chromosome inactivation and abnormal outcome in mosaic trisomy 16 confined predominantly to the placenta. Clin Genet 2000; 58(6): 436-46.
[http://dx.doi.org/10.1034/j.1399-0004.2000.580603.x] [PMID: 11149612]
[78]
Beever CL, Stephenson MD, Peñaherrera MS, et al. Skewed X-chromosome inactivation is associated with trisomy in women ascertained on the basis of recurrent spontaneous abortion or chromosomally abnormal pregnancies. Am J Hum Genet 2003; 72(2): 399-407.
[http://dx.doi.org/10.1086/346119] [PMID: 12497247]
[79]
Sharp A, Moore G, Eggermann T. Evidence from skewed X inactivation for trisomy mosaicism in Silver-Russell syndrome. Eur J Hum Genet 2001; 9(12): 887-91.
[http://dx.doi.org/10.1038/sj.ejhg.5200740] [PMID: 11840189]
[80]
Nygren AO, Ameziane N, Duarte HM, et al. Methylation-specific MLPA (MS-MLPA): Simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res 2005; 33(14): e128.
[http://dx.doi.org/10.1093/nar/gni127] [PMID: 16106041]
[81]
Lukova M, Todorova A, Todorov T, Mitev V. Different methylation patterns in BWS/SRS cases clarified by MS-MLPA. Mol Biol Rep 2013; 40(1): 263-8.
[http://dx.doi.org/10.1007/s11033-012-2057-2] [PMID: 23086270]
[82]
Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci 1996; 93(18): 9821-6.
[http://dx.doi.org/10.1073/pnas.93.18.9821] [PMID: 8790415]
[83]
Meyer R, Begemann M, Hübner CT, et al. One test for all: Whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver-Russell syndrome. Orphanet J Rare Dis 2021; 16(1): 42.
[http://dx.doi.org/10.1186/s13023-021-01683-x] [PMID: 33482836]
[84]
Kernaleguen M, Daviaud C, Shen Y, et al. Whole-genome bisulfite sequencing for the analysis of genome-wide DNA methylation and hydroxymethylation patterns at single-nucleotide resolution. Methods Mol Biol 2018; 1767: 311-49.
[http://dx.doi.org/10.1007/978-1-4939-7774-1_18] [PMID: 29524144]
[85]
Akawi NA, Ali BR, Hamamy H, Al-Hadidy A, Al-Gazali L. Is autosomal recessive Silver-Russel syndrome a separate entity or is it part of the 3-M syndrome spectrum? Am J Med Genet Part A 2011; 155(6): 1236-45.
[http://dx.doi.org/10.1002/ajmg.a.34009] [PMID: 21548126]
[86]
Brioude F, Oliver-Petit I, Blaise A, et al. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J Med Genet 2013; 50(12): 823-30.
[http://dx.doi.org/10.1136/jmedgenet-2013-101691] [PMID: 24065356]
[87]
Kerns SL, Guevara-Aguirre J, Andrew S, et al. A novel variant in CDKN1C is associated with intrauterine growth restriction, short stature, and early-adulthood-onset diabetes. J Clin Endocrinol Metab 2014; 99(10): E2117-22.
[http://dx.doi.org/10.1210/jc.2014-1949] [PMID: 25057881]
[88]
Sabir AH, Ryan G, Mohammed Z, et al. Familial russell-silver syndrome like phenotype in the PCNA domain of the CDKN1C gene, a further case. Case Rep Genet 2019; 2019: 1398250.
[http://dx.doi.org/10.1155/2019/1398250] [PMID: 31976094]
[89]
Chang S, Bartolomei M. Modeling human epigenetic disorders in mice: Beckwith-wiedemann syndrome and silver-russell syndrome. Dis Model Mech 2020; 13(5): dmm044123.
[90]
Miyoshi N, Kuroiwa Y, Kohda T, et al. Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc Natl Acad Sci USA 1998; 95(3): 1102-7.
[http://dx.doi.org/10.1073/pnas.95.3.1102] [PMID: 9448292]
[91]
Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 1998; 20(2): 163-9.
[http://dx.doi.org/10.1038/2464] [PMID: 9771709]
[92]
Fitzpatrick GV, Soloway PD, Higgins MJ. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 2002; 32(3): 426-31. Available from: https://www.nature.com/articles/ng988z accessed on 2021 Dec 23
[93]
Mancini-Dinardo D, Steele SJS, Levorse JM, Ingram RS, Tilghman SM. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 2006; 20(10): 1268-82.
[http://dx.doi.org/10.1101/gad.1416906] [PMID: 16702402]
[94]
Salas M, John R, Saxena A, et al. Placental growth retardation due to loss of imprinting of Phlda2. Mech Dev 2004; 121(10): 1199-210.
[http://dx.doi.org/10.1016/j.mod.2004.05.017] [PMID: 15327781]
[95]
Tunster SJ, Tycko B, John RM. The imprinted Phlda2 gene regulates extraembryonic energy stores. Mol Cell Biol 2010; 30(1): 295-306.
[http://dx.doi.org/10.1128/MCB.00662-09]
[96]
Engel N, West AG, Felsenfeld G, Bartolomei MS. Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations. Nat Genet 2004; 36(8): 883-8.
[http://dx.doi.org/10.1038/ng1399] [PMID: 15273688]
[97]
Andrews SC, Wood MD, Tunster SJ, Barton SC, Surani MA, John RM. Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev Biol 2007; 7(1): 53.
[http://dx.doi.org/10.1186/1471-213X-7-53] [PMID: 17517131]
[98]
Shin JY, Fitzpatrick GV, Higgins MJ. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J 2008; 27(1): 168-78.
[http://dx.doi.org/10.1038/sj.emboj.7601960] [PMID: 18079696]
[99]
Han L, Szabó PE, Mann JR. Postnatal survival of mice with maternal duplication of distal chromosome 7 induced by a Igf2/H19 imprinting control region lacking insulator function. PLoS Genet 2010; 6(1): e1000803.
[http://dx.doi.org/10.1371/journal.pgen.1000803] [PMID: 20062522]
[100]
Hur SK, Freschi A, Ideraabdullah F, et al. Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver-Russell syndrome phenotypes. Proc Natl Acad Sci USA 2016; 113(39): 10938-43.
[http://dx.doi.org/10.1073/pnas.1603066113] [PMID: 27621468]
[101]
Van De Pette M, Tunster SJ, McNamara GI, et al. Cdkn1c boosts the development of brown adipose tissue in a murine model of silver russell syndrome. PLoS Genet 2016; 12(3): e1005916.
[http://dx.doi.org/10.1371/journal.pgen.1005916] [PMID: 26963625]
[102]
McNamara GI, Davis BA, Dwyer DM, John RM, Isles AR. Behavioural abnormalities in a novel mouse model for Silver Russell Syndrome. Hum Mol Genet 2016; 25(24): 5407-17.
[http://dx.doi.org/10.1093/hmg/ddw357] [PMID: 27798108]
[103]
Kannenberg K, Weber K, Binder C, Urban C, Kirschner HJ, Binder G. IGF2/H19 hypomethylation is tissue, cell, and CpG site dependent and not correlated with body asymmetry in adolescents with Silver-Russell syndrome. Clin Epigenetics 2012; 4(1): 15.
[http://dx.doi.org/10.1186/1868-7083-4-15] [PMID: 22989232]
[104]
Azzi S, Blaise A, Steunou V, et al. Complex tissue-specific epigenotypes in Russell-Silver Syndrome associated with 11p15 ICR1 hypomethylation. Hum Mutat 2014; 35(10): 1211-20.
[http://dx.doi.org/10.1002/humu.22623] [PMID: 25044976]
[105]
Iliev DI, Kannenberg K, Weber K, Binder G. IGF-I sensitivity in Silver-Russell syndrome with IGF2/H19 hypomethylation. Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF Res Soc 2014; 24(5): 187-91.
[http://dx.doi.org/10.1016/j.ghir.2014.06.005] [PMID: 25066218]
[106]
Heckmann D, Urban C, Weber K, Kannenberg K, Binder G. Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation. Clin Epigenetics 2015; 7(1): 5.
[http://dx.doi.org/10.1186/s13148-014-0038-0] [PMID: 25657826]
[107]
Wakeling EL, Brioude F, Lokulo-Sodipe O, et al. Diagnosis and management of Silver-Russell syndrome: First international consensus statement. Nat Rev Endocrinol 2017; 13(2): 105-24. Available from: https://www.nature.com/articles/nrendo.2016.138 Accessed on 2021 Dec 23
[108]
Marsaud C, Rossignol S, Tounian P, Netchine I, Dubern B. Prevalence and management of gastrointestinal manifestations in Silver-Russell syndrome. Arch Dis Child 2015; 100(4): 353-8.
[http://dx.doi.org/10.1136/archdischild-2013-305864] [PMID: 25700540]
[109]
Azcona C, Stanhope R. Hypoglycaemia and Russell-Silver syndrome. J Pediatr Endocrinol Metab 2005; 18(7): 663-70.
[http://dx.doi.org/10.1515/JPEM.2005.18.7.663] [PMID: 16128243]
[110]
Vo Quang S, Galliani E, Eche S, et al. Contribution of a better maxillofacial phenotype in Silver-Russell syndrome to define a better orthodontics and surgical management. J Stomatol Oral Maxillofac Surg 2019; 120(2): 110-5.
[http://dx.doi.org/10.1016/j.jormas.2018.10.011] [PMID: 30396025]
[111]
Su J, Wang J, Fan X, et al. Mosaic UPD (7q) mat in a patient with silver Russell syndrome. Mol Cytogenet 2017; 10(1): 36.
[http://dx.doi.org/10.1186/s13039-017-0337-1] [PMID: 29075327]
[112]
Feuk L, Kalervo A, Lipsanen-Nyman M, et al. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. Am J Hum Genet 2006; 79(5): 965-72.
[http://dx.doi.org/10.1086/508902] [PMID: 17033973]
[113]
Schroeder C, Sturm M, Dufke A, et al. UPDtool: A tool for detection of iso- and heterodisomy in parent-child trios using SNP microarrays. Bioinformatics 2013; 29(12): 1562-4. Available from: https://academic.oup.com/bioinformatics/article/29/12/1562/291655 Accessed on 2021 Dec 23
[114]
Ting JC, Roberson EDO, Miller ND, et al. Visualization of uniparental inheritance, Mendelian inconsistencies, deletions, and parent of origin effects in single nucleotide polymorphism trio data with SNPtrio. Hum Mutat 2007; 28(12): 1225-35.
[http://dx.doi.org/10.1002/humu.20583] [PMID: 17661425]
[115]
Murrell A, Ito Y, Verde G, et al. Distinct methylation changes at the IGF2-H19 locus in congenital growth disorders and cancer. PloS one 2008; 3(3): e1849. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0001849 Accessed on 2021 Dec 23
[116]
Eggermann T, Begemann M, Gogiel M, et al. Heterogeneous growth patterns in carriers of chromosome 7p12.2 imbalances affecting GRB10. Am J Med Genet Part A 2012; 158(11): 2815-9.
[http://dx.doi.org/10.1002/ajmg.a.35612] [PMID: 22987336]
[117]
Bianco T, Hussey D, Dobrovic A. Methylation-sensitive, single-strand conformation analysis (MS-SSCA): A rapid method to screen for and analyze methylation. Hum Mutat 1999; 14(4): 289-93. Available from: https://pubmed.ncbi.nlm.nih.gov/10502775/ Accessed on 2021 Dec 23
[118]
Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): A new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 2007; 35(6): e41.
[http://dx.doi.org/10.1093/nar/gkm013] [PMID: 17289753]
[119]
Prickett AR, Ishida M, Böhm S, et al. Genome-wide methylation analysis in Silver-Russell syndrome patients. Hum Genet 2015; 134(3): 317-32.
[http://dx.doi.org/10.1007/s00439-014-1526-1] [PMID: 25563730]
[120]
Gebhard C, Schwarzfischer L, Pham T-H, et al. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res 2006; 66(12): 6118-28.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0376] [PMID: 16778185]
[121]
Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 2005; 33(18): 5868-77.
[http://dx.doi.org/10.1093/nar/gki901] [PMID: 16224102]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy