Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Advancements in Schiff Bases of 1H-Indole-2,3dione: A Versatile Heterocyclic Compound in Pharmacological Field

Author(s): Savitha D. Pradeep and Puzhavoorparmbil V. Mohanan*

Volume 20, Issue 1, 2023

Published on: 13 May, 2022

Page: [45 - 54] Pages: 10

DOI: 10.2174/1570193X19666220309142035

Price: $65

Open Access Journals Promotions 2
Abstract

Heterocyclic compounds have specific structural peculiarities, imparting immense applications in various fields. This study has explored the medicinal importance of a captive heterocyclic compound, 1H-Indole-2,3dione, commonly known as isatin. The flexibility in the structure of isatin makes it more innovative to have applications in the biological and analytical fields. In this minireview, we have discussed Schiff bases of isatin having activities, such as antidiabetic, antioxidant, antidiabetic, antimalarial, antiviral, anticonvulsant, anti-inflammatory and analgesic activity, and also the importance of this compound in various fields based on the reports mainly focussed on the current and past couple of years.

Keywords: Isatin, Schiff bases, biological applications, heterocyclic compounds, antidiabetic, antioxidant.

Graphical Abstract
[1]
Kunied, T.; Mutsanga, H. The chemistry of heterocyclic compounds. Palmer B, 2002, 175.
[2]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[3]
Sumrra, S.H.; Atif, A.H.; Zafar, M.N.; Khalid, M.; Tahir, M.N. Synthesis, crystal structure, spectral and DFT studies of potent isatin derived metal complexes. J. Mol. Struct., 2018, 1166, 110-120.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.132]
[4]
Chen, G.; Su, H.J.; Zhang, M.; Huo, F.; Zhang, J.; Hao, X.J.; Zhao, J.R. New bactericide derived from Isatin for treating oilfield reinjection water. Chem. Cent. J., 2012, 6(1), 90-94.
[http://dx.doi.org/10.1186/1752-153X-6-90] [PMID: 22929650]
[5]
Pandeya, S.N.; Smitha, S.; Jyoti, M.; Sridhar, S.K. Biological activities of isatin and its derivatives. Acta Pharm., 2005, 55(1), 27-46.
[PMID: 15907222]
[6]
Varun, S. Sonam; Kakkar, R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm, 2019, 10(3), 351-368.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[7]
Erdmann, O.L.J. Studies on the Indigo. Prakt. Chem., 1840, 19, 321-362.
[8]
Laurent, A. Indigo research. Ann. Chim. Phys., 1840, 3, 393-434.
[9]
Aziz, T.; Ullah, A.; Ullah, R.; Haq, F.; Iqbal, M.; Khan, F.U.; Jamil, M.I.; Raheel, M.; Kiran, M. Synthesis of isatin and its derivatives and their applications in biological system. Biomed. J. Sci. Tech. Res., 2020, 30, 23615-23621.
[http://dx.doi.org/10.26717/BJSTR.2020.30.004991]
[10]
Grewal, A.S. Isatin derivatives with several biological activities. Int. J. Pharm. Sci. Res., 2014, 6, 1-7.
[11]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, Article ID 893512.
[http://dx.doi.org/10.1155/2013/893512]
[12]
Singh, A.K.; Quraishi, M.A. Study of some bidentate schiff bases of isatin as corrosion inhibitors for mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci., 2012, 7, 3222-3241.
[13]
Armakovi’c, S.J.; Mary, Y.S.; Mary, Y.S. Pelemiˇs, S.; Armakovi’c, S. Optoelectronic properties of the newly designed 1,3,5-triazine derivatives with isatin, chalcone and acridone moieties. Comput. Theor. Chem., 2021, 1197, 113160.
[http://dx.doi.org/10.1016/j.comptc.2021.113160]
[14]
Krishna, T.G.A.; Tekuria, V.; Mohanb, M.; Trivedi, D.R. Selective colorimetric chemosensor for the detection of Hg2+ and arsenite ions using Isatin based Schiff’s bases; DFT Studies and Applications in test strips. Sens. Actuators B Chem., 2019, 284, 271-280.
[http://dx.doi.org/10.1016/j.snb.2018.12.003]
[15]
Smirnov, A.S.; Martins, L.M.D.R.S.; Nikolaev, D.N.; Manzhos, R.A.; Gurzhiy, V.V.; Krivenko, A.G.; Nikolaenko, K.O.; Belyakov, A.V.; Garabadzhiua, A.V.; Davidovich, P.B. Structure and catalytic properties of novel copper isatin Schiff base complexes. New J. Chem., 2019, 43, 188-198.
[http://dx.doi.org/10.1039/C8NJ02718H]
[16]
Petrus, M.L.; Bouwer, R.K.M.; Lafont, U.; Athanasopoulos, S.; Greenham, N.C.; Dingemans, T.J. Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 9474-9480.
[http://dx.doi.org/10.1039/C4TA01629G]
[17]
Caradonna, J.P.; Lippard, S.J.; Gait, M.J.; Singh, M. The antitumor drug cis-dichlorodiammineplatinum forms an intrastrand d(GpG) crosslink upon reaction with [d(ApGpGpCpCpT)]2. J. Am. Chem. Soc., 1982, 104, 5793.
[http://dx.doi.org/10.1021/ja00385a044]
[18]
Fichtinger-Schepman, A.M.; van Oosterom, A.T.; Lohman, P.H.; Berends, F.; Berends, F. cis-Diamminedichloroplatinum(II)-induced DNA adducts in peripheral leukocytes from seven cancer patients: quantitative immunochemical detection of the adduct induction and removal after a single dose of cis-diamminedichloroplatinum(II). Cancer Res., 1987, 47(11), 3000-3004.
[PMID: 3552211]
[19]
Baik, M.H.; Friesner, R.A.; Lippard, S.J. Theoretical study of cisplatin binding to purine bases: why does cisplatin prefer guanine over adenine? J. Am. Chem. Soc., 2003, 125(46), 14082-14092.
[http://dx.doi.org/10.1021/ja036960d] [PMID: 14611245]
[20]
Marie, A.; Schepman, J.F.; Van der Veer, J.L.; Hartog, J.H.J.D.; Lohman, P.H.M. Adducts of the antitumor drug cisdiamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry, 1985, 24, 707.
[http://dx.doi.org/10.1021/bi00324a025]
[21]
Filipski, J.; Kohn, K.W.; Bonner, W.M. The nature of inactivating lesions produced by platinum(II) complexes in phage λ DNA. Chem. Biol. Interact., 1980, 32(3), 321-330.
[http://dx.doi.org/10.1016/0009-2797(80)90099-X] [PMID: 6448702]
[22]
Eastman, A. Reevaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA. Biochemistry, 1986, 25(13), 3912-3915.
[http://dx.doi.org/10.1021/bi00361a026] [PMID: 3741840]
[23]
Hambley, T.W. Modelling the interaction of cisplatin with DNA. Drug Des. Deliv., 1988, 3(2), 153-158.
[PMID: 3255327]
[24]
Tu, C.; Wu, X.; Liu, Q.; Wang, X.; Xu, Q.; Guo, Z. Crystal structure, DNA-binding ability and cytotoxic activity of platinum (II) 2,2′- dipyridylamine complexes. Inorg. Chim. Acta, 2004, 357, 95.
[http://dx.doi.org/10.1016/S0020-1693(03)00389-X]
[25]
Chao, H.; Ji, L.N. DNA interactions with ruthenium(ll) polypyridine complexes containing asymmetric ligands. Bioinorg. Chem. Appl., 2005, 3, 15-28.
[http://dx.doi.org/10.1155/BCA.2005.15] [PMID: 18365086]
[26]
Gopinathan, S.; Unny, I.R.; Deshpe, S.; Gopinathan, C. Catalytic liquid phase oxidation of p-xylene using transition metal substituted polyoxometalates. Ind. J. Chem. A, 1986, 25, 1015.
[27]
Dizdaroglu, M. Chemical determination of free radical-induced damage to DNA. Free Radic. Biol. Med., 1991, 10(3-4), 225-242.
[http://dx.doi.org/10.1016/0891-5849(91)90080-M] [PMID: 1650738]
[28]
Liu, J.; Zhang, H.; Chen, C.; Deng, H.; Lu, T.; Ji, L. The pH-induced emission switching and interesting DNA-binding properties of a novel dinuclear ruthenium(II) complex. Dalton Trans., 2003, 2003, 114-119.
[http://dx.doi.org/10.1039/b206079p]
[29]
Sonawane, R.P. The chemistry and synthesis of 1h-indole-2,3-dione (isatin) and its derivatives. Phys. Astronomy, 2013, 12, 30-36.
[30]
Da Silva, J.F.M.; Garden, S.J.; Pinto, A.C. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc., 2001, 12, 273-324.
[http://dx.doi.org/10.1590/S0103-50532001000300002]
[31]
Baeyer, A.; Oekonomides, S. Ueber das Isatin. Eur. J. Inorg. Chem., 1882, 15, 2093-2102.
[32]
Tisovský, P.; Šandrik, R.; Horváth, M.; Donovalová, J.; Filo, J.; Gáplovský, M.; Jakusová, K. Cigáň M.; Sokolík, R.; Gáplovský, A. Effect of structure on charge distribution in the isatin anions in aprotic environment: spectral study. Molecules, 2017, 22(11), 1961.
[http://dx.doi.org/10.3390/molecules22111961] [PMID: 29135954]
[33]
Bigotto, A.; Galasso, V. Infrared and Raman spectra of phthalimide and isatin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1979, 35, 725-732.
[http://dx.doi.org/10.1016/0584-8539(79)80029-X]
[34]
Sandmeyer, T. Über Isonitrosoacetanilide und deren Kondensation zu Isatinen. Helv. Chim. Acta, 1919, 2, 234-242.
[http://dx.doi.org/10.1002/hlca.19190020125]
[35]
Sumpter, W.C. The chemistry of isatin. Chem. Rev., 1944, 34, 393-434.
[http://dx.doi.org/10.1021/cr60109a003]
[36]
Viramgama, P. Synthesis and reactivity of new versatile heterocyclic compound isatin and its derivatives. Indian J. Appl. Res., 2012, 2, 9-11.
[http://dx.doi.org/10.15373/2249555X/DEC2012/2]
[37]
Gassman, P.G.; Cue, B.W.; Luh, T.Y. A general method for the synthesis of isatins. J. Org. Chem., 1977, 42, 1344-1348.
[http://dx.doi.org/10.1021/jo00428a016]
[38]
Meenachi, S. A review of chemistry and biological importance of schiff base. IJSRR., 2014, 3, 08-18.
[39]
Sumrra, S.H.; Ibrahim, M.; Ambreen, S.; Imran, M.; Danish, M.; Rehmani, F.S. Synthesis, spectral characterization, and biological evaluation of transition metal complexes of bidentate N, o donor schiff bases. Bioinorg. Chem. Appl., 2014, 2014, 812924.
[http://dx.doi.org/10.1155/2014/812924] [PMID: 25147493]
[40]
Ambike, V.; Adsule, S.; Ahmed, F.; Wang, Z.; Afrasiabi, Z.; Sinn, E.; Sarkar, F.; Padhye, S. Copper conjugates of nimesulide Schiff bases targeting VEGF, COX and Bcl-2 in pancreatic cancer cells. J. Inorg. Biochem., 2007, 101(10), 1517-1524.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.06.028] [PMID: 17689613]
[41]
Patange, A.N.; Yadav, U.M.; Desai, P.A.; Singare, P.U. Synthesis of some novel halogenated platinum (II) complexes of active Schiff’s base ligand derived from 5-bromo isatin and evaluation of their antibacterial activity. World Sci. News, 2015, 10, 32-43.
[42]
Rosenberg, B.; Vancamp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 1965, 205, 698-699.
[http://dx.doi.org/10.1038/205698a0] [PMID: 14287410]
[43]
Patange, A.N.; Yadav, U.M.; Desai, P.A.; Singare, P.U. Synthesis and antimicrobial activities of novel palladium (II) complexes of active Schiff’s base ligand derived from 5-bromo isatin. ILCPA, 2015, 52, 22-27.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.52.22]
[44]
Patel, N.H.; Parekh, H.M.; Patel, M.N. Synthesis, characterization and biological evaluation of manganese (II), cobalt (II), nickel (II), copper (II), and cadmium (II) complexes with mono basic (NO) and neutral (NN) Schiff bases. Transit. Met. Chem, 2005, 30, 13-17.
[http://dx.doi.org/10.1007/s11243-004-3226-5]
[45]
Thakor, Y.J.; Patel, S.G.; Patel, K.N. Synthesis, characterization and biocidal studies of some transition metal complexes containing tetra dentate and neutral bi dentate Schiff base. J. Chem. Pharm. Res., 2010, 2, 518-525.
[46]
Ramesh, R.; Suganthy, P.K.; Natarajan, K. Synthesis, spectra and electrochemistry of Ru(III) complexes with tetradentate Schiff bases. Inorg. Met. Org. Chem., 1996, 26, 47-60.
[http://dx.doi.org/10.1080/00945719608004245]
[47]
Eman, T.S. Preparation and characterization of new Schiff base derived from pyridine and its metal complexes. Int. J. Curr. Res. Chem. Pharm. Science, 2016, 3, 118-123.
[48]
Gennari, M.; Pécaut, J.; Collomb, M.N.; Duboc, C. A copper thiolate centre for electron transfer: mononuclear vs. dinuclear complexes. Dalton Trans., 2012, 41(11), 3130-3133.
[http://dx.doi.org/10.1039/c2dt12355j] [PMID: 22314404]
[49]
Dhanaraj, C.J.; Nair, M.S. Synthesis, characterization, antimicrobial, and nuclease activity studies of some metal Schiff-base complexes. J. Coord. Chem., 2009, 62, 4018-4028.
[http://dx.doi.org/10.1080/00958970903191142]
[50]
Paul, P. Ruthenium, osmium and rhodium complexes of polypyridyl ligands: metal-promoted activities, stereochemical aspects and electrochemical properties. Proc. Indiana Acad. Sci., 2004, 114, 269-276.
[http://dx.doi.org/10.1007/BF02703819]
[51]
Sathe, B.S.; Jaychandran, E.; Jagtap, V.A.; Sreenivasa, G.M. Synthesis characterization and anti-inflammatory evaluation of new fluorobenzothiazole Schiff’s bases. Int. J. Pharm. Res. Develop, 2011, 3, 164-169.
[52]
Silva, P.J. New insights into the mechanism of Schiff base synthesis from aromatic amines in the absence of acid catalyst or polar solvents. Peer J. Org. Chem., 2020, 2, e4.
[http://dx.doi.org/10.7717/peerj-ochem.4]
[53]
Paquette, L.A.; Benjamin, W.A. Principles of modern heterocyclic chemistry; Anybook Ltd.: Lincoln, United Kingdom, 1968.
[54]
Carey, F.A.; Sundberg, R.A. Advanced Organic Chemistry; ; Chemical Bonding and Molecular Structure. Springer, 2007, pp. 1-117.
[55]
Dalia, S.A.; Afsan, F.; Hossain, Md. S.; Khan, Md. N.; Zakaria, C.M.; E-Zahan, Md.K.; Ali, Md.M. A short review on chemistry of Schiff base metal complexes and their catalytic application. IJCS, 2018, 6, 2859-2866.
[56]
Aalto, A.M.; Uutela, A.; Aro, A.R. Health related quality of life among insulin-dependent diabetics: disease-related and psychosocial correlates. Patient Educ. Couns., 1997, 30(3), 215-225.
[http://dx.doi.org/10.1016/S0738-3991(96)00963-9] [PMID: 9104378]
[57]
Devendra, D.; Liu, E.; Eisenbarth, G.S. Type 1 diabetes: recent developments. BMJ, 2004, 328(7442), 750-754.
[http://dx.doi.org/10.1136/bmj.328.7442.750] [PMID: 15044291]
[58]
Gunawan-Puteri, M.D.; Kawabata, J. Novel α-glucosidase inhibitors from Macaranga tanarius leaves. Food Chem., 2010, 123, 384-389.
[http://dx.doi.org/10.1016/j.foodchem.2010.04.050]
[59]
Adisakwattana, S.; Jiphimai, P.; Prutanopajai, P.; Chanathong, B.; Sapwarobol, S.; Ariyapitipan, T. Evaluation of alpha-glucosidase, alpha-amylase and protein glycation inhibitory activities of edible plants. Int. J. Food Sci. Nutr., 2010, 61(3), 295-305.
[http://dx.doi.org/10.3109/09637480903455963] [PMID: 20109131]
[60]
Rajan, S.; Puri, S.; Kumar, D.; Babu, M.H.; Shankar, K.; Varshney, S.; Srivastava, A.; Gupta, A.; Reddy, M.S.; Gaikwad, A.N. Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway. Eur. J. Med. Chem., 2018, 143, 1345-1360.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.034] [PMID: 29153558]
[61]
Nazir, M.; Abbasi, M.A. Aziz-Ur-Rehman; Siddiqui, S.Z.; Khan, K.M.; Kanwal, U.; Salar, U.; Shahid, M.; Ashraf, M.; Arif Lodhi, M.; Ali Khan, F. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. Bioorg. Chem., 2018, 81, 253-263.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.010] [PMID: 30153590]
[62]
Srividya, L.; Reddy, A.R.N. Antidiabetic activity of 1-(4-chlorobenzylidene)-5-(2-oxoindolin-3-ylidene) thiocarbohydrazone in chick model. Asian J. Biol. Sci., 2017, 10, 126-129.
[63]
Taha, M.; Rahim, F.; Imran, S.; Ismail, N.H.; Ullah, H.; Selvaraj, M.; Javid, M.T.; Salar, U.; Ali, M.; Khan, K.M. Synthesis, α-glucosidase inhibitory activity and in silico study of tris-indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorg. Chem., 2017, 74, 30-40.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.009] [PMID: 28750203]
[64]
Wang, G.; Chen, M.; Qiu, J.; Xie, Z.; Cao, A. Synthesis, in vitro α-glucosidase inhibitory activity and docking studies of novel chromone-isatin derivatives. Bioorg. Med. Chem. Lett., 2018, 28(2), 113-116.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.047] [PMID: 29208524]
[65]
Wang, G.; Peng, Z.; Wang, J.; Li, X.; Li, J. Synthesis, α-glucosidase inhibition and molecular docking studies of novel thiazolidine-2,4-dione or rhodanine derivatives. Eur. J. Med. Chem., 2017, 125, 423-429.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.067] [PMID: 27689725]
[66]
Xie, Z.; Wang, G.; Wang, J.; Chen, M.; Peng, Y.; Li, L.; Deng, B.; Chen, S.; Li, W. Synthesis, biological evaluation, and molecular docking studies of novel isatin-thiazole derivatives as α-glucosidase inhibitors. Molecules, 2017, 22(4), 659.
[http://dx.doi.org/10.3390/molecules22040659] [PMID: 28425975]
[67]
Tiwari, R.; Moraski, G.C. Krchňák, V.; Miller, P.A.; ColonMartinez, M.; Herrero, E.; Oliver, A.G.; Miller, M. Design and syntheses of anti-tuberculosis agents inspired by BTZ043 using a scaffold simplification strategy. J. Am. Chem. Soc., 2013, 135, 3539.
[http://dx.doi.org/10.1021/ja311058q] [PMID: 23402278]
[68]
Hu, Y.Q.; Zhang, S.; Zhao, F.; Gao, C.; Feng, L.S.; Lv, Z.S.; Xu, Z.; Wu, X. Isoniazid derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 133, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.002] [PMID: 28390957]
[69]
Matteelli, A.; Migliori, G.B.; Cirillo, D.; Centis, R.; Girard, E.; Raviglion, M. Multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis: epidemiology and control. Expert Rev. Anti Infect. Ther., 2007, 5(5), 857-871.
[http://dx.doi.org/10.1586/14787210.5.5.857] [PMID: 17914919]
[70]
Kumar, R.; Takkar, P. Repositioning of Isatin hybrids as novel anti-tubercular agents overcoming pre-existing antibiotics resistance. Med. Chem. Res., 2021, 30, 847-876.
[http://dx.doi.org/10.1007/s00044-021-02699-5]
[71]
Xu, Z.; Zhang, S.; Gao, C.; Fand, J.; Zhao, F.; Zao-Sheng, L.; Lian-Shun, F. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett., 2017, 28, 159-167.
[http://dx.doi.org/10.1016/j.cclet.2016.07.032]
[72]
Maddela, S.; Makula, A. Design, synthesis and docking study of some novel isatin- quinoline hybrids as potential antitubercular agents. Antiinfect. Agents, 2016, 14, 53-62.
[http://dx.doi.org/10.2174/221135251401160302151229]
[73]
Tarunkumar, N.A.; Jignesh, P.R. synthesis, characterization, and in vitro antibacterial, antifungal, antitubercular, and antimalarial activity. Med. Chem. Res., 2013, 22, 4700-4707.
[http://dx.doi.org/10.1007/s00044-013-0472-0]
[74]
Kumar, K.; Pradines, B.; Madamet, M.; Amalvict, R.; Benoit, N.; Kumar, V. 1H-1,2,3-triazole tethered isatin-ferrocene conjugates: Synthesis and in vitro antimalarial evaluation. Eur. J. Med. Chem., 2014, 87, 801-804.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.024] [PMID: 25440881]
[75]
Chiyanzu, I.; Clarkson, C.; Smith, P.J.; Lehman, J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg. Med. Chem., 2005, 13(9), 3249-3261.
[http://dx.doi.org/10.1016/j.bmc.2005.02.037] [PMID: 15809160]
[76]
Thakkar, J.R.; Thakkar, N.V. Synthesis and characterization of chiral mixed ligand Co(II)complexes of isonitrosopropio phenone and amino acids. Synth. React. Inorg. Met.-Org. Chem., 2000, 30, 1871-1887.
[http://dx.doi.org/10.1080/00945710009351875]
[77]
Giorno, T.B.; Ballard, Y.L.; Cordeiro, M.S.; Silva, B.V.; Pinto, A.C.; Fernandes, P.D. Central and peripheral antinociceptive activity of 3-(2-oxopropyl)-3-hydroxy-2-oxindoles. Pharmacol. Biochem. Behav., 2015, 135, 13-19.
[78]
Bhandari, S.V.; Dangre, S.C.; Bothara, K.G.; Patil, A.A.; Sarkate, A.P.; Lokwani, D.K.; Gore, S.T.; Deshmane, B.J.; Raparti, V.T.; Khachane, C.V. Design, synthesis and pharmacological screening of novel nitric oxide donors containing 1,5-diarylpyrazolin-3-one as nontoxic NSAIDs. Eur. J. Med. Chem., 2009, 44(11), 4622-4636.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.035] [PMID: 19647903]
[79]
Panneerselvam, P.; Reddy, R.S.; Murali, K.; Kumar, N.R. Synthesis, analgesic, anti-inflammatory, and antimicrobial activities of 5-substituted isatin derivatives. Pharma Chem., 2010, 2, 28-37.
[80]
Sharma, P.K.; Balwani, S.; Mathur, D.; Malhotra, S.; Singh, B.K.; Prasad, A.K.; Len, C.; Van der Eycken, E.V.; Ghosh, B.; Richards, N.G.J.; Parmar, V.S. Synthesis and anti-inflammatory activity evaluation of novel triazolyl-isatin hybrids. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1520-1526.
[http://dx.doi.org/10.3109/14756366.2016.1151015]
[81]
Zeeshan, S.; Naveed, M.; Khan, A.; Atiq, A.; Arif, M.; Ahmed, M.N.; Kim, Y.S.; Khan, S. N-Pyrazoloyl and N-thiopheneacetyl hydrazone of isatin exhibited potent anti-inflammatory and anti-nociceptive properties through suppression of NF-κB, MAPK and oxidative stress signaling in animal models of inflammation. Inflamm. Res., 2019, 68(7), 613-632.
[http://dx.doi.org/10.1007/s00011-019-01245-9] [PMID: 31079165]
[82]
Lahari, K.; Sundararajan, R. Design and synthesis of novel isatin derivatives as potent analgesic, anti-inflammatory and antimicrobial agents. J. Chem. Sci., 2020, 132, 94.
[http://dx.doi.org/10.1007/s12039-020-01795-0]
[83]
Krämer, G. Epilepsy in the elderly: some clinical and pharmacotherapeutic aspects. Epilepsia, 2001, 42(Suppl. 3), 55-59.
[http://dx.doi.org/10.1046/j.1528-1157.2001.042suppl.3055.x] [PMID: 11520326]
[84]
Lima, J.M.L. The new drugs and the strategies to manage epilepsy. Curr. Pharm. Des., 2000, 6(8), 873-878.
[http://dx.doi.org/10.2174/1381612003400308] [PMID: 10828313]
[85]
Spear, B.B. Pharmacogenetics and antiepileptic drugs. Epilepsia, 2001, 42(Suppl. 5), 31-34.
[http://dx.doi.org/10.1111/j.1528-1167.2001.0s006.x] [PMID: 11887965]
[86]
Saravanan, G.; Alagarsamy, V.; Dineshkumar, P. Anticonvulsant activity of novel 1-(morpholinomethyl)-3-substituted isatin derivatives. Bul Fac. Pharm., 2014, 52, 115-124.
[http://dx.doi.org/10.1016/j.bfopcu.2014.02.001]
[87]
Osman, H.M.; Elsaman, T.; Yousef, B.A.; Elhadi, E.; Ahmed, A.A.E.; Eltayib, E.M.; Mohamed, M.S.; Mohamed, M.A. Schiff bases of isatin and adamantane-1-carbohydrazide: synthesis, characterization and anticonvulsant activity. J. Chem., 2021, 2021, Article ID 6659156.
[http://dx.doi.org/10.1155/2021/6659156]
[88]
Meleddu, R.; Distinto, S.; Corona, A.; Tramontano, E.; Bianco, G.; Melis, C.; Cottiglia, F.; Maccioni, E. New dihydrothiazole benzensulfonamides: looking for selectivity toward carbonic anhydrase isoforms I, II, IX, and XII. J. Enzyme Inhib. Med. Chem., 2017, 32, 130-136.
[http://dx.doi.org/10.1080/14756366.2016.1238366] [PMID: 27766892]
[89]
Raj, A.A.; Vinnarasi, J.; Rose, G.L. Molecular docking of some isatin Schiff bases using hex. World J. Pharm. Sci., 2013, 2, 3058-3064.
[90]
Zhang, H.M.; Dai, H.; Hanson, P.J.; Li, H.; Guo, H.; Ye, X.; Hemida, M.G.; Wang, L.; Tong, Y.; Qiu, Y.; Liu, S.; Wang, F.; Song, F.; Zhang, B.; Wang, J.G.; Zhang, L.X.; Yang, D. Antiviral activity of an isatin derivative via induction of PERK-Nrf2-mediated suppression of cap-independent translation. ACS Chem. Biol., 2014, 9(4), 1015-1024.
[http://dx.doi.org/10.1021/cb400775z] [PMID: 24547890]
[91]
Brighton, S.W. Chloroquine phosphate treatment of chronic Chikungunya arthritis. An open pilot study. S. Afr. Med. J., 1984, 66(6), 217-218.
[PMID: 6087474]
[92]
Mishra, P.; Kumar, A.; Mamidi, P.; Kumar, S.; Basantray, I.; Saswat, T.; Das, I.; Nayak, T.K.; Chattopadhyay, S.; Subudhi, B.B.; Chattopadhyay, S. Inhibition of Chikungunya virus replication by 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea(MBZM-N-IBT). Sci. Rep., 2016, 6, 1-13.
[http://dx.doi.org/10.1038/s41598-016-0001-8] [PMID: 28442746]
[93]
Abbas, S.Y.; Farag, A.A.; Ammar, Y.A.; Atrees, A.A.; Mohamed, A.F.; El-Henawy, A.A. Synthesis, characterization, and antiviral activity of novel fluorinated isatin derivatives. Monatsh. Chem., 2013, 144(11), 1725-1733.
[http://dx.doi.org/10.1007/s00706-013-1034-3] [PMID: 32214479]
[94]
De Clercq, E. Historical perspectives in the development of antiviral agents against poxviruses. Viruses, 2010, 2(6), 1322-1339.
[http://dx.doi.org/10.3390/v2061322] [PMID: 21994682]
[95]
Quenelle, D.C.; Keith, K.A.; Kern, E.R. In vitro and in vivo evaluation of isatin-beta-thiosemicarbazone and marboran against vaccinia and cowpox virus infections. Antiviral Res., 2006, 71(1), 24-30.
[http://dx.doi.org/10.1016/j.antiviral.2006.02.010] [PMID: 16621041]
[96]
Webber, S.E.; Tikhe, J.; Worland, S.T.; Fuhrman, S.A.; Hendrickson, T.F.; Matthews, D.A.; Love, R.A.; Patick, A.K.; Meador, J.W.; Ferre, R.A.; Brown, E.L.; DeLisle, D.M.; Ford, C.E.; Binford, S.L. Design, synthesis, and evaluation of nonpeptidic inhibitors of human rhinovirus 3C protease. J. Med. Chem., 1996, 39(26), 5072-5082.
[http://dx.doi.org/10.1021/jm960603e] [PMID: 8978838]
[97]
Ronen, D.; Sherman, L.; Bar-Nun, S.; Teitz, Y. N-Methylisatin-4-4′4′-diethylthiosemicarbazone, an inhibitor of moloney leukemia virus protein production: characterization and in vitro translation of viralm RNA. Antimicrob. Agents Chemother., 1987, 31, 1798-1802.
[http://dx.doi.org/10.1128/AAC.31.11.1798] [PMID: 3501701]
[98]
Zhou, L.; Liu, Y.; Zhang, W.; Wei, P.; Huang, C.; Pei, J.; Yuan, Y.; Lai, L. Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors. J. Med. Chem., 2006, 49(12), 3440-3443.
[http://dx.doi.org/10.1021/jm0602357] [PMID: 16759084]
[99]
Liu, W.; Zhu, H.M.; Niu, G.J.; Shi, E.Z.; Chen, J.; Sun, B.; Chen, W.Q.; Zhou, H.G.; Yang, C. Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem., 2014, 22(1), 292-302.
[http://dx.doi.org/10.1016/j.bmc.2013.11.028] [PMID: 24316352]
[100]
Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Clarendon Press: Oxford, 1999.
[101]
Bahorun, T.; Soobrattee, M.A.; Luximon-Ramma, V.; Aruoma, O.I. Free radicals and antioxidants in cardiovascular health and disease. Int. J. Med. (Dubai), 2006, 1, 1-17.
[102]
Manavalan, K.; Ramasamy, C. Physical pharmaceutics; Vignesh Publishers: Chennai, 2001.
[103]
Basu, C.; Chowdhury, S.; Banerjee, R.; Evans, H.S.; Mukherjee, S. A novel blue luminescent high-spin iron(III) complex with interlayer O-H...Cl bridging: Synthesis, structure and spectroscopic studies. Polyhedron, 2007, 26, 3617-3624.
[http://dx.doi.org/10.1016/j.poly.2007.03.053]
[104]
Shalaby, E.A.; Shanab, S.M.M.; Singh, V.J. Salt stress enhancement of antioxidant and antiviral efficiency of Spirulina platensis. Med. Plants Res., 2010, 24, 2622-2632.
[105]
Willcox, J.K.; Ash, S.L.; Catignani, G.L.; Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr., 2004, 44(4), 275-295.
[http://dx.doi.org/10.1080/10408690490468489] [PMID: 15462130]
[106]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[107]
Genestra, M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal., 2007, 19(9), 1807-1819.
[http://dx.doi.org/10.1016/j.cellsig.2007.04.009] [PMID: 17570640]
[108]
Muglu, H.; Yakan, H. Preparation, characterization, and antioxidant features of some new Schiff bases derived from isatins and hydrazine. JIST, 2020, 10, 439-447.
[http://dx.doi.org/10.21597/jist.589004]
[109]
Bakir, T.K.; Lawag, J.B. Preparation, characterization, antioxidant properties of novel Schif bases including 5-chloroisatin-thiocarbohydrazone. Res. Chem. Intermed., 2020, 46, 2541-2557.
[http://dx.doi.org/10.1007/s11164-020-04105-y]
[110]
El-Faham, A.; Hozzein, W.N.; Wadaan, M.A.M.; Khattab, S.N.; Ghabbour, H.A.; Fun, H.K.; Siddiqui, M.R. Microwave synthesis, characterization and antimicrobial activity of somw novel isatin Schiff bases. J. Chem., 2015, 28, 6372-6378.
[111]
Kiran, G.; Maneshwar, T.; Rajeshwar, Y.; Sarangapani, M. Microwave-assisted synthesis, characterization, antimicrobial and antioxidant activity of some new isatin derivatives. J. Chem., 2013, 2013, Article ID 192039.
[http://dx.doi.org/10.1155/2013/192039]
[112]
Pakravan, P.; Kashanian, S.; Khodaei, M.M.; Harding, F.J. Biochemical and pharmacological characterization of isatin and its derivatives: from structure to activity. Pharmacol. Rep., 2013, 65(2), 313-335.
[http://dx.doi.org/10.1016/S1734-1140(13)71007-7] [PMID: 23744416]
[113]
Naik, N.; Kumar, H.V.; Vidyashree, P.B. Synthesis and evaluation of antioxidant potential of novel isatin analogues. J. Pharm. Res., 2011, 4, 2686-2689.
[114]
Kiran, G.; Sarangapani, M.; Gouthami, T.; Narsimhareddy, A.R. Synthesis, characterization, and antimicrobial and antioxidant activities of novel bis-isatin carbohydrazone derivatives. Toxicol. Environ. Chem., 2013, 95, 367-378.
[http://dx.doi.org/10.1080/02772248.2013.777605]
[115]
Yakan, H. ÇAVUS, M.S.; Kurt, B.Z.; Muglu, H.; Sönmez, F.; Güzel, E. A new series of asymmetric bis-isatin derivatives containing urea/thiourea moiety: Preparation, spectroscopic elucidation, antioxidant properties and theoretical calculations. J. Mol. Struct., 2021, 1239, 130495.
[http://dx.doi.org/10.1016/j.molstruc.2021.130495]
[116]
Lu, T.; Chen, F. Bond order analysis based on the Laplacian of electron density in fuzzy overlap space. J. Phys. Chem. A, 2013, 117(14), 3100-3108.
[http://dx.doi.org/10.1021/jp4010345] [PMID: 23514314]
[117]
Sonmez, F.; Gunesli, Z.; Kurt, B.Z.; Gazioglu, I.; Avci, D.; Kucukislamoglu, M. Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Mol. Divers., 2019, 23(4), 829-844.
[http://dx.doi.org/10.1007/s11030-018-09910-7] [PMID: 30612259]
[118]
Prakash, C.R.; Raja, S.; Saravanan, G.; Dinesh, K.P.; Panneer, S. Synthesis and evaluation of antioxidant activities of some novel isatin derivatives and analogs, Asian. J. Res. Pharm. Sci., 2011, 1, 140-143.
[119]
Dramnic, S.Ž.; Petrovic, P.; Brkic, D.R.; Marinkovic, A.D.; Nikolic, J.B. A survey on the characterization and biological activity of Isatin derivatives. J. Serb. Chem. Soc., 2020, 85, 979-1000.
[http://dx.doi.org/10.2298/JSC200320020D]
[120]
Takeuchi, A.; Sprinz, H.; LaBrec, E.H.; Formal, S.B. Experimental bacillary dysentery. An electron microscopic study of the response of the intestinal mucosa to bacterial invasion. Am. J. Pathol., 1965, 47(6), 1011-1044.
[PMID: 5844378]
[121]
Arief, M.M.H.; El-Dougdoug, W.I.A.; Sayed, M.A. Synthesis of some new isatin derivatives of expected biological activities. JBES, 2019, 6, 149-155.
[122]
Omer, A.M.; Ammar, Y.A.; Mohamed, G.A. Abd elbaky, Y.M.; Tamer, T.M. Preparation of isatin/chitosan schiff base as novel antibacterial biomaterials. Egypt. J. Chem., 2019, 62, 123-131.
[123]
Skyttä, E.; Mattila, S.T.J. A quantitative method for assessing bacteriocins and other food antimicrobials by automated turbidometry. J. Microbiol. Methods, 1991, 14, 77-88.
[124]
Krajewska, B.; Kyziol, A.; Wydro, P. Chitosan as a subphase disturbant of membrane lipid monolayers. The effect of temperature at varying pH: II. DPPC and cholesterol. Colloid. Surf. A, 2013, 434, 359-364.
[http://dx.doi.org/10.1016/j.colsurfa.2013.03.018]
[125]
Krajewska, B.; Wydro, P.; Kyziol, A. Chitosan as a subphase disturbant of membrane lipid monolayers. The effect of temperature at varying pH: I. DPPG. Colloid. Surf. Physicochem. Engg. Aspects, 2013, 434, 349-358.
[http://dx.doi.org/10.1016/j.colsurfa.2013.03.015]
[126]
Jithendra, Ch.; Saravanan, G.; Alagarsamy, V.; Panneerselvam, T.; Selvaraj, K.; Parasuraman, P. Synthesis, characterization & antimicrobial activities of new isoxazole substituted mannich and Schiff bases of 5-nitroisatin analogs. Asian J. Chem., 2020, 32, 970-974.
[http://dx.doi.org/10.14233/ajchem.2020.22596]
[127]
Chemchem, M.; Menacer, R.; Merabet, N.; Bouridane, H.; Yahiaoui, S.; Moussaoui, S.; Belkhiri, L. Green synthesis, antibacterial evaluation and QSAR analysis of some isatin Schiff bases. J. Mol. Struct., 2020, 1208, 127853.
[http://dx.doi.org/10.1016/j.molstruc.2020.127853]
[128]
Mishra, R.; Chaurasia, H.; Singh, V.K.; Naaz, F.; Singh, R.K. Molecular modeling, QSAR analysis and antimicrobial properties of Schiff base derivatives of isatin. J. Mol. Struct., 2021, 1243, 130763.
[http://dx.doi.org/10.1016/j.molstruc.2021.130763]
[129]
Kenar, L. Karayilanoğlu, T.; Yuksel, A.; Gunhan, O.; Kose, S.; Kurt, B. Evaluation of protective ointments used against dermal effects of nitrogen mustard, a vesicant warfare agent. Mil. Med., 2005, 170(1), 1-6.
[http://dx.doi.org/10.7205/MILMED.170.1.1] [PMID: 15724846]
[130]
Cane, A.; Tournaire, M.C.; Barritault, D.; Crumeyrolle-Arias, M. The endogenous oxindoles 5-hydroxyoxindole and isatin are antiproliferative and proapoptotic. Biochem. Biophys. Res. Commun., 2000, 276(1), 379-384.
[http://dx.doi.org/10.1006/bbrc.2000.3477] [PMID: 11006132]
[131]
Gupta, A.K.; Tulsyan, S.; Bharadwaj, M.; Mehrotra, R. Systematic review on cytotoxic and anticancer potential of N-substituted isatins as novel class of compounds useful in multidrug-resistant cancer therapy: In silico and in vitro analysis. Top. Curr. Chem. (Cham), 2019, 377(3), 15.
[http://dx.doi.org/10.1007/s41061-019-0240-9] [PMID: 31073777]
[132]
Aouad, M.R.; Almehmadi, M.A.; Rezki, N.; Al-blewi, F.F.; Messali, M.; Ali, I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles. J. Mol. Struct., 2019, 1188, 153-164.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.005]
[133]
Yousef, M.A.; Ali, A.M.; El-Sayed, W.M.; Qayed, W.S.; Farag, H.H.A.; Aboul-Fadl, T. Design and synthesis of novel isatin-based derivatives targeting cell cycle checkpoint pathways as potential anticancer agents. Bioorg. Chem., 2020, 105, 104366.
[http://dx.doi.org/10.1016/j.bioorg.2020.104366] [PMID: 33212312]
[134]
Emami, L.; Faghih, Z.; Fereidoonnezhad, M.; Khabnadideh, S.; Salehi, F.; Abbasi, A.; Sakhteman, A.H. 5-(2-Carboxyethenyl)-isatin derivatives as anticancer agents: QSAR, molecular docking and molecular dynamic simulation analysis. J. Sci. I. R. Iran, 2021, 32, 131-141.
[135]
Fayed, E.A.; Eldin, R.R.E.; Mehany, A.B.M.; Bayoumi, A.H.; Ammar, Y.A. Isatin-Schiff’s base and chalcone hybrids as chemically apoptotic inducers and EGFR inhibitors; design, synthesis, anti-proliferative activities and in silico evaluation. J. Mol. Struct., 2021, 1234, 130159.
[http://dx.doi.org/10.1016/j.molstruc.2021.130159]
[136]
Bashiri, M.; Jarrahpour, A.; Nabavizadeh, S.M.; Karimian, S.; Rastegari, B.; Haddadi, E.; Turos, E. Potent antiproliferative active agents: novel bis Schiff bases and bis spiro β-lactams bearing isatin tethered with butylene and phenylene as spacer and DNA/BSA binding behavior as well as studying molecular docking. Med. Chem. Res., 2021, 30, 258-284.
[http://dx.doi.org/10.1007/s00044-020-02659-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy